
В воздушных массах атмосферы больше всего содержится
Азот, самый распространенный газ в атмосфере, химически мало активен.
Кислород, в отличие от азота, химически очень активный элемент. Специфическая функция кислорода — окисление органического вещества гетеротрофных организмов, горных пород и недоокисленных газов, выбрасываемых в атмосферу вулканами. Без кислорода не было бы разложения мертвого органического вещества.
Роль углекислого газа в атмосфере исключительно велика. Он поступает в атмосферу в результате процессов горения, дыхания живых организмов, гниения и представляет собой, прежде всего, основной строительный материал для создания органического вещества при фотосинтезе. Кроме этого, огромное значение имеет свойство углекислого газа пропускать коротковолновую солнечную радиацию и поглощать часть теплового длинноволнового излучения, что создаст так называемый парниковый эффект, о котором речь пойдет ниже.
Влияние на атмосферные процессы, особенно на тепловой режим стратосферы, оказывает и озон. Этот газ служит естественным поглотителем ультрафиолетового излучения Солнца, а поглощение солнечной радиации ведет к нагреванию воздуха. Средние месячные значения общего содержания озона в атмосфере изменяются в зависимости от широты местности и времени года в пределах 0,23-0,52 см (такова толщина слоя озона при наземных давлении и температуре). Наблюдается увеличение содержания озона от экватора к полюсам и годовой ход с минимумом осенью и максимумом весной.
Характерным свойством атмосферы можно назвать то, что содержание основных газов (азота, кислорода, аргона) с высотой изменяется незначительно: на высоте 65 км в атмосфере содержание азота — 86 %, кислорода — 19, аргона — 0,91, на высоте же 95 км — азота 77, кислорода — 21,3, аргона — 0,82 %. Постоянство состава атмосферного воздуха по вертикали и по горизонтали поддерживается его перемешиванием.
Кроме газов, в воздухе содержатся водяной пар и твердые частицы. Последние могут иметь как естественное, так и искусственное (антропогенное) происхождение. Это цветочная пыльца, крохотные кристаллики соли, дорожная пыль, аэрозольные примеси. Когда в окно проникают солнечные лучи, их можно увидеть невооруженным глазом.
Особенно много твердых частиц в воздухе городов и крупных промышленных центров, где к аэрозолям добавляются выбросы вредных газов, их примесей, образующихся при сжигании топлива.
Концентрация аэрозолей в атмосфере определяет прозрачность воздуха, что сказывается на солнечной радиации, достигающей поверхности Земли. Наиболее крупные аэрозоли — ядра конденсации (от лат. condensatio — уплотнение, сгущение) — способствуют превращению водяного пара в водяные капли.
Значение водяного пара определяется прежде всего тем, что он задерживает длинноволновое тепловое излучение земной поверхности; представляет основное звено больших и малых круговоротов влаги; повышает температуру воздуха при конденсации водяных наров.
Количество водяного пара в атмосфере изменяется во времени и пространстве. Так, концентрация водяного пара у земной поверхности колеблется от 3 % в тропиках до 2-10 (15) % в Антарктиде.
Среднее содержание водяного пара в вертикальном столбе атмосферы в умеренных широтах составляет около 1,6-1,7 см (такую толщину будет иметь слой сконденсированного водяного пара). Сведения относительно водяного пара в различных слоях атмосферы противоречивы. Предполагалось, например, что в диапазоне высот от 20 до 30 км удельная влажность сильно увеличивается с высотой. Однако последующие измерения указывают на большую сухость стратосферы. По-видимому, удельная влажность в стратосфере мало зависит от высоты и составляет 2-4 мг/кг.
Изменчивость содержания водяного пара в тропосфере определяется взаимодействием процессов испарения, конденсации и горизонтального переноса. В результате конденсации водяного пара образуются облака и выпадают атмосферные осадки в виде дождя, града и снега.
Процессы фазовых переходов воды протекают преимущественно в тропосфере, именно поэтому облака в стратосфере (на высотах 20-30 км) и мезосфере (вблизи мезопаузы), получившие название перламутровых и серебристых, наблюдаются сравнительно редко, тогда как тропосферные облака нередко закрывают около 50 % всей земной поверхности.
Количество водяного пара, которое может содержаться в воздухе, зависит от температуры воздуха.
В 1 м3 воздуха при температуре -20 °С может содержаться не более 1 г воды; при 0 °С — не более 5 г; при +10 °С — не более 9 г; при +30 °С — не более 30 г воды.
Вывод: чем выше температура воздуха, тем больше водяного пара может в нем содержаться.
Воздух может быть насыщенным и не насыщенным водяным паром. Так, если при температуре +30 °С в 1 м3 воздуха содержится 15 г водяного пара, воздух не насыщен водяным паром; если же 30 г — насыщен.
Абсолютная влажность — это количество водяного пара, содержащегося в 1 м3 воздуха. Оно выражается в граммах. Например, если говорят «абсолютная влажность равна 15», то это значит, что в 1 мЛ содержится 15 г водяного пара.
Относительная влажность воздуха — это отношение (в процентах) фактического содержания водяного пара в 1 м3воздуха к тому количеству водяного пара, которое может содержаться в 1 мЛ при данной температуре. Например, если по радио во время передачи сводки погоды сообщили, что относительная влажность равна 70 %, это значит, что воздух содержит 70 % того водяного пара, которое он может вместить при данной температуре.
Чем больше относительная влажность воздуха, т. с. чем ближе воздух к состоянию насыщения, тем вероятнее выпадение осадков.
Всегда высокая (до 90 %) относительная влажность воздуха наблюдается в экваториальной зоне, так как там в течение всего года держится высокая температура воздуха и происходит большое испарение с поверхности океанов. Такая же высокая относительная влажность и в полярных районах, но уже потому, что при низких температурах даже небольшое количество водяного пара делает воздух насыщенным или близким к насыщению. В умеренных широтах относительная влажность меняется по сезонам — зимой она выше, летом — ниже.
Особенно низкая относительная влажность воздуха в пустынях: 1 м1 воздуха там содержит в два-три раза меньше возможного при данной температуре количество водяного пара.
Для измерения относительной влажности пользуются гигрометром (от греч. hygros — влажный и metreco — измеряю).
При охлаждении насыщенный воздух не может удержать в себе прежнего количества водяного пара, он сгущается (конденсируется), превращаясь в капельки тумана. Туман можно наблюдать летом в ясную прохладную ночь.
Облака — это тог же туман, только образуется он не у земной поверхности, а на некоторой высоте. Поднимаясь вверх, воздух охлаждается, и находящийся в нем водяной пар конденсируется. Образовавшиеся мельчайшие капельки воды и составляют облака.
В образовании облаков участвуют и твердые частицы, находящиеся в тропосфере во взвешенном состоянии.
Облака могут иметь различную форму, которая зависит от условий их образования.
Самые низкие и тяжелые облака — слоистые. Они располагаются на высоте 2 км от земной поверхности. На высоте от 2 до8 км можно наблюдать более живописные кучевые облака. Самые высокие и легкие — перистые облака. Они располагаются на высоте от 8 до 18 км над земной поверхностью.
Источник: sites.google.com
Самый распространенный в атмосфере газ — азот. В нижних слоях атмосферы содержится 78% этого газа. Будучи в газообразном состоянии химически инертным, азот в соединениях, называемых нитратами, играет важную роль в обмене веществ в растительном покрове и животном мире.
Животные не могут усваивать азот непосредственно из воздуха. Но он входит в состав пищи, которую животные получают ежедневно в виде корма. Свободный азот из воздуха захватывается бактериями, содержащимися в корнях таких растений, как бобовые . Нитраты, создающиеся при этом растениями, становятся доступными для животных, питающихся этими растениями.
В биологическом отношении самый активный газ атмосферы — кислород. Его содержание в атмосфере — около 21 % — сравнительно неизменно. Это объясняется тем, что непрерывное использование кислорода животными уравновешивается выделением его растениями. Животные поглощают кислород в процессе дыхания. Растения же выделяют его как побочный продукт фотосинтеза, но и поглощают его при дыхании. В результате этих и других взаимосвязанных процессов общее количество кислорода в земной атмосфере, по крайней мере в настоящее время, более или менее сбалансировано, т. е. приблизительно постоянно.
С точки зрения метеоролога и климатолога одной из самых важных составных частей атмосферы является углекислый газ. Хотя по объему он занимает всего 0,03%, изменение его содержания может коренным образом изменить погоду и климат Земли. Позднее мы рассмотрим более подробно основные атмосферные процессы, в которых углекислый газ играет важную роль. Однако сейчас интересно отметить, что удвоение содержания углекислого газа в атмосфере, т. е. увеличение его объема до 0,06%, может повысить температуру на земном шаре на 3°С. На первый взгляд такое повышение кажется незначительным. Но оно стало бы причиной коренного изменения климата на всей Земле. Приблизительно в течение 120 лет, прошедших после начала великой промышленной революции прошлого века, человечество непрерывно увеличивало выброс в атмосферу не только углекислого, но и других газов.
хотя количество углекислого газа в атмосфере пока не удвоилось, средняя температура воздуха на Земле за период с 1869 по 1940 г. тем не менее выросла на 1°С. Правда, предполагают, что содержание углекислого газа на Земле менялось и в прошлом. Изменения эти безусловно могут влиять на климат и потому приковывают к себе внимание метеорологов и климатологов всего мира.
В атмосфере есть газы, которые не участвуют в биологических процессах, однако некоторые из них играют важную роль в переносе энергии в высоких слоях. К числу таких газов относятся аргон, неон, гелий, водород, ксенон, озон (трехатомная разновидность кислорода — О3).
Источник: obatmosfere.ru
1. Введение
Цель урока: узнать, что такое атмосфера, каково ее строение и значение, познакомиться со способами изучения атмосферы.
2. Химический состав
Атмосфера – верхняя легкая воздушная оболочка Земли.
Атмосфера состоит из смеси газов – воздуха.
Рис. 1. Химический состав атмосферы (Источник)
Общая масса атмосферы Земли равна 5,3 • 1015 т (по разным оценкам, 5,15-5,9 • 1015), причем 90% сосредоточено в околоземном слое толщиной около 16 км. Поскольку атмосфера является наружной оболочкой Земли, она «разграничивает» планету и космическое пространство, ослабляя ряд поступающих из космоса излучений и сглаживая резкие колебания температуры в биосфере.
Масса современной атмосферы составляет приблизительно одну миллионную часть массы Земли. С высотой резко уменьшаются плотность и давление атмосферы, а температура изменяется неравномерно и сложно, в том числе из-за влияния на атмосферу солнечной активности и магнитных бурь. Изменение температуры в границах атмосферы на разных высотах поясняется неодинаковым поглощением солнечной энергии газами.
3. Слои атмосферы
Слои атмосферы:
1. Тропосфера
2. Стратосфера
3. Мезосфера
4. Термосфера
5. Экзосфера
Рис. 2. Строение атмосферы (Источник)
Тропосфера – нижняя, наиболее плотная часть атмосферы, до высоты 11-19 км, в которой сосредоточено 4/5 всей массы атмосферного воздуха. Для нее характерно, что температура здесь с высотой падает. В тропосфере содержится почти весь водяной пар атмосферы и возникают почти все облака. Сильно развита здесь и турбулентность, особенно вблизи земной поверхности, а также в так называемых струйных течениях в верхней части тропосферы. Здесь формируются облака и выпадают осадки. Температура в тропосфере понижается с высотой.
Над тропосферой до высоты 50-55 км лежит стратосфера, характеризующаяся тем, что температура в ней в среднем растет с высотой. Переходный слой между тропосферой и стратосферой (толщиной 1-2 км) носит название тропопаузы.
Водяного пара в стратосфере ничтожно мало. Однако на высотах 20-25 км наблюдаются иногда очень тонкие, так называемые перламутровые облака.
В верхней части стратосферы находится озоновый слой, который защищает планету от вредной солнечной радиации.
Слой атмосферы, лежащий выше стратосферы, называется мезосфера. У верхних границ мезосферы были отмечены самые низкие температуры.
Верхняя часть атмосферы, расположенная над мезосферой, характеризуется очень высокими температурами и потому носит название термосферы. В ней различаются, однако, две части: ионосфера, простирающаяся от мезосферы до высот порядка тысячи километров, и лежащая над нею внешняя часть – экзосфера, переходящая в земную корону. Воздух в ионосфере очень разрежен.
Экзосфера – самый высокий слой атмосферы. Ее средняя высота 600 км.
4. Значение и изучение атмосферы
Атмосфера очень важна для нашей планеты.
Атмосфера имеет очень важное экологическое значение. Именно благодаря атмосфере люди и все живые организмы на планете не попадают под влияние негативных космических излучений.
Атмосфера регулирует температурный режим на планете. Также эта оболочка защищает население Земли от метеоритов и других космических тел, которые, не достигнув поверхности планеты, рассеиваются в ее толщине.
Атмосфера влияет на все экзогенные (внешние) процессы, которые происходят в литосфере и гидросфере, в частности, на деятельность ветра, на химическое и физическое испарение вод.
В атмосфере образуются облака и выпадают осадки. Атмосфера принимает активное участие в круговоротах, которые происходят на Земле.
Люди активно изучают атмосферу с помощью простого наблюдения, метеостанций, снимков из космоса, метеозондов, авиации, стратостатов.
Рис. 3. Метеозонд (Источник)
5. Гелий
Гелий – газ без цвета и запаха, содержащийся в атмосфере. Гелий вместе с некоторыми другими газами используется в наружной ионовой рекламе.
6. Полеты в стратосферу
Полеты в стратосферу начались в 30-е годы XX века на стратостатах. В настоящее время в стратосферу летают на самолетах, запускают туда метеозонды.
Источник: interneturok.ru
Строение атмосферы
По вертикали А. имеет слоистую структуру, определяемую гл. обр. особенностями вертикального распределения темп-ры (рис.), которое зависит от географич. положения, сезона, времени суток и т. д. Нижний слой А. – тропосфера – характеризуется падением темп-ры с высотой (примерно на 6 °C на 1 км), его высота от 8–10 км в полярных широтах до 16–18 км в тропиках. Благодаря быстрому убыванию плотности воздуха с высотой в тропосфере находится ок. 80% всей массы А. Над тропосферой располагается стратосфера – слой, который характеризуется в общем повышением темп-ры с высотой. Переходный слой между тропосферой и стратосферой называется тропопаузой. В нижней стратосфере до уровня ок. 20 км темп-ра мало меняется с высотой (т. н. изотермич. область) и нередко даже незначительно уменьшается. Выше темп-ра возрастает из-за поглощения УФ-радиации Солнца озоном, вначале медленно, а с уровня 34–36 км – быстрее. Верхняя граница стратосферы – стратопауза – расположена на выс. 50–55 км, соответствующей максимуму темп-ры (260–270 К). Слой А., расположенный на выс. 55–85 км, где темп-ра снова падает с высотой, называется мезосферой, на его верхней границе – мезопаузе – темп-ра достигает летом 150–160 К, а зимой 200–230 К. Над мезопаузой начинается термосфера – слой, характеризующийся быстрым повышением темп-ры, достигающей на выс. 250 км значений 800–1200 К. В термосфере поглощается корпускулярная и рентгеновская радиация Солнца, тормозятся и сгорают метеоры, поэтому она выполняет функцию защитного слоя Земли. Ещё выше находится экзосфера, откуда атмосферные газы рассеиваются в мировое пространство за счёт диссипации и где происходит постепенный переход от А. к межпланетному пространству.
Состав атмосферы
До выс. ок. 100 км А. практически однородна по химич. составу и ср. молекулярная масса воздуха (ок. 29) в ней постоянна. Вблизи поверхности Земли А. состоит из азота (ок. 78,1% по объёму) и кислорода (ок. 20,9%), а также содержит малые количества аргона, диоксида углерода (углекислого газа), неона и др. постоянных и переменных компонентов (см. Воздух).
Кроме того, А. содержит небольшие количества озона, оксидов азота, аммиака, радона и др. Относит. содержание осн. составляющих воздуха постоянно во времени и однородно в разных географич. районах. Содержание водяного пара и озона переменно в пространстве и времени; несмотря на малое содержание, их роль в атмосферных процессах весьма существенна.
Выше 100–110 км происходит диссоциация молекул кислорода, углекислого газа и водяного пара, поэтому молекулярная масса воздуха уменьшается. На выс. ок. 1000 км начинают преобладать лёгкие газы – гелий и водород, а ещё выше А. Земли постепенно переходит в межпланетный газ.
Наиболее важная переменная компонента А. – водяной пар, который поступает в А. при испарении с поверхности воды и влажной почвы, а также путём транспирации растениями. Относит. содержание водяного пара меняется у земной поверхности от 2,6% в тропиках до 0,2% в полярных широтах. С высотой оно быстро падает, убывая наполовину уже на выс. 1,5–2 км. В вертикальном столбе А. в умеренных широтах содержится ок. 1,7 см «слоя осаждённой воды». При конденсации водяного пара образуются облака, из которых выпадают осадки атмосферные в виде дождя, града, снега.
Важной составляющей атмосферного воздуха является озон, сосредоточенный на 90% в стратосфере (между 10 и 50 км), ок. 10% его находится в тропосфере. Озон обеспечивает поглощение жёсткой УФ-радиации (с длиной волны менее 290 нм), и в этом – его защитная роль для биосферы. Значения общего содержания озона меняются в зависимости от широты и сезона в пределах от 0,22 до 0,45 см (толщина слоя озона при давлении $p=$ 1 атм и темп-ре $T=$ 0 °C). В озоновых дырах, наблюдаемых весной в Антарктике с нач. 1980-х гг., содержание озона может падать до 0,07 см. Оно увеличивается от экватора к полюсам и имеет годовой ход с максимумом весной и минимумом осенью, причём амплитуда годового хода мала в тропиках и растёт к высоким широтам. Существенной переменной компонентой А. является углекислый газ, содержание которого в атмосфере за последние 200 лет выросло на 35%, что объясняется в осн. антропогенным фактором. Наблюдается его широтная и сезонная изменчивость, связанная с фотосинтезом растений и растворимостью в морской воде (согласно закону Генри, растворимость газа в воде уменьшается с ростом её темп-ры).
Важную роль в формировании климата планеты играет атмосферный аэрозоль – взвешенные в воздухе твёрдые и жидкие частицы размером от нескольких нм до десятков мкм. Различаются аэрозоли естественного и антропогенного происхождения. Аэрозоль образуется в процессе газофазных реакций из продуктов жизнедеятельности растений и хозяйств. деятельности человека, вулканич. извержений, в результате подъёма пыли ветром с поверхности планеты, особенно с её пустынных регионов, а также образуется из космич. пыли, попадающей в верхние слои А. Бóльшая часть аэрозоля сосредоточена в тропосфере, аэрозоль от вулканич. извержений образует т. н. слой Юнге на выс. ок. 20 км. Наибольшее количество антропогенного аэрозоля попадает в А. в результате работы автотранспорта и ТЭЦ, химич. производств, сжигания топлива и др. Поэтому в некоторых районах состав А. заметно отличается от обычного воздуха, что потребовало создания спец. службы наблюдений и контроля за уровнем загрязнения атмосферного воздуха.
Эволюция атмосферы
Совр. А. имеет, по-видимому, вторичное происхождение: она образовалась из газов, выделенных твёрдой оболочкой Земли после завершения формирования планеты ок. 4,5 млрд. лет назад. В течение геологич. истории Земли А. претерпевала значит. изменения своего состава под влиянием ряда факторов: диссипации (улетучивания) газов, преим. более лёгких, в космич. пространство; выделения газов из литосферы в результате вулканич. деятельности; химич. реакций между компонентами А. и породами, слагающими земную кору; фотохимич. реакций в самой А. под влиянием солнечного УФ-излучения; аккреции (захвата) материи межпланетной среды (напр., метеорного вещества). Развитие А. тесно связано с геологич. и геохимич. процессами, а последние 3–4 млрд. лет также с деятельностью биосферы. Значит. часть газов, составляющих совр. А. (азот, углекислый газ, водяной пар), возникла в ходе вулканич. деятельности и интрузии, выносившей их из глубин Земли. Кислород появился в заметных количествах ок. 2 млрд. лет тому назад как результат деятельности фотосинтезирующих организмов, первоначально зародившихся в поверхностных водах океана.
По данным о химич. составе карбонатных отложений получены оценки количества углекислого газа и кислорода в А. геологического прошлого. На протяжении фанерозоя (последние 570 млн. лет истории Земли) количество углекислого газа в А. изменялось в широких пределах в соответствии с уровнем вулканич. активности, темп-рой океана и уровнем фотосинтеза. Большую часть этого времени концентрация углекислого газа в А. была значительно выше современной (до 10 раз). Количество кислорода в А. фанерозоя существенно изменялось, причём преобладала тенденция к его увеличению. В А. докембрия масса углекислого газа была, как правило, больше, а масса кислорода – меньше по сравнению с А. фанерозоя. Колебания количества углекислого газа оказывали в прошлом существенное влияние на климат, усиливая парниковый эффект при росте концентрации углекислого газа, благодаря чему климат на протяжении осн. части фанерозоя был гораздо теплее по сравнению с совр. эпохой.
Атмосфера и жизнь
Без А. Земля была бы мёртвой планетой. Органич. жизнь протекает в тесном взаимодействии с А. и связанными с ней климатом и погодой. Незначительная по массе по сравнению с планетой в целом (примерно миллионная часть), А. является непременным условием для всех форм жизни. Наибольшее значение из атмосферных газов для жизнедеятельности организмов имеют кислород, азот, водяной пар, углекислый газ, озон. При поглощении углекислого газа фотосинтезирующими растениями создаётся органич. вещество, используемое как источник энергии подавляющим большинством живых существ, включая человека. Кислород необходим для существования аэробных организмов, для которых приток энергии обеспечивается реакциями окисления органич. вещества. Азот, усваиваемый некоторыми микроорганизмами (азотофиксаторами), необходим для минер. питания растений. Озон, поглощающий жёсткое УФ-излучение Солнца, значительно ослабляет эту вредную для жизни часть солнечной радиации. Конденсация водяного пара в А., образование облаков и последующее выпадение атмосферных осадков поставляют на сушу воду, без которой невозможны никакие формы жизни. Жизнедеятельность организмов в гидросфере во многом определяется количеством и химич. составом атмосферных газов, растворённых в воде. Поскольку химич. состав А. существенно зависит от деятельности организмов, биосферу и А. можно рассматривать как часть единой системы, поддержание и эволюция которой (см. Биогеохимические циклы) имела большое значение для изменения состава А. на протяжении истории Земли как планеты.
Радиационный, тепловой и водный балансы атмосферы
Солнечная радиация является практически единств. источником энергии для всех физич. процессов в А. Главная особенность радиац. режима А. – т. н. парниковый эффект: А. достаточно хорошо пропускает к земной поверхности солнечную радиацию, но активно поглощает тепловое длинноволновое излучение земной поверхности, часть которого возвращается к поверхности в форме встречного излучения, компенсирующего радиац. потерю тепла земной поверхностью (см. Атмосферное излучение). В отсутствие А. ср. темп-ра земной поверхности была бы –18 °C, в действительности она 15 °C. Приходящая солнечная радиация частично (ок. 20%) поглощается в А. (гл. обр. водяным паром, каплями воды, углекислым газом, озоном и аэрозолями), а также рассеивается (ок. 7%) на частицах аэрозоля и флуктуациях плотности (рэлеевское рассеяние). Суммарная радиация, достигая земной поверхности, частично (ок. 23%) отражается от неё. Коэф. отражения определяется отражат. способностью подстилающей поверхности, т. н. альбедо. В среднем альбедо Земли для интегрального потока солнечной радиации близко к 30%. Оно меняется от нескольких процентов (сухая почва и чернозём) до 70–90% для свежевыпавшего снега. Радиац. теплообмен между земной поверхностью и А. существенно зависит от альбедо и определяется эффективным излучением поверхности Земли и поглощённым ею противоизлучением А. Алгебраич. сумма потоков радиации, входящих в земную атмосферу из космич. пространства и уходящих из неё обратно, называется радиационным балансом.
Преобразования солнечной радиации после её поглощения А. и земной поверхностью определяют тепловой баланс Земли как планеты. Гл. источник тепла для А. – земная поверхность; теплота от неё передаётся не только в виде длинноволнового излучения, но и путём конвекции, а также выделяется при конденсации водяного пара. Доли этих притоков теплоты равны в ср. 20%, 7% и 23% соответственно. Сюда же добавляется ок. 20% теплоты за счёт поглощения прямой солнечной радиации. Поток солнечной радиации за единицу времени через единичную площадку, перпендикулярную солнечным лучам и расположенную вне А. на ср. расстоянии от Земли до Солнца (т. н. солнечная постоянная), равен 1367 Вт/м2, изменения составляют 1–2 Вт/м2 в зависимости от цикла солнечной активности. При планетарном альбедо ок. 30% средний по времени глобальный приток солнечной энергии к планете составляет 239 Вт/м2. Поскольку Земля как планета испускает в космос в среднем такое же количество энергии, то, согласно закону Стефана – Больцмана, эффективная темп-ра уходящего теплового длинноволнового излучения 255 К (–18 °C). В то же время ср. темп-ра земной поверхности составляет 15 °C. Разница в 33 °C возникает за счёт парникового эффекта.
Водный баланс А. в целом соответствует равенству количества влаги, испарившейся с поверхности Земли, количеству осадков, выпадающих на земную поверхность. А. над океанами получает больше влаги от процессов испарения, чем над сушей, а теряет в виде осадков 90%. Избыток водяного пара над океанами переносится на континенты воздушными потоками. Количество водяного пара, переносимого в А. с океанов на континенты, равно объёму стока рек, впадающих в океаны.
Движение воздуха
Земля имеет шарообразную форму, поэтому к её высоким широтам приходит гораздо меньше солнечной радиации, чем к тропикам. Вследствие этого между широтами возникают большие температурные контрасты. На распределение темп-ры в существенной мере влияет также взаимное расположение океанов и континентов. Из-за большой массы океанич. вод и высокой теплоёмкости воды сезонные колебания темп-ры поверхности океана значительно меньше, чем суши. В связи с этим в средних и высоких широтах темп-ра воздуха над океанами летом заметно ниже, чем над континентами, а зимой – выше.
Неодинаковый разогрев А. в разных областях земного шара вызывает неоднородное по пространству распределение атмосферного давления. На уровне моря распределение давления характеризуется относительно низкими значениями вблизи экватора, увеличением в субтропиках (поясá высокого давления) и понижением в средних и высоких широтах. При этом над материками внетропич. широт давление зимой обычно повышено, а летом понижено, что связано с распределением темп-ры. Под действием градиента давления воздух испытывает ускорение, направленное от областей с высоким давлением к областям с низким, что приводит к перемещению масс воздуха. На движущиеся воздушные массы действуют также отклоняющая сила вращения Земли (сила Кориолиса), сила трения, убывающая с высотой, а при криволинейных траекториях и центробежная сила. Большое значение имеет турбулентное перемешивание воздуха (см. Турбулентность в атмосфере).
С планетарным распределением давления связана сложная система воздушных течений (общая циркуляция атмосферы). В меридиональной плоскости в среднем прослеживаются две или три ячейки меридиональной циркуляции. Вблизи экватора нагретый воздух поднимается и опускается в субтропиках, образуя ячейку Хэдли. Там же опускается воздух обратной ячейки Феррела. В высоких широтах часто прослеживается прямая полярная ячейка. Скорости меридиональной циркуляции порядка 1 м/с или меньше. Из-за действия силы Кориолиса в большей части А. наблюдаются зап. ветры со скоростями в средней тропосфере ок. 15 м/с. Существуют сравнительно устойчивые системы ветров. К ним относятся пассаты – ветры, дующие от поясов высокого давления в субтропиках к экватору с заметной вост. составляющей (с востока на запад). Достаточно устойчивы муссоны – воздушные течения, имеющие чётко выраженный сезонный характер: они дуют с океана на материк летом и в противоположном направлении зимой. Особенно регулярны муссоны Индийского ок. В средних широтах движение воздушных масс имеет в осн. зап. направление (с запада на восток). Это зона атмосферных фронтов, на которых возникают крупные вихри – циклоны и антициклоны, охватывающие мн. сотни и даже тысячи километров. Циклоны возникают и в тропиках; здесь они отличаются меньшими размерами, но очень большими скоростями ветра, достигающего ураганной силы (33 м/с и более), т. н. тропические циклоны. В Атлантике и на востоке Тихого ок. они называются ураганами, а на западе Тихого ок. – тайфунами. В верхней тропосфере и нижней стратосфере в областях, разделяющих прямую ячейку меридиональной циркуляции Хэдли и обратную ячейку Феррела, часто наблюдаются сравнительно узкие, в сотни километров шириной, струйные течения с резко очерченными границами, в пределах которых ветер достигает 100–150 и даже 200 м/с.
Климат и погода
Различие в количестве солнечной радиации, приходящей на разных широтах к разнообразной по физич. свойствам земной поверхности, определяет многообразие климатов Земли. От экватора до тропич. широт темп-ра воздуха у земной поверхности в ср. 25–30 °C и мало меняется в течение года. В экваториальном поясе обычно выпадает много осадков, что создаёт там условия избыточного увлажнения. В тропич. поясах количество осадков уменьшается и в ряде областей становится очень малым. Здесь располагаются обширные пустыни Земли.
В субтропич. и средних широтах темп-ра воздуха значительно меняется в течение года, причём разница между темп-рами лета и зимы особенно велика в удалённых от океанов областях континентов. Так, в некоторых районах Вост. Сибири годовая амплитуда темп-ры воздуха достигает 65 °C. Условия увлажнения в этих широтах весьма разнообразны, зависят в осн. от режима общей циркуляции А. и существенно меняются от года к году.
В полярных широтах темп-ра остаётся низкой в течение всего года, даже при наличии её заметного сезонного хода. Это способствует широкому распространению ледового покрова на океанах и суше и многолетнемёрзлых пород, занимающих в России св. 65% её площади, в осн. в Сибири.
За последние десятилетия стали всё более заметны изменения глобального климата. Темп-ра повышается больше в высоких широтах, чем в низких; больше зимой, чем летом; больше ночью, чем днём. За 20 в. ср.-годовая темп-ра воздуха у земной поверхности в России выросла на 1,5–2 °C, причём в отд. районах Сибири наблюдается повышение на неск. градусов. Это связывается с усилением парникового эффекта вследствие роста концентрации малых газовых примесей.
Погода определяется условиями циркуляции А. и географич. положением местности, она наиболее устойчива в тропиках и наиболее изменчива в средних и высоких широтах. Более всего погода меняется в зонах смены воздушных масс, обусловленных прохождением атмосферных фронтов, циклонов и антициклонов, несущих осадки и усиление ветра. Данные для прогноза погоды собираются на наземных метеостанциях, морских и воздушных судах, с метеорологич. спутников. См. также Метеорология.
Оптические, акустические и электрические явления в атмосфере
При распространении электромагнитного излучения в А. в результате рефракции, поглощения и рассеяния света воздухом и разл. частицами (аэрозоль, кристаллы льда, капли воды) возникают разнообразные оптич. явления: радуга, венцы, гало, мираж и др. Рассеяние света обусловливает видимую высоту небесного свода и голубой цвет неба. Дальность видимости предметов определяется условиями распространения света в А. (см. Атмосферная видимость). От прозрачности А. на разл. длинах волн зависят дальность связи и возможность обнаружения объектов приборами, в т. ч. возможность астрономич. наблюдений с поверхности Земли. Для исследований оптич. неоднородностей стратосферы и мезосферы важную роль играет явление сумерек. Напр., фотографирование сумерек с космич. аппаратов позволяет обнаруживать аэрозольные слои. Особенности распространения электромагнитного излучения в А. определяют точность методов дистанционного зондирования её параметров. Все эти вопросы, как и мн. другие, изучает атмосферная оптика. Рефракция и рассеяние радиоволн обусловливают возможности радиоприёма (см. Распространение радиоволн).
Распространение звука в А. зависит от пространственного распределения темп-ры и скорости ветра (см. Атмосферная акустика). Оно представляет интерес для зондирования А. дистанц. методами. Взрывы зарядов, запускаемых ракетами в верхнюю А., дали богатую информацию о системах ветров и ходе темп-ры в стратосфере и мезосфере. В устойчиво стратифицированной А., когда темп-ра падает с высотой медленнее адиабатического градиента (9,8 К/км), возникают т. н. внутренние волны. Эти волны могут распространяться вверх в стратосферу и даже в мезосферу, где они затухают, способствуя усилению ветра и турбулентности.
Отрицательный заряд Земли и обусловленное им электрич. поле А. вместе с электрически заряженными ионосферой и магнитосферой создают глобальную электрич. цепь. Важную роль при этом играет образование облаков и грозового электричества. Опасность грозовых разрядов вызвала необходимость разработки методов грозозащиты зданий, сооружений, линий электропередач и связи. Особую опасность это явление представляет для авиации. Грозовые разряды вызывают атмосферные радиопомехи, получившие назв. атмосфериков (см. Свистящие атмосферики). Во время резкого увеличения напряжённости электрич. поля наблюдаются светящиеся разряды, возникающие на остриях и острых углах предметов, выступающих над земной поверхностью, на отд. вершинах в горах и др. (Эльма огни). А. всегда содержит сильно меняющееся в зависимости от конкретных условий количество лёгких и тяжёлых ионов, которые определяют электрич. проводимость А. Главные ионизаторы воздуха у земной поверхности – излучение радиоактивных веществ, содержащихся в земной коре и в А., а также космич. лучи. См. также Атмосферное электричество.
Влияние человека на атмосферу
В течение последних столетий происходил рост концентрации парниковых газов в А. вследствие хозяйств. деятельности человека. Процентное содержание углекислого газа возросло с 2,86 10–2 двести лет назад до 3,8·10–2 в 2005, содержание метана – с 0,7· 10–4 примерно 300–400 лет назад до 1,8·10–4 в нач. 21 в.; ок. 20% в прирост парникового эффекта за последнее столетие дали фреоны, которых практически не было в А. до сер. 20 в. Эти вещества признаны разрушителями стратосферного озона, и их производство запрещено Монреальским протоколом 1987. Рост концентрации углекислого газа в А. вызван сжиганием всё возрастающих количеств угля, нефти, газа и др. видов углеродного топлива, а также сведе́нием лесов, в результате чего уменьшается поглощение углекислого газа путём фотосинтеза. Концентрация метана увеличивается с ростом добычи нефти и газа (за счёт его потерь), а также при расширении посевов риса и увеличении поголовья крупного рогатого скота. Всё это способствует потеплению климата.
Для изменения погоды разработаны методы активного воздействия на атмосферные процессы. Они применяются для защиты с.-х. растений от градобития путём рассеивания в грозовых облаках спец. реагентов. Существуют также методы рассеяния туманов в аэропортах, защиты растений от заморозков, воздействия на облака с целью увеличения осадков в нужных местах или для рассеяния облаков в моменты массовых мероприятий.
Изучение атмосферы
Сведения о физич. процессах в А. получают прежде всего из метеорологических наблюдений, которые проводятся глобальной сетью постоянно действующих метеорологич. станций и постов, расположенных на всех континентах и на мн. островах. Ежедневные наблюдения дают сведения о темп-ре и влажности воздуха, атмосферном давлении и осадках, облачности, ветре и др. Наблюдения за солнечной радиацией и её преобразованиями проводятся на актинометрич. станциях. Большое значение для изучения А. имеют сети аэрологич. станций, на которых при помощи радиозондов выполняются метеорологич. измерения до выс. 30–35 км. На ряде станций проводятся наблюдения за атмосферным озоном, электрич. явлениями в А., химич. составом воздуха.
Данные наземных станций дополняются наблюдениями на океанах, где действуют «суда погоды», постоянно находящиеся в определённых районах Мирового ок., а также метеорологич. сведениями, получаемыми с н.-и. и др. судов.
Всё больший объём сведений об А. в последние десятилетия получают с помощью метеорологич. спутников, на которых установлены приборы для фотографирования облаков и измерения потоков ультрафиолетовой, инфракрасной и микроволновой радиации Солнца. Спутники позволяют получать сведения о вертикальных профилях темп-ры, облачности и её водозапасе, элементах радиац. баланса А., о темп-ре поверхности океана и др. Используя измерения рефракции радиосигналов с системы навигац. спутников, удаётся определять в А. вертикальные профили плотности, давления и темп-ры, а также влагосодержания. С помощью спутников стало возможным уточнить величину солнечной постоянной и планетарного альбедо Земли, строить карты радиац. баланса системы Земля – А., измерять содержание и изменчивость малых атмосферных примесей, решать мн. др. задачи физики атмосферы и мониторинга окружающей среды.
Источник: bigenc.ru
«Атмосфера»
Атмосфера — газовая оболочка, окружающая планету Земля и вращающаяся вместе с ней. Совокупность разделов физики и химии, изучающих атмосферу, принято называть физикой атмосферы. Атмосфера определяет погоду на поверхности Земли, изучением погоды занимается метеорология, а длительными вариациями климата — климатология.
Толщина атмосферы 1500 км от поверхности Земли. Суммарная масса воздуха, то есть смеси газов, составляющих атмосферу: около 5,3 * 1015 т. Молекулярная масса чистого сухого воздуха составляет 29. Давление при 0°С на уровне моря 101 325 Па, или 760 мм. рт. ст.; критическая температура 140,7 °С; критическое давление 3,7 МПа. Растворимость воздуха в воде при 0 °С — 0,036 %, при 25 °С — 0,22 %.
Атмосферное давление — давление атмосферного воздуха на находящиеся в нем предметы и земную поверхность. Нормальным атмосферным давлением является показатель в 760 мм рт. ст. (101 325 Па). При повышении высоты на каждый километр давление падает на 100 мм.
Строение атмосферы.
Физическое состояние атмосферы определяется погодой и климатом. Основные параметры атмосферы: плотность воздуха, давление, температура и состав. С увеличением высоты плотность воздуха и атмосферное давление уменьшаются. Температура меняется также в зависимости от изменения высоты. Вертикальное строение атмосферы характеризуется различными температурными и электрическими свойствами, разным состоянием воздуха. В зависимости от температуры в атмосфере различают следующие основные слои: тропосферу, стратосферу, мезосферу, термосферу, экзосферу (сферу рассеяния). Переходные области атмосферы между соседними оболочками называют соответственно тропопауза, стратопауза и т.д.
Тропосфера — нижний, основной, наиболее изученный слой атмосферы, высотой в полярных областях 8—10 км, в умеренных широтах до 10—12 км, на экваторе — 16—18 км. В тропосфере сосредоточено примерно 80—90 % всей массы атмосферы и почти все водяные пары. При подъеме через каждые 100 м температура в тропосфере понижается в среднем на 0,65 °С и достигает —53 °С в верхней части. Этот верхний слой тропосферы называют тропопаузой. В тропосфере сильно развиты турбулентность и конвекция, сосредоточена преобладающая часть водяного пара, возникают облака, развиваются циклоны и антициклоны.
Стратосфера — слой атмосферы, располагающийся на высоте 11—50 км. Характерно незначительное изменение температуры в слое 11—25 км (нижний слой стратосферы) и повышение ее в слое 25—40 км от —56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения 273 К (0 °С), температура остается постоянной до высоты 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.
Именно в стратосфере располагается слой озоносферы («озоновый слой», на высоте от 15—20 до 55— 60 км), который определяет верхний предел жизни в биосфере. Важный компонент стратосферы и мезосферы — озон, образующийся в результате фотохимических реакций наиболее интенсивно на высоте равной 30 км. Общая масса озона составила бы при нормальном давлении слой толщиной 1,7—4 мм, но и этого достаточно для поглощения губительного для жизни ультрафиолетового излучения Солнца. Озон (О3) — аллотропия кислорода, образуется в результате следующей химической реакции, обычно после дождя, когда полученное соединение поднимается в верхние слои тропосферы; озон имеет специфический запах.
В стратосфере задерживается большая часть коротковолновой части ультрафиолетового излучения (180—200 нм) и происходит трансформация энергии коротких волн. Под влиянием этих лучей изменяются магнитные поля, распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений. Эти процессы можно наблюдать в виде северных сияний, зарниц, и других свечений. В стратосфере почти нет водяного пара.
Мезосфера начинается на высоте 50 км и простирается до 80—90 км. Температура воздуха до высоты 75—85 км понижается до 88 °С. Верхней границей мезосферы является мезопауза.
Термосфера (другое название — ионосфера) — слой атмосферы, следующий за мезосферой, — начинается на высоте 80—90 км и простирается до 800 км. Температура воздуха в термосфере быстро и неуклонно возрастает и достигает нескольких сотен и даже тысяч градусов.
Экзосфера — зона рассеяния, внешняя часть термосферы, расположенная выше 800 км. Газ в экзосфере сильно разрежен, и отсюда идет утечка его частиц в межпланетное пространство (диссипация).
Структура атмосферы
До высоты 100 км атмосфера представляет собой гомогенную (однофазную), хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжелых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °С в стратосфере до -110 °С в мезосфере.
На высоте около 2000—3000 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные частицы кометного и метеорного происхождения. Кроме этих чрезвычайно разреженных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.
На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы — около 20 %; масса мезосферы — не более 0,3 %, термосферы — менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000—3000 км.
В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера — это область, где гравитация оказывает влияние на разделение газов, т.к. их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже ее лежит хорошо перемешанная, однородная по составу часть атмосферы называемая гомосферой. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.
Состав атмосферы
Атмосфера Земли — воздушная оболочка Земли, состоящая в основном из газов и различных примесей (пыль, капли воды, кристаллы льда, морские соли, продукты горения), количество которых непостоянно. Основным газами являются азот (78 %), кислород (21 %) и аргон (0,93 %). Концентрация газов, составляющих атмосферу, практически постоянна, за исключением углекислого газа CO2 (0,03 %).
Также в атмосфере содержатся SO2, СН4, N, СО, углеводороды, НСl, НF, пары Hg, I2, а также NO и многие другие газы в незначительных количествах. В тропосфере постоянно находится большое количество взвешенных твердых и жидких частиц (аэрозоль).
Таблица «Атмосфера»
Конспект урока «Атмосфера». Следующая тема: «Погода и климат»
Источник: uchitel.pro