Интересные факты из мира медицины порой преподносят нам удивительные сюрпризы. Например, знаете ли вы, что такое хромосомы, и как они влияют на человека?

Предлагаем разобраться в этом вопросе, чтобы раз и навсегда расставить все точки над «i».

Рассматривая семейные фотографии, вы наверняка могли заметить, что члены одного родства похожи друг на друга: дети – на родителей, родители – на бабушек и дедушек. Это сходство передается от поколения к поколению с помощью удивительных механизмов генетической наследственности.

У всех живых организмов, от одноклеточных водорослей до африканских слонов, в ядре клетки находятся хромосомы – тонкие длинные нити, которые можно рассмотреть только в электронный микроскоп.

Хромосо́мы (др.-греч. χρῶμα — цвет и σῶμα — тело) — это нуклеопротеидные структуры в ядре клетки, в которых сосредоточена бо́льшая часть наследственной информации (генов). Они предназначены для хранения этой информации, ее реализации и передачи.

Сколько хромосом у человека


Еще в конце XIX века ученые выяснили, что число хромосом у разных видов не одинаково.

Например, у гороха 14 хромосом, у крысы – 42, а у человека – 46 (то есть 23 пары). Отсюда возникает соблазн сделать вывод, что чем их больше – тем сложнее существо, обладающее ими. Однако на самом деле это совершенно не так.

Из 23 пар человеческих хромосом 22 пары — аутосомы и одна пара — гоносомы (половые хромосомы). Половые имеют морфологические и структурные (состав генов) различия.

У женского организма пара гоносом содержит две Х-хромосомы (ХХ-пара), а у мужского – по одной Х- и Y-хромосоме (XY-пара).

Именно от того, каков будет состав хромосом двадцать третьей пары (ХХ или XY), зависит пол будущего ребенка. Определяется это при оплодотворении и слиянии женской и мужской половой клетки.

Данный факт может показаться странным, но по числу хромосом человек уступает многим животным. Например, у какой-то несчастной козы 60 хромосом, а у улитки – 80.

Хромосомы состоят из белка и молекулы ДНК (дезоксирибонуклеиновой кислоты), похожей на двойную спираль. В каждой клетке находится около 2 метров ДНК, а всего в клетках нашего организма около 100 млрд. км ДНК.

Интересен факт, что при наличии лишней хромосомы или при отсутствии хотя бы одной из 46, — у человека наблюдается мутация и серьезные отклонения в развитии (болезнь Дауна и т.п.).

Именно в связи с этим научным фактом в народе распространилось «интеллигентное» оскорбление: «У тебя что, лишняя хромосома?».


Теперь вы знаете общую информацию о принципах наследственности. Вообще эта тема очень интересная, хоть и чрезвычайно сложна.

Кстати, вас также может заинтересовать статья о том, почему близнецы похожи друг на друга.

Если вам нравятся интересные факты – подписывайтесь на InteresnyeFakty.org в любой социальной сети. С нами всегда интересно!


Источник: interesnyefakty.org

Сколько хромосом у человека здорового, Дауна? Плохая экология, жизнь в постоянном стрессе, приоритет карьеры над семьей – все это плохо отражается на способности человека приносить здоровое потомство. Как это ни прискорбно, но около 1% младенцев, появившихся на свет с серьезными нарушениями в хромосомном наборе, вырастают умственно или физически отсталыми. У 30% новорожденных отклонения в кариотипе приводят к формированию врожденных пороков. Основным вопросам этой темы посвящена наша статья.

Основной носитель наследственной информации

Как известно, хромосома – это определенная нуклеопротеидная (состоящая из устойчивого комплекса белков и нуклеиновых кислот) структура внутри ядра клетки эукариотов (то есть тех живых существ, клетки которых имеют ядро). Ее основная функция – хранение, передача и реализация генетической информации. Видна она под микроскоп только во время таких процессов как мейоз (деление двойного (диплоидного) набора генов хромосомы при создании половых клеток) и микоз (деление клеток при развитии организма).


Как уже было упомянуто, хромосома состоит из дезоксирибонуклеиновой кислоты (ДНК) и белков (около 63% ее массы), на которых намотана ее нить. Многочисленные исследования в области цитогенетики (наука о хромосомах) доказали, что именно ДНК является основным носителем наследственности. В ней заключается информация, которая в последствие реализуется в новом организме. Это комплекс генов, отвечающих за цвет волос и глаз, рост, количество пальцев и прочее. Какие из генов будут переданы ребенку, определяется в момент зачатия.

Формирование хромосомного набора здорового организма

У нормального человека 23 пары хромосом, каждая из которых отвечает за определенный ген. Итого их 46 (23х2) — сколько хромосом у здорового человека. Одна хромосома достается нам от отца, другая передается от матери. Исключение составляет 23 пара. Она отвечает за пол человека: женский обозначается как XX, а мужской – как XY. Когда хромосомы в паре – это диплоидный набор. В половых клетках они разъединены (гаплоидный набор) перед последующим соединением во время оплодотворения.

Совокупность признаков хромосом (как количественных, так и качественных), рассмотренных в пределах одной клетки, ученые называют кариотипом. Нарушения в нем, в зависимости от характера и степени тяжести, приводят к возникновению различных болезней.

iv>

Отклонения в кариотипе

Все нарушения кариотипа при классификации традиционно делят на два класса: геномные и хромосомные.

При геномных мутациях отмечают увеличение числа всего набора хромосом, или числа хромосом в одной из пар. Первый случай носит название полиплоидия, второй – анеуплоидия.

Хромосомные нарушения представляют собой перестройки, как внутри хромосом, так и между ними. Не вдаваясь в научные дебри, их можно описать так: некоторые участки хромосом могут не присутствовать или же быть удвоены в ущерб другим; может быть нарушен порядок следования генов, или изменено их местонахождение. Нарушения в структуре могут произойти в каждой хромосоме человека. В настоящее время, подробно описаны изменения в каждой из них.

Остановимся подробнее на наиболее известных и широко распространенных геномных заболеваниях.

Синдром Дауна

Был описан еще в 1866 году. На 700 новорожденных, как правило, приходится один малыш с подобной болезнью. Суть отклонения состоит в том, что к 21 паре присоединяется третья хромосома. Получается это, когда в половой клетке одного из родителей 24 хромосомы (с удвоенной 21). У больного ребенка в итоге их 47 – вот сколько хромосом у человека Дауна. Такой патологии способствуют вирусные инфекции или ионизирующая радиация, перенесенные родителями, а также диабет.


Дети с синдромом Дауна умственно отсталые. Проявления недуга видны даже во внешности: слишком большой язык, большие уши неправильной формы, кожная складка на веке и широкая переносица, белесые пятна в глазах. Живут такие люди в среднем лет сорок, поскольку, помимо прочего, подвержены сердечным заболеваниям, проблемам с кишечником и желудком, неразвитыми половыми органами (хотя женщины могут быть способны к деторождению).

Риск рождения больного ребенка тем выше, чем старше родители. В настоящее время существуют технологии, позволяющие распознать хромосомное нарушение на ранней стадии беременности. Немолодым парам необходимо проходить подобный тест. Не помешает он и молодым родителям, если в роду одного из них встречались больные синдромом дауна. Мозаичная форма болезни (поврежден кариотип части клеток) формируется уже на стадии эмбриона и от возраста родителей не зависит.

Синдром Патау

Это нарушение представляет собой трисомию тринадцатой хромосомы. Встречается оно куда реже, чем предыдущий описанный нами синдром (1 к 6000). Возникает оно при присоединении лишней хромосомы, а также при нарушении структуры хромосом и перераспределении их частей.

Диагностируют синдром Патау по трем симптомам: микрофтальм (уменьшенные размеры глаз), полидактилия (большее количество пальцев), расщелина губы и неба.

Смертность младенцев при этой болезни составляет порядка 70%. Большинство из них не доживает до 3 лет. У подверженных этому синдрому особей чаще всего наблюдаются порок сердца и/или головного мозга, проблемы с другими внутренними органами (почки, селезенка и прочее).

>

Синдром Эдвардса

Большая часть младенцев, у которых 3 восемнадцатых хромосомы, погибают вскоре после рождения. У них ярко выражена гипотрофия (проблемы с пищеварением, не позволяющие ребенку набрать вес). Глаза широко поставлены, уши низко расположены. Часто наблюдается порок сердца.

Выводы

Чтобы не допустит рождения больного ребенка, желательно проходит специальные обследования. В обязательном порядке тест показан роженицам после 35 лет; родителям, родственники которых были подвержены подобным заболеваниям; пациенткам, имеющим проблемы со щитовидной железой; женщинам, у которых случались выкидыши.

Русенко Татьяна, www.rasteniya-lecarstvennie.ru
Google

Источник: www.rasteniya-lecarstvennie.ru

О хромосоме

xrom2Человеку без специального образования, будет трудно разобраться с первого раза сколько хромосом у человека. По-простому можно объяснить так – клетка, элемент в организме человека. Основная функция хромосомы – хранение и передача, и  реализация генетической информации, заложенной в ней.


Состоит этот загадочный элемент из 63% белков, а остальная часть – нуклеиновые кислоты, по-простому — ДНК. Цитогенетика является наукой в изучении хромосом, и с ее помощью было доказано, что именно кислоты отвечают за наследственность. Они во время деления клеток и определяют пол ребенка, цвет его глаз и волос, оттенок кожи и будет ли он здоров. А вот какие гены передадутся младенцу – узнать до его рождения практически невозможно, ведь они определяются только в момент зачатия.

Как формируется хромосомный набор у здорового человека

Сколько хромосом в клетках у человека? У каждого здорового человека 23 пар хромосом, они не меняются в течение цикла жизни. У больного ребенка Дауна их будет больше. Каждая из них отвечает только за тот ген, который ей присвоен, и при сложении этих чисел получается 46 пар хромосом. Одна передается от отца, другая – от матери, но есть и исключение. Это 23 пара, которая определяет пол ребенка, и это относится только к здоровому человеку. У больных людей их 47, и тут все дело в нездоровом геноме родителей.

Кариотип – признак качественных и некачественных пар хромосом, рассмотренный в пределах одной клетки или элемента, является совокупностью. И нарушения в геноме и определяет тяжесть заболевания, или его отсутствие. При специальном анализе легко можно определить, есть ли у младенца болезнь Дауна.

Существующие отклонения в кариотипе

Кариотипные нарушения делятся на два типа:

  1. Генные;
  2. Хромосомные.

xrom3При первом типе мутаций увеличивается общее число, или число пар хромосом в одной из пар. Второй же перестраивает ячейки и пары, влияя хромосомы, и на содержимое. К примеру, один из генов вовсе может отсутствовать, в то время как в другом насчитывается 6 пар или 7, и это не предел. Меняется не только строение, но и расположение пар хромосомы, и при сегодняшних технологиях мы имеем возможность изучать каждую. Рассмотрим их подробнее, и сколько в клетках хромосом у здорового или нормального человека, а также при симптомах Дауна.

О синдроме Дауна

Синдром Дауна  был описан еще в конце 17 века, но было неизвестно, сколько точно пар хромосом у человека, и статистика исследований на сегодняшний момент просто ужасна, на 1000 новорожденных приходится до 2 младенцев, которые раздаются с этим отклонением в геноме. А суть-то проста – к 21 паре хромосом, присоединяется еще одна, и общее количество хромосом получается 47. К этой мутации приводит диабетическое заболевание, радиация, пожилой возраст родителей.

Дети  с болезнью Дауна ничем не отличаются от нормальных, но все же они есть:

  • Умственная отсталость;
  • Большой язык;
  • Большая складка на верхнем веке;
  • Широкий и узкий лоб;
  • Уши неправильной формы;
  • Белые точки на роговице.

Возраст такого ребенка с заболеванием Дауна  редко превышает 47 лет, так как имеют и другие физические отклонения, например, у мужчин не рождаются дети, имеются физические отклонения в развитии половых органов и сердечно сосудистой системе. Женщины способны иметь потомство, но существует вероятность рождения ребенка с синдромом Дауна, а все дело в геноме матери.

xrom5С конца 18 века технологии пришли к нам на помощь, и на сегодняшний момент на определенном сроке беременности можно пройти специальные тесты и анализы, позволяющие распознать это заболевание, и узнать, сколько пар хромосом у человека, у больного эмбриона их будет 47. Акушеры гинекологи рекомендуют родителям прервать беременность, но делать это или нет, решать родителям, многие из которых не соглашаются на подобную процедуру, даже зная о том, что у новорожденного будет болезнь Дауна.

Наблюдение за такими детьми специалистами отмечает, что они совершенно безобидны, не страдают агрессией, и часто при правильном распорядке дня могут вести нормальный образ жизни и даже посещать школьные учреждения.

О синдроме Путау

Мутирует двадцатая хромосома, к ней присоединяется лишняя пара. Риск ее развития крохотный – на 5000 младенцев приходится 1–2% мутации. В редких случаях помимо присоединения хромосомы, может измениться и их построение.

Диагностируют заболевание еще на первичном осмотре младенца после родов, и делают специальные тесты, для определения геноме, чтобы понять, сколько хромосом у человека:

  1. Большее количество пальцев на руках или ногах;
  2. Слишком маленькие размеры глаз;
  3. У младенца имеется расщелина неба или губы.

К большому сожалению, смертность детей с этой болезнью необычайно высока, жизненный цикл человека составляет 3–4 года, они имеют множество пороков в развитии головного мозга, половых органов  или других внутренних органов.

О синдроме Эдвардса

xrom4Почти все младенцы, к 18 хромосоме которых присоединилась лишняя пара, вскоре после рождения погибают. Самой большой проблемой является та, что не позволяет ребенку правильно питаться и усваивать еду, а те дети что выживают, имеют сильную гипотрофию. Практически у каждого младенца физические пороки, ушные раковины слишком имеют слишком низкое расположение, а глаза широко поставлены.

Общие выводы

Становится понятно, что в норме у человека 23 пары хромосом, при нормальном геноме,  в ином же случае рожденный ребенок будет иметь различные отклонения половых органов, внутренних, головного мозга. Перед зачатием рекомендуется пройти полное обследование на выявление генных мутаций.

Те родители, чей возраст превышает порог в 35 лет, должны тщательно наблюдаться у специалистов, следовать их рекомендациям, определять сколько хромосом в крови матери и ребенка,  и не забывать о своевременно сделанных анализах на различных сроках беременности.

Если в семье наблюдались частые выкидыши, были проблемы с зачатием, или родственники имели серьёзные заболевания стоит быть очень аккуратными, и тогда младенец родится сильным и здоровым. Ну а современные технологии, медицинские препараты и различная техника в этом нам поможет, благодаря им врачи нашли объяснение различным порокам при рождении и развитии детей, а тем, кто жил в прошлые века они были недоступны.

Источник: ellewoman.ru

Хромосомы — это основные структурные элементы клеточного ядра, являющиеся носителями генов, в которых закодирована наследственная информация. Обладая способностью к самовоспроизведению, хромосомы обеспечивают генетическую связь поколений.

Морфология хромосом связана со степенью их спирализации. Например, если в стадии интерфазы (см. Митоз, Мейоз) хромосомы максимально развернуты, т. е. деспирализованы, то с началом деления хромосомы интенсивно спирализуются и укорачиваются. Максимальной спирализации и укорочения хромосомы достигают в стадии метафазы, когда происходит формирование относительно коротких, плотных, интенсивно окрашивающихся основными красителями структур. Эта стадия наиболее удобна для изучения морфологических характеристик хромосом.

Метафазная хромосома состоит из двух продольных субъединиц — хроматид [электронная микроскопия выявляет в строении хромосом элементарные нити (так называемые хромонемы, или хромофибриллы) толщиной 200 Å, каждая из которых состоит из двух субъединиц].

Размеры хромосом растений и животных значительно колеблются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в пределах 1,5—10 микрон.

Химической основой строения хромосом являются нуклеопротеиды — комплексы нуклеиновых кислот (см.) с основными белками — гистонами и протаминами.

Индивидуальные хромосомы (рис. 1) различают по локализации первичной перетяжки, т. е. места расположения центромеры (во время митоза и мейоза к этому месту прикрепляются нити веретена, подтягивая ее при этом к полюсу). При утрате центромеры фрагменты хромосом утрачивают способность расходиться при делении. Первичная перетяжка делит хромосомы на 2 плеча. В зависимости от расположения первичной перетяжки хромосомы подразделяют на метацентрические (оба плеча равной или почти равной длины), субметацентрические (плечи неравной длины) и акроцентрические (центромера смещена на конец хромосомы). Помимо первичной, в хромосомах могут встречаться менее выраженные вторичные перетяжки. Небольшой концевой участок хромосом, отделенный вторичной перетяжкой, называют спутником.

Каждый вид организмов характеризуется своим специфическим (по числу, размерам и форме хромосом) так называемым хромосомным набором. Совокупность двойного, или диплоидного, набора хромосом обозначают как кариотип.

В зрелых половых клетках, яйцеклетках и сперматозоидах содержится одиночный, или гаплоидный, набор хромосом (n), составляющий половину диплоидного  набора  (2n), присущего хромосомам всех остальных клеток организма. В диплоидном наборе каждая хромосома представлена парой гомологов, один из которых материнского, а другой отцовского происхождения. В большинстве случаев хромосомы каждой пары идентичны по размерам, форме и генному составу. Исключение составляют половые хромосомы, наличие которых определяет развитие организма в мужском или женском направлении. Нормальный хромосомный набор человека состоит из 22 пар аутосом и одной пары половых хромосом. У человека и других млекопитающих женский пол определяется наличием двух Х-хромосом, а мужской — одной X-и одной Y-хромосомы (рис. 2 и 3). В женских клетках одна из Х-хромосом генетически неактивна и обнаруживается в интерфазном ядре в виде полового хроматина (см.). Изучение хромосом человека в норме и патологии составляет предмет медицинской цитогенетики. Установлено, что отклонения в числе или структуре хромосом от нормы, возникающие в половых! клетках или на ранних этапах дробления оплодотворенной яйцеклетки, вызывают нарушения нормального развития организма, обусловливая в некоторых случаях возникновение части спонтанных абортов, мертворождений, врожденных уродств и аномалий развития после рождения (хромосомные болезни). Примерами хромосомных болезней могут служить болезнь Дауна (лишняя G-хромосома), синдром Клайнфелтера (лишняя Х-хромосома у мужчин) и Шерешевского — Тернера (отсутствие в кариотипе Y- или одной из Х-хромосом). В медицинской практике хромосомный анализ проводят или прямым методом (на клетках костного мозга), или после кратковременного культивирования клеток вне организма (периферическая кровь, кожа, эмбриональные ткани).

Хромосомы (от греч. chroma — окраска и soma — тело) — нитевидные, самовоспроизводящиеся структурные элементы клеточного ядра, содержащие в линейном порядке факторы наследственности — гены. Хромосомы отчетливо видны в ядре во время деления соматических клеток (митоза) и во время деления (созревания) половых клеток — мейоза (рис. 1). В том и в другом случае хромосомы интенсивно окрашиваются основными красителями, а также видны на неокрашенных цитологических препаратах в фазовом контрасте. В интерфазном ядре хромосомы деспирализованы и не видны в световой микроскоп, так как их поперечные размеры выходят за пределы разрешающей способности светового микроскопа. В это время отдельные участки  хромосом в виде тонких нитей диаметром 100—500 Å можно различить при помощи электронного микроскопа. Отдельные не деспирализовавшиеся участки хромосом в интерфазном ядре видны через световой микроскоп как интенсивно красящиеся (гетеропикнотические) участки (хромоцентры).

Хромосомы непрерывно существуют в клеточном ядре, претерпевая цикл обратимой спирализации: митоз—интерфаза—митоз. Основные закономерности строения и поведения хромосом в митозе, мейозе и при оплодотворении одинаковы у всех организмов.

Хромосомная теория наследственности. Впервые хромосомы описали И. Д. Чистяков в 1874 г. и Страсбургер (Е. Strasburger) в 1879 г. В 1901 г. Уилсон (Е. В. Wilson), а в 1902 г. Саттон (W. S. Sutton) обратили внимание на параллелизм в поведении хромосом и менделевских факторов наследственности — генов — в мейозе и при оплодотворении и пришли к выводу, что гены находятся в хромосомах. В 1915—1920 гг. Морган (Т. Н. Morgan) и его сотрудники доказали это положение, локализовали в хромосомах дрозофилы несколько сот генов и создали генетические карты хромосом. Данные о хромосомах, полученные в первой четверти 20 века, легли в основу хромосомной теории наследственности, согласно которой преемственность признаков клеток и организмов в ряду их поколений обеспечивается преемственностью их хромосомах.

Химический состав и ауторепродукция хромосом. В результате цитохимических и биохимических исследований хромосом в 30 и 50-х годах 20 века установлено, что они состоят из постоянных компонентов [ДНК (см. Нуклеиновые кислоты), основных белков (гистонов или протаминов), негистонных белков] и переменных компонентов (РНК и связанного с ней кислого белка). Основу хромосом составляют дезоксирибонуклеопротеидные нити диаметром около 200 Å (рис. 2), которые могут соединяться в пучки диаметром 500 А.

Открытие Уотсоном и Криком (J. D. Watson, F. Н. Crick) в 1953 г. строения молекулы ДНК, механизма ее авторепродукции (редупликации) и нуклеинового кода ДНК и развитие возникшей после этого молекулярной генетики привело к представлению о генах как участках молекулы ДНК. (см. Генетика). Вскрыты закономерности авторепродукции хромосом [Тейлор (J. Н. Taylor) и др., 1957], оказавшиеся аналогичными закономерностям авторепродукции молекул ДНК (полуконсервативная редупликация).

Хромосомный набор — совокупность всех хромосом в клетке. Каждый биологический вид обладает характерным и постоянным набором хромосом, закрепленным в эволюции данного вида. Различают два основных типа наборов хромосом: одиночный, или гаплоидный (в половых клетках животных), обозначаемый n, и двойной, или диплоидный (в соматических клетках, содержащий пары сходных, гомологичных хромосом от матери и отца), обозначаемый 2n.

Наборы хромосом отдельных биологических видов значительно различаются по числу хромосом: от 2 (лошадиная аскарида) до сотен и тысяч (некоторые споровые растения и простейшие). Диплоидные числа хромосом некоторых организмов таковы: человека — 46, гориллы — 48, кошки — 60, крысы — 42, дрозофилы — 8.

Размеры хромосом у разных видов также различны. Длина хромосом (в метафазе митоза) варьирует от 0,2 мк у одних видов до 50 мк у других, а диаметр от 0,2 до 3 мк.

Морфология хромосом хорошо выражена в метафазе митоза. Именно метафазные хромосомы используют для идентификации хромосом. В таких хромосомах хорошо видны обе хроматиды, на которые продольно расщеплена каждая хромосома и центромер (кинетохор, первичная перетяжка), соединяющий хроматиды (рис. 3). Центромер виден как суженный участок, не содержащий хроматина (см.); к нему крепятся нити ахроматинового веретена, благодаря чему центромер определяет движение хромосом к полюсам в митозе и мейозе (рис. 4).

Потеря центромера, например при разрыве хромосомы ионизирующими излучениями или другими мутагенами, приводит к потере способности куска хромосомы, лишенного центромера (ацентрический фрагмент), участвовать в митозе и мейозе и к потере его из ядра. Это может привести к тяжелому повреждению клетки.

Центромер делит тело хромосомы на два плеча. Расположение центромера строго постоянно для каждой хромосомы и определяет три типа хромосом: 1) акроцентрические, или палочкообразные, хромосомы с одним длинным и вторым очень коротким плечом, напоминающим головку; 2) субметацентрические хромосомы с длинными плечами неравной длины; 3) метацентрические хромосомы с плечами одинаковой или почти одинаковой длины (рис. 3, 4, 5 и 7).

Характерными чертами морфологии определенных хромосом являются вторичные перетяжки (не обладающие функцией центромера), а также спутники — маленькие участки хромосом, соединенные с остальным ее телом тонкой нитью (рис. 5). Спутничные нити обладают способностью формировать ядрышки. Характерная структура в хромосоме (хромомеры) — утолщения или более плотно спирализованные участки хромосомной нити (хромонемы). Рисунок хромомер специфичен для каждой пары хромосом.

Число хромосом, их размеры и форма на стадии метафазы характерны для каждого вида организмов. Совокупность этих признаков набора хромосом называется кариотипом. Кариотип можно представить в виде схемы, называемой идиограммой (см. ниже хромосомы человека).

Половые хромосомы. Гены, детерминирующие пол, локализованы в специальной паре хромосом  — половых хромосомах (млекопитающие, человек); в других случаях иол определяется соотношением числа половых хромосом и всех остальных, называемых аутосомами (дрозофила). У человека, как и у других млекопитающих, женский пол определяется двумя одинаковыми хромосомами, обозначаемыми как Х-хромосомы, мужской пол определяется парой гетероморфных хромосом: Х и Y. В результате редукционного деления (мейоза) при созревании ооцитов (см. Овогенез) у женщин все яйца содержат по одной Х-хромосоме. У мужчин в результате редукционного деления (созревания) сперматоцитов половина спермиев содержит Х-хромосому, а другая половина Y-хромосому. Пол ребенка определяется случайным оплодотворением яйцеклетки спермием, несущим Х- или Y-хромосому. В результате возникает зародыш женского (XX) или мужского (XY) пола. В интерфазном ядре у женщин одна из Х-хромосом видна как глыбка компактного полового хроматина.

Функционирование хромосом и метаболизм ядра. Хромосомная ДНК является матрицей для синтеза специфических молекул информационной РНК. Этот синтез происходит тогда, когда данный участок хромосомы деспирализован. Примерами локальной активации хромосом служат: образование деспирализованных петель хромосом в ооцитах птиц, амфибий, рыб (так называемые Х-ламповые щетки) и вздутий (пуффов) определенных локусов хромосом в многонитчатых (политенных) хромосомах слюнных желез и других секреторных органов двукрылых насекомых (рис. 6). Примером инактивации целой хромосомы, т. е. выключения ее из метаболизма данной клетки, является образование одной из Х-хромосом компактного тела полового хроматина.

Рис. 6. Политенные хромосомы двукрылого насекомого Acriscotopus lucidus: А и Б — участок, ограниченный пунктирными линиями, в состоянии интенсивного функционирования (пуфф); В — тот же участок в нефункционирующем состоянии. Цифрами обозначены отдельные локусы хромосом (хромомеры).
Рис. 7. Хромосомный набор в культуре лейкоцитов периферической крови мужчины (2n=46).

Вскрытие механизмов функционирования политенных хромосом типа ламповых щеток и других типов спирализации и деспирализации хромосом имеет решающее значение для понимания обратимой дифференциальной активации генов.

Хромосомы человека. В 1922 г. Пейнтер (Т. S. Painter) установил диплоидное число хромосом человека (в сперматогониях), равное 48. В 1956 г. Тио и Леван (Н. J. Tjio, A. Levan) использовали комплекс новых методов исследования хромосом человека: культуру клеток; исследование хромосом без гистологических срезов на тотальных препаратах клеток; колхицин, приводящий к остановке митозов на стадии метафазы и накоплению таких метафаз; фитогемагглютинин, стимулирующий вступление клеток в митоз; обработку метафазных клеток гипотоническим солевым раствором. Все это позволило уточнить диплоидное число хромосом у человека (оно оказалось равным 46) и дать описание кариотипа человека. В 1960 г. в Денвере (США) международная комиссия разработала номенклатуру хромосом человека. Согласно предложениям комиссии, термин «кариотип» следует применять к систематизированному набору хромосом единичной клетки (рис. 7 и 8). Термин «идиотрамма» сохраняется для представления о наборе хромосом в виде диаграммы, построенной на основании измерений и описания морфологии хромосом нескольких клеток.

Хромосомы человека пронумерованы (отчасти серийно) от 1 до 22 в соответствии с особенностями морфологии, допускающими их идентификацию. Половые хромосомы не имеют номеров и обозначаются как Х и Y (рис. 8).

Обнаружена связь ряда заболеваний и врожденных дефектов в развитии человека с изменениями в числе и структуре его хромосом. (см. Наследственность).

См. также Цитогенетические исследования.

Все эти достижения создали прочную базу для развития цитогенетики человека.

Источник: www.medical-enc.ru

22. Паранекроз, дистрофия и смерть клетки. Апоптоз. Некроз.

Паранекроз (около смерти) — это общая неспецифическая реакция, которая возникает в результате старения клетки или в ответ на воздействие неблагоприятных факторов и приводит к нарушению внутреннего равновесия в клетке: 1) подавление способности к гранулообразованию, 2) понижение дисперсности коллоидной системы, 3) сдвиг рН в кислую сторону, 4) потеря возбудимости, не отвечает на раздражители

В основе паранекроза лежит обратимая денатурация белков. Нарастающее действие повреждающих факторов приводит клетку в состояние дистрофии.

Дистрофия — это нарушение обмена веществ в клетке. Она может быть белковой (зернистая или мутная дистрофия), липидной (тигровое сердце, гусиная печень), углеводной, гидропической.

Два вида дистрофии:

1) физиологическая (необратимая) дистрофия, всегда приводит к некрозу клетки (пример — эпидермис кожи, полосы, ногти); 2) патологическая (обратимая) дистрофия; в том случае, когда патологические процессы не затронули ядро клетки и снято неблагоприятное действие раздражителя, клетка может адаптироваться:

1) на молекулярном уровне (полиплоидия),

2) на субклеточном (увеличение количества органелл),

3) на клеточном (гипертрофия, гиперплазия),

4) на тканевом (метаплазия).

В настоящее время различают два типа гибели клеток: некроз и апоптоз. Некроз трактуют как наиболее частую неспецифическую форму гибели клеток. Он может быть вызван тяжелыми повреждениями в результате прямой травмы, радиации, влияния токсических агентов, которые прямо или опосредованно влияют на проницаемость мембран или клеточную энергетику. В клетке происходит изменение ионного состава, набухание мембран, прекращение синтеза АТФ, белков, нуклеиновых кислот, кариопикноз (неупорядоченная конденсация хроматина в виде глыбок), кариорексис (распад хроматина на фрагменты), что приводит к растворению клетки-лизису. В отличие от некроза, апоптоз — это запрограммированная гибель клетки, вызываемая внутренними или внешними сигналами, которые сами по себе не являются токсичными или деструктивными. В результате этих сигналов происходит активация в ядре некоторых генов, ответственных за самоуничтожение. Апоптоз — это активный процесс, требующий затрат энергии, транскрипции генов и синтеза белка de novo. Апоптогенное действие строго специфично в различных типах клеток. Например, в иммунной системе таким действием обладают интерлейкины, которые могут как индуцировать, так и ингибировать апоптоз иммуноцитов. Клетки большинства опухолей обладают пониженной способностью запускать механизмы клеточной гибели в ответ на некоторые физиологические стимулы. Существуют вирусы (герпеса, гриппа, кори, полиомиелита, аденовирусы), которые в клетках-хозяевах способны индуцировать апоптоз.

Апоптоз является общебиологическим механизмом, ответственным за поддержание постоянства численности клеток, формообразование, выбраковку дефектных клеток в органах и тканях. Стадии: сигнальная (обратимая), эффекторная (обратимая, активируются внутриклеточные цитокины и факторы роста), деструктивная (необратимая, активируется эндонукоеаза, расщепление ДНК, фрагментация ядра). На ранних стадиях происходит возрастание уровня кальция в цитоплазме, при этом мембранные органеллы не изменяются, синтез РНК и белка не падает. Затем происходит расщепление ДНК, хроматин конденсируется , образуя грубые скопления по периферии ядра. Ядра распадаются на микроядра и фрагментируется цитоплазма. От клетки отшнуровываются крупные фрагменты, часто содержащие микроядра. Это так называемые апоптические тельца. При этом клетка как бы рассыпается. Апоптические тельца поглощаются фагоцитами.

Источник: StudFiles.net