Генетика пола

Пол характеризуется комплексом признаков, определяемых генами, расположенными в хромосомах. В клетках организма человека хромосомы составляют парные диплоидные наборы. У видов с раздельнополыми особями хромосомный комплекс самцов и самок неодинаков и различается по одной паре хромосом (половые хромосомы). Одинаковые хромосомы этой пары назвали X (икс) -хромосомой, непарную, отсутствующую у другого пола — У (игрек) -хромосомой; остальные, по которым нет различий, — аутосомами (А).

Клетки женщины содержат две одинаковые половые хромосомы, которые обозначаются XX, у мужчин они представлены двумя непарными хромосомами X и Y. Таким образом, набор хромосом мужчины и женщины отличается только одной хромосомой: хромосомный набор женщины содержит 44 аутосомы + XX, мужчины — 44 аутосомы + XY.

Во время деления и созревания половых клеток у человека образуются гаметы с гаплоидным числом хромосом: яйцеклетки, как правило, содержат 22 + Х-хромосомы. Таким образом, у женщин образуется только один тип гамет (гаметы с Х-хромосомой). У мужчин гаметы содержат 22 + X или 22 + Y хромосом, и образуется два типа гамет (гамета с Х-хромосомой и гамета с Y-хромосомой). Если при оплодотворении в яйцеклетку попадает сперматозоид с Х-хромосомой, формируется зародыш женского пола, а с Y-хромосомой — мужского пола.


Следовательно, определение пола человека зависит от наличия в мужских половых клетках — сперматозоидах, оплодотворяющих яйцеклетку, X- или Y-хромосом.

Существует четыре основных типа хромосомного определения пола:

1. Мужской пол гетерогаметен; 50% гамет несут Х-, 50% -У – хромосому например, человек, млекопитающие, двукрылые, жуки, клопы (Слайд 4).

2. Мужской пол гетерогаметен; 50% гамет несут Х-, 50%– не имеют половой хромосомы, например, кузнечики, кенгуру (Слайд 7).

3. Женский пол гетерогаметен; 50% гамет несут Х- , 50% гамет– У– хромосому, например, птицы, пресмыкающиеся, хвостатые амфибии, шелкопряд (Слайд 7).

4. Женский пол гетерогаметен; 50% гамет несут Х- , 50% не имеют половой хромосомы, например, моль.

Человек XY

Кузнечик XO

Генетическое определение пола у человека и животных


Генетическое определение пола у человека и животных

Шелкопряд XY

Моль XO

Генетическое определение пола у человека и животных

Генетическое определение пола у человека и животных

Наследование признаков, гены которых локализованы в половых хромосомах, называют наследованием, сцепленным с полом.

26. Генотип как целостная система. Взаимодействие генов, множественное действие генов.

Генотип как целостная система

Свойства генов. На основании знакомства с примерами наследования признаков при моно- и дигибридном скрещивании может сложиться впечатление, что генотип организма слагается из суммы отдельных, независимо действующих генов, каждый из которых определяет развитие только своего признака или свойства. Такое представление о прямой и однозначной связи гена с признаком чаще всего не соответствует действительности.
самом деле существует огромное количество признаков и свойств живых организмов, которые определяются двумя и более парами генов, и наоборот, один ген часто контролирует многие признаки. Кроме того, действие гена может быть изменено соседством других генов и условиями внешней среды. Таким образом, в онтогенезе действуют не отдельные гены, а весь генотип как целостная система со сложными связями и взаимодействиями между ее компонентами. Эта система динамична: появление в результате мутаций новых аллелей или генов, формирование новых хромосом и даже новых геномов приводит к заметному изменению генотипа во времени.

Характер проявления действия гена в составе генотипа как системы может изменяться в различных ситуациях и под влиянием различных факторов. В этом можно легко убедится, если рассмотреть свойства генов и особенности их проявления в признаках:

  1. Ген дискретен в своем действии, т. е. обособлен в своей активности от других генов.

  2. Ген специфичен в своем проявлении, т. е. отвечает за строго определенный признак или свойство организма.

  3. Ген может действовать градуально, т. е. усиливать степень проявления признака при увеличении числа доминантных аллелей (дозы гена).

  4. Один ген может влиять на развитие разных признаков — это множественное, или плейотропное, действие гена.

  5. Разные гены могут оказывать одинаковое действие на развитие одного и того же признака (часто количественных признаков) — это множественные гены, или полигены.


  6. Ген может взаимодействовать с другими генами, что приводит к появлению новых признаков. Такое взаимодействие осуществляется опосредованно — через синтезированные под их контролем продукты своих реакций.

  7. Действие гена может быть модифицировано изменением его местоположения в хромосоме (эффект положения) или воздействием различных факторов внешней среды.

Взаимодействия аллельных генов. Явление, когда за один признак отвечает несколько генов (аллелей), называется взаимодействием генов. Если это аллели одного и того же гена, то такие взаимодействия называются аллельными, а в случае аллелей разных генов —неаллельными.

Выделяют следующие основные типы аллельных взаимодействий: доминирование, неполное доминирование, сверхдоминирование и кодоминирование.

Доминирование —тип взаимодействия двух аллелей одного гена, когда один из них полностью исключает проявление действия другого. Такое явление возможно при следующих условиях: 1) доминантный аллель в гетерозиготном состоянии обеспечивает синтез продуктов, достаточный для проявления признака такого же качества, как и в состоянии доминантной гомозиготы у родительской формы; 2) рецессивный аллель совсем неактивен, либо продукты его активности не взаимодействуют с продуктами активности доминантного аллеля.


Примерами такого взаимодействия аллельных генов может служить доминирование пурпурной окраски цветков гороха над белой, гладкой формы семян над морщинистой, темных волос над светлыми, карих глаз над голубыми у человека и т. д.

Неполное доминирование, или промежуточный характер наследования, наблюдается в том случае, когда фенотип гибрида (гетерозиготы) отличается от фенотипа обеих родительских гомозигот, т. е. выражение признака оказывается промежуточным, с большим или меньшим уклонением в сторону одного или другого родителя. Механизм этого явления состоит в том, что рецессивный аллель неактивен, а степень активности доминантного аллеля недостаточна для того, чтобы обеспечить нужный уровень проявления доминантного признака.

Примером неполного доминирования является наследование окраски цветков у растений ночной красавицы (рис. 3.5). Как видно из схемы, гомозиготные растения имеют либо красные (АА), либо белые (аа) цветки, а гетерозиготные (Аа) — розовые. При скрещивании растения с красными цветками и растения с белыми цветками в F1, у всех растений цветки розовые, т. е. наблюдается промежуточный характер наследования. При скрещивании гибридов с розовой окраской цветков в F2 имеет место совпадение расщепления по фенотипу и генотипу, так как доминантная гомозигота (АА) отличается от гетерозиготы (Аа). Так, в рассматриваемом примере с растениями ночной красавицы расщепление в F2 по окраске цветков обычно следующее — 1 красная (АА): 2 розовые (Аа): 1 белая (аа).


Генетическое определение пола у человека и животных

Рис. 3.5. Наследование окраски цветков при неполном доминировании у ночной красавицы.

Неполное доминирование оказалось широко распространенным явлением. Оно наблюдается в наследовании курчавости волос у человека, масти крупного рогатого скота, окраски оперения у кур, многих других морфологических и физиологических признаков у растений, животных и человека.

Сверхдоминирование — более сильное проявление признака у гетерозиготной особи (Аа), чем у любой из гомозигот (АА и аа). Предполагается, что это явление лежит в основе гетерозиса (см. § 3.7).

Кодаминирвание— участие обоих аллелей в определении признака у гетерозиготной особи. Ярким и хорошо изученным примером кодоминирования может служить наследование IV группы крови у человека (группа АВ).

Эритроциты людей этой группы имеют два типа антигенов: антиген А (детерминируемый геном / имеющимся в одной из хромосом) и антиген В (детерминируемый геном /а, локализованным в другой гомологичной хромосоме). Только в этом случае проявляют свое действие оба аллеля — 1А гомозиготном состоянии контролирует II группу крови, группу А) и IB (в гомозиготном состоянии контролирует III группу крови, группу В). Аллели 1А и IB работают в гетерозиготе как бы независимо друг от друга.


Пример наследования групп крови иллюстрирует и прояв-ление множественного аллелизма: ген/может быть представлен тремя разными аллелями, а есть гены, имеющие десятки аллелей. Все аллели одного гена получили название серии мно-жественных аллелей, из которых каждый диплоидный организм может иметь два любых аллеля (и только). Между этими аллелями возможны все перечисленные варианты аллельных взаимодействий.

Явление множественного аллелизма распространено в природе. Известны обширные серии множественных аллелей, определяющих тип совместимости при оплодотворении у грибов, опылении у семенных растений, детерминирующих окраску шерсти животных и т. д.

Взаимодействия неаллельных генов.Неаллельные взаимодействия генов описаны у многих растений и животных. Они приводят к появлению в потомстве дигетерозиготы необычного расщепления по фенотипу: 9:3:4; 9:6:1; 13:3; 12:3:1; 15:1, т.е. модификации общей менделевской формулы 9:3:3:1. Известны случаи взаимодействия двух, трех и большего числа неаллельных генов. Среди них можно выделить следующие основные типы: комплементарность, эпистаз и полимерию.

Комплементарным, или дополнительным, называется такое взаимодействие неаллельных доминантных генов, в результате которого появляется признак, отсутствующий у обоих родителей. Например, при скрещивании двух сортов душистого горошка с белыми цветками появляется потомство с пурпурными цветками. Если обозначить генотип одного сорта ААbb, а другого — ааВВ, то


Генетическое определение пола у человека и животных

Гибрид первого поколения с двумя доминантными генами и В) получил биохимическую основу для выработки пурпурного пигмента антоциана, вто время как поодиночке ни ген А, ни ген B не обеспечивали синтез этого пигмента. Синтез антоциана представляет собой сложную цепь последовательных биохимических реакций, контролируемых несколькими неаллельными генами, и только при наличии как минимум двух доминантных генов (А-В-) развивается пурпурная окраска. В остальных случаях {ааВ- и A-bb) цветки у растения белые (знак «—» в формуле генотипа обозначает, что это место может занять как доминантный, так и рецессивный аллель).

При самоопылении растений душистого горошка из F1 в F2 наблюдалось расщепление на пурпурно- и белоцветковые формы в соотношении, близком к 9:7. Пурпурные цветки были обнаружены у 9/16 растений, белые — у 7/16. Решетка Пеннета наглядно показывает причину этого явления (рис. 3.6).


Эпистаз — это такой тип взаимодействия генов, при котором аллели одного гена подавляют проявление аллельной пары другого гена. Гены, подавляющие действие других генов, называются эпистатическими, ингибиторами или супрессорами. Подавляемый ген носит название гипостатический.

По изменению числа и соотношения фенотип и чес ких классов при дигибридном расщеплении в F2 рассматривают несколько типов эпистатических взаимодействий: доминантный эпистаз (А>В или В>А) с расщеплением 12:3:1; рецессивный эпистаз (а>В или b>А), который выражается в расщеплении 9:3:4, и т. д.

Полимерия проявляется в том, что один признак формируется под влиянием нескольких генов с одинаковым фенотипичес-ким выражением. Такие гены называются полимерными. В этом случае принят принцип однозначного действия генов на развитие признака. Например, при скрещивании растений пастушьей сумки с треугольными и овальными плодами (стручочками) в F1 образуются растения с плодами треугольной формы. При их самоопылении в F2 наблюдается расщепление на растения с треугольными и овальными стручочками в соотношении 15:1. Это объясняется тем, что существуют два гена, действующих однозначно. В этих случаях их обозначают одинаково— А1и A2 .


Генетическое определение пола у человека и животных

Рис. 3.6. Наследование окраски цветков у душистого горошка

Тогда все генотипы 1 ,-А2,-, А12а2, a1a1A2-) будут иметь одинаковый фенотип — треугольные стручочки, и только растения а1а1а2a2 будут отличаться —- образовывать овальные стручочки. Это случай некумулятивной полимерии.

Полимерные гены могут действовать и по типу кумулятивной полимерии. Чем больше подобных генов в генотипе организма, тем сильнее проявление данного признака, т. е. с увеличением дозы гена 1 А2 А3 и т. д.) его действие суммируется, или кумулируется. Например, интенсивность окраски эндосперма зерен пшеницы пропорциональна числу доминантных аллелей разных генов в тригибридном скрещивании. Наиболее окрашенными были зерна А1А1А2А2А3 3 а зерна а1а1а2a2а3а 3 не имели пигмента.

По типу кумулятивной полимерии наследуются многие признаки: молочность, яйценоскость, масса и другие признаки сельскохозяйственных животных; многие важные параметры физической силы, здоровья и умственных способностей человека; длина колоса у злаков; содержание сахара в корнеплодах сахарной свеклы или липидов в семенах подсолнечника и т. д.

Таким образом, многочисленные наблюдения свидетельствуют о том, что проявление большей части признаков представляет собой результат влияния комплекса взаимодействующих генов и условий внешней среды на формирование каждого конкретного признака.

Взаимодействие генов

Отношение между генами и признаками достаточно сложное. В организме не всегда один ген определяет только один признак и, наоборот, один признак определяется только одним геном. Чаще один ген может способствовать проявлению сразу нескольких признаков, и наоборот. Генотип организма нельзя рассматривать как простую сумму независимых генов, каждый из которых функционирует вне связи с другими. Фенотипное проявления того или иного признака являются результатом взаимодействия многих генов.

Множественное действие генов (плейотропия) — процессы влияния одного гена на формирование нескольких признаков.

Например, у человека ген, определяющий рыжую окраску волос, обусловливает более светлую кожу и появление веснушек.

Иногда гены, определяющие морфологические признаки, влияют на физиологические функции, снижая жизнестойкость и плодовитость, или оказываются летальными. Так, ген, вызывающий голубую окраску у норки, снижает ее плодовитость. Доминантный ген серой окраски у каракулевых овец в гомозиготном состоянии детален, поскольку у таких ягнят недоразвит желудок и они погибают при переходе на питание травой.

Комплементарное взаимодействие генов. На развитие одного признака могут влиять несколько генов. Взаимодействие нескольких неаллельных генов, приводящее к развитию одного признака, называется комплементарным. Например, у кур имеются четыре формы гребня, проявление какой-либо из них связано со взаимодействием двух пар неаллельных генов. Розовидный гребень обусловлен действием доминантного гена одной аллели, гороховидный — доминантного гена другой аллели. У гибридов при наличии двух доминантных неаллельных генов образуется ореховидный гребень, а при отсутствии всех доминантных генов, т.е. у рецессивной гомозиготы по двум неаллельным генам, образуется простой гребень.

Результатом взаимодействия генов является окраска шерсти у собак, мышей, лошадей, форма тыквы, окраска цветков душистого горошка.

Полимерия — такое взаимодействие неаллельных генов, когда степень развития признака зависит от общего количества доминантных генов. По этому принципу наследуется окраска зерен овса, пшеницы, цвет кожи у человека. Например, у негров в двух парах неаллельных генов 4 доминантных, а у людей с белой кожей — ни одного, все гены рецессивные. Сочетания разного количества доминантных и рецессивных генов приводят к образованию мулатов с разной интенсивностью окраски кожи: от темной до светлой.

Различают две основных группы взаимодействия генов: взаимодействие между аллельными генами и взаимодействие между неаллельнимы генами. Однако следует понимать, что это не физическое взаимодействие самих генов, а взаимодействие первичных и вторичных продуктов, которые обусловят тот или иной признак. В цитоплазме происходит взаимодействие между белками — ферментами, синтез которых опрелятся генами, или между веществами, которые образовываются под влиянием этих ферментов.

Возможны следующие типы взаимодействия:

1) для образования определенного признака необходимо взаимодействие двух ферментов, синтез которых опрелятся двумя неаллельнимы генами;

2) фермент, что был синтезирован с участием одного гена, полностью подавляет или инактивирует действие фермента, что был образован другим неаллельным геном;

3) два ферменты, образование которых контролируется двумя неаллельми генами, влияющими на один признак или на один процесс так, что их совместное действие приводит к возникновению и усилению проявления признака.

Взаимодействие аллельных генов

Гены, которые занимают идентичные (гомологические) локусы в гомологичных хромосомах, называются аллельными. У каждого организма есть по два аллельных гена.

Известны такие формы взаимодействия между аллельными генами: полное доминирование, неполное доминирование, кодоминированием и сверхдоминирование.

Основная форма взаимодействия — полное доминирование, которое впервые описано Г. Менделем. Суть его заключается в том, что в гетерозиготном организме проявление одной из аллелей доминирует над проявлением другой. При полном доминировании расщепления по генотипу 1:2:1 не совпадает с расщеплением по фенотипу — 3:1. В медицинской практике с двух тысяч моногенных наследственных болезней почти в половины имеет место доминированое проявления патологических генов над нормальными. В гетерозигот патологический аллель проявляется в большинстве случаев признаками заболевания (доминантный фенотип).

Неполное доминирование — форма взаимодействия, при которой у гетерозиготного организма (Аа) доминантный ген (А) не полностью подавляет рецессивный ген (а), вследствие чего проявляется промежуточный между родительскими признак. Здесь расщепление по генотипу и фенотипу совпадает и составляет 1:2:1

При кодоминировании в гетерозиготных организмах каждый из аллельных генов вызывает формирование зависимого от него продукта, то есть оказываются продукты обеих аллелей. Классическим примером такого проявления является система групп крови, в частности система АBО, когда эритроциты человека несут на поверхности антигены, контролируемые обеими аллелями. Такая форма проявления носит название кодоминированием.

Сверхдоминирование — когда доминантный ген в гетерозиготном состоянии проявляется сильнее, чем в гомозиготном. Так, у дрозофилы при генотипе АА-нормальная продолжительность жизни; Аа — удлиненная триватисть жизни; аа — летальный исход.

Множественный алелизм

У каждого организма есть только по два аллельных гена. Вместе с тем нередко в природе количество аллелей может быть более двух, если какой то локус может находится в разных состояниях. В таких случаях говорят о множественные аллели или множественный аллеломорфизм.

Множественные аллели обозначаются одной буквой с разными индексами, например: А, А1, А3 … Аллельные гена локализуются в одинаковых участках гомологичных хромосом. Поскольку в кариотипе всегда присутствуют по две гомологичных хромосомы, то и при множественных аллелях каждый организм может иметь одновременно лишь по два одинаковых или различных аллели. В половую клетку (вместе с различием гомологичних хромосом) попадает только по одному из них. Для множественных аллелей характерное влияние всех аллелей на один и тот же признак. Отличие между ними заключается лишь в степени развития признака.

Второй особенностью является то, что в соматических клетках или в клетках диплоидных организмов содержится максимум по две аллели из нескольких, поскольку они расположены в одном и том же локусе хромосомы.

Еще одна особенность присуща множественным аллелям. По характеру доминирования аллеломорфные признаки размещаются в последовательном ряду: чаще нормальный, неизмененный признак доминирует над другими, второй ген ряда рецессивный относительно первого, однако доминирует над следующими и т.д. Одним из примеров проявления множественных аллелей у человека есть группы крови системы АВО.

Множественный алелизм имеет важное биологическое и практическое значение, поскольку усиливает комбинативну изменчивость, особенно генотипического.

Взаимодействие неалельних генов

Известно много случаев, когда признак или свойства детерминируются двумя или более неалельнимы генами, которые взаимодействуют между собой. Хотя и здесь взаимодействие условно, потому что взаимодействуют не гены, а контролируемые ими продукты. При этом имеет место отклонение от менделивских закономерностей расщепления.

Различают четыре основных типа взаимодействия генов: комплементарность, эпистаз, полимерию и модифицирующее действие (плейотропия).

Комплементарность это такой тип взаимодействия неаллельних генов, когда один доминантный ген дополняет действие другого неаллельного доминантного гена, и они вместе определяют новый признак, который отсутствует у родителей. Причем соответственный признак развивается только в присутствии обоих неаллельних генов. Например, сера окраска шерсти у мышей контролируется двумя генами (А и В). Ген А детерминирует синтез пигмента, однако как гомозиготы (АА), так и гетерозиготы (Аа) — альбиносы. Другой ген В обеспечивает скопления пигмента преимущественно у основания и на кончиках волос. Скрещивания дигетерозигот (АаВЬ х АаВЬ) приводит к расщеплению гибридов в соотношении 9:3:4. Числовые соотношения при комплементарном взаимодействии могут быть как 9:7; 9:6:1 (видоизменение менделивского расщепления).

Примером комплементарного взаимодействия генов у человека может быть синтез защитного белка — интерферона. Его образование в организме связано с комплементарным взаимодействием двух неаллельних генов, расположенных в разных хромосомах.

Эпистаз -это такое взаимодействие неаллельных генов, при котором один ген подавляет действие другого неаллельного гена. Угнетение могут вызывать как доминантные, так и рецессивные гены (А> В, а> В, В> А, В> А), и в зависимости от этого розличают эпистаз доминантный и рецессивный. Подавляющий ген получил название ингибитора или супрессора. Гены-ингибиторы в основном не детерминируют развитие определенного признака, а лишь подавляют действие другого гена.

Ген, эффект которого подавляется, получил название гипостатичного. При епистатичном взаимодействияи генов расщепление по фенотипу в F2 составляет 13:3; 12:3:1 или 9:3:4 и др. Окрас плодов тыквы, масть лошадей определяются этим типом взаимодействия.

Источник: studfile.net

Генетика пола

Раздел ЕГЭ: 3.5 … Генетика пола. Наследование признаков, сцепленных с полом. 



Пол — совокупность признаков и свойств организма, обеспечивающих воспроизведение потомства и передачу наследственной информации. Принято говорить о существовании двух полов: мужского и женского.

Половой диморфизм — различия морфологических, физиологических и биохимических признаков у особей разных полов; их хромосомные наборы отличаются по строению половых хромосом.

Половые хромосомы — хромосомы, по которым самцы отличаются от самок.

Поскольку мужские и женские особи встречаются с одинаковой частотой, то один пол гомозиготен (гомогаметен), другой — гетерозиготен (гетерогаметен).

XY-тип определения пола характерен для большинства позвоночных и некоторых беспозвоночных (дрозофилы, человек и др.). Одинаковые хромосомы у одного пола называются Х-хромосомами, непарная половая хромосома — Y-xpoмосома. Хромосомы, не имеющие различий у разных полов, — аутосомы. XX — женские половые хромосомы, XY — мужские. В мужском организме (XY) образуются гаметы (сперматозоиды) с Х-хромосомами и Y-хромосомами; у женщин (XX) формируются гаметы (яйцеклетки)

только с Х-хромосомами. При слиянии двух гамет, несущих Х-хромосомы, образуется женский организм (XX), при слиянии яйцеклетки с Х-хромосомой и сперматозоида с Y-хромосомой — мужской организм (XY). Пол ребёнка определяет гетерозиготный организм (XY).

Генетическое определение пола у человека и животных

ХО-тип определения пола встречается у большинства прямокрылых, клопов, жуков, пауков, у которых Y-хромосомы нет вовсе, так что самцы имеют генотип ХО, а самки — XX.

У птиц, бабочек и пресмыкающихся самцы — гомогаметный пол (ZZ), а самки — гетерогаметный (ZW или Z0). Половые хромосомы у этих видов обозначаются Z и W.

Гаплоидия широко распространена у пчёл и муравьёв. У этих организмов нет половых хромосом: самки — диплоидные особи, самцы — гаплоидные.

Определение пола может обусловливаться внешними факторами. У отдельных рептилий пол зависит от температуры, в которой развивалось яйцо. Это явление носит название температурозависимого определения пола (у черепах при низких температурах появляются только самцы, у ящериц — только самки). Некоторые улитки практикуют смену пола взрослой особи. У тропических рыб-клоунов доминирующая особь в группе становится самкой, остальные — самцами. У морского червя эхиуриды личинка становится самцом, если она попадёт на тело самки, и самкой, если она окажется на дне. Направление развития дичинки, попавшей на самку, по мужскому пути вызывается химическим веществом, которое выделяется кожей самки.

Признаки, сцепленные с полом, — признаки, гены которых локализованы в половых хромосомах, а наследование таких признаков напевается наследованием, сцепленным с полом. Впервые его изучил Т. Морган при анализе наследования цвета глаз (красного и белого) у дрозофилы.

Гены, локализованные в половых хромосомах

■ Первая группа — гены, полностью сцепленные с полом. Они располагаются в негомологичном участке Х-хромосомы, которая не имеет гомолога в Y-хромосоме, и передаются исключительно через Х-хро-мосому. К числу таких генов относятся рецессивные гены гемофилии, доминантный ген гипофосфатемии.

Вторая группа — небольшое число генов, тоже полностью сцепленных с’ полом, но расположенных в негомологичном участке Y-хромосомы. Поскольку Y-хромосома содержит незначительное количество генов (у человека контролирует дифференцировку семенником, содержит гены перепонок между пальцами ног, волосатых ушей, ихтиоза — чешуйчатости кожи), её называют генетически инертной или генетически пустой. Гены Y-хромосомы передаются от отца ко всем его сыновьям.

■ Третья группа — гены, не полностью (частично) сцепленные с полом. Они расположены в гомологичных участках X- и Y-хромосом, могут передаваться как с Х-, так и с Y-хромосомой и переходим, с одной в другую при кроссинговере.

Пример генетической задачи на наследование, сцепленное с полом

Предположим, ген А отвечает за нормальную свёртываемость крови, его аллель а, локализованный на Х-хромосоме, — за гемофилию.

Мама — носительница гена гемофилии, отец здоров по этому признаку.Генетическое определение пола у человека и животных

ХАХА — здоровая девочка; ХАХа здоровая девочка (носительница гена гемофилии); ХАY — здоровый мальчик; XaY — мальчик, больной гемофилией.


 

генетика пола

Источник: uchitel.pro

Определение пола

Пол будущего организма определяется во время оплодотворения.

Если сперматозоид содержит Х-хромосому, то из оплодотворенной клетки разовьется самка, которая будет содержать две половые ХХ-хромосомы.

Если сперматозоид содержит Y-хромосому, то из оплодотворенной клетки разовьется самец, который будет содержать две половые ХY-хромосомы (рис. 5).

Генетическое определение пола у человека и животных

Рис. 5. Схема определения пола

Самки дрозофил образуют яйцеклетки, которые в качестве половых содержат Х-хромосомы, такой пол называют гомогаметный. У самцов дрозофил образуют сперматозоиды двух типов, которые содержат половую X или Y-хромосому, такой пол называют гетерогаметный.

У многих видов живых существ, например ракообразных, земноводных, рыб, большинства млекопитающих, а также человека женский пол – гомогаметный (ХХ-хромосома). Мужской пол – гетерогаметный (XY-хромосома) (рис. 6).

Генетическое определение пола у человека и животных

Рис. 6. Характеристика мужского и женского полов

Схема наследования пола человека (рис. 7).

Генетическое определение пола у человека и животных

Рис. 7. Схема наследования пола у человека

У людей Y-хромосома определяет мужской пол и передается от отца к сыну в момент оплодотворения. В этой хромосоме находятся гены, отвечающие за развитие младенца по мужскому типу, также есть небольшое количество генов, отвечающих за развитие других признаков (например, развитие размера зубов). Если в оплодотворении участвовал сперматозоид с Х-хромосомой, будет отсутствовать и Y-хромосома с мужскими белками, разовьется зародыш женского пола. В Х-хромосоме содержится примерно 200 генов, отвечающих за развитие других признаков.

У некоторых живых существ другое хромосомное определение пола, например у птиц и рептилий гомогаметны самцы (ХХ- хромосома), а самки гетерогаметны (XY-хромосома) (рис. 8).

Генетическое определение пола у человека и животных

Рис. 8. Птицы и рептилии

У некоторых самцов насекомых в хромосомном наборе одна хромосома Х0, самки гомогаметны, имеют ХХ-хромосому (рис. 9).

Генетическое определение пола у человека и животных

Рис. 9. Насекомые

Источник: interneturok.ru