1.Полное доминирование.Проявляется в тех случаях, когда один аллель
гена (доминантный) полностью скрывает присутствие другого (рецессивного)
аллеля. Например: А — карие глаза; а — голубые глаза. Человек с генотипом Аа имеет карие глаза.

2.Неполное доминирование.При неполном доминировании фенотип гибридов первого поколения (Аа) внешне отличаются от родительских особей (АА) и (аа). Проявление признака является промежуточным по сравнению с родительскими формами.

Например, при скрещивании гомозиготных растений с красными (АА) и белыми (аа) цветками у гибридов первого поколения цветки оказываются розовыми (Аа).

У человека по типу неполного доминирования наследуется признак, определяющий форму волос: ген кучерявых волос (А) неполностью доминирует над геном прямых волос (а), волнистые волосы определяются генотипом — Аа.

3. Сверхдоминирование- в гетерозиготном состоянии (Аа) доминантный аллель проявляется в большей степени, чем в гомозиготном (АА). Например, гибриды кукурузы отличаются более высоким ростом, урожайностью зерна по сравнению с гомозиготными растениями Такое явление називается гетерозисом или гибридной силой. У человека но типу наддоминирования проявляется акселерация.


4. Кодоминирование – проявление в гетерозиготном состоянии признаков, которое задается обоими аллелями. По типу кодоминирования у человека наследуется четвертая группа крови (I I ).

При кодоминировании в гетерозиготных организмах каждый из аллельных генов вызывает формирование зависимого от него продукта, то есть оказываются продукты обеих аллелей. Классическим примером такого проявления является система групп крови, в частности система АBО, когда эритроциты человека несут на поверхности антигены, контролируемые обеими аллелями. Такая форма проявления носит название кодоминированием.

Иногда к числу аллелей могут относиться не два, а большее число генов. Они получили название множественные аллели. Они возникают в результате мутаций одного и того же локуса в хромосоме. Кроме основных доминантного и рецессивного аллелей гена появляются промежуточные аллели, которые по отношению к доминантному ведут себя как рецессивные, а по отношению к рецессивному как доминантные аллели того же гена.

По характеру доминирования аллеломорфные признаки размещаются в последовательном ряду: чаще нормальный, неизмененный признак доминирует над другими, второй ген ряда рецессивный относительно первого, однако доминирует над следующими и т.д. Одним из примеров проявления множественных аллелей у человека есть группы крови системы АВО. (i<IA и IB)


Взаимодейтсвие неаллельных генов: комплементарность, эпистаз, полимерия.

Комплементарность это когда для формирования признака необходимо наличие нескольких неаллельных генов. Нормальный слух у человека обусловлен наличием двумя неаллельными доминантными генами D и E. Один определяет развитие улитки, другой слуховой нерв.

Эпистаз -это такое взаимодействие неаллельных генов, при котором один ген подавляет действие другого неаллельного гена.

Эпистаз- взаимодействие генов, противоположное комплементарному. Подавление неаллельным геном действие другого гена. Бомбейский феномен. Пигментация кожи. Если доминантные гены – негр,..гетерозиготы- мулаты, рецессивные- белые.

Полимерия – когда различные доминантные неаллельные гены могут оказывать действие на один и тот же признак, усиливая его проявление.

 

Теория гена: основные положения на современном этапе. Свойства гена как функциональной единицы: дискретность, стабильность, лабильность, специфичность, плейотропия. Понятие о пенетрантности, экспрессивности.

В результате исследований элементарных единиц наследственности сложились представления, носящие общее название теории гена. Основные положения:


1.Ген занимает определенный участок (локус) в хромосоме.

2.Ген (цистрон) – часть молекулы ДНК, имеющий определенную последовательность нуклеотидов, представляет собой функциональную единицу наследственной информации.

3.Внутри гена могут происходить рекомбинации (к ней способны частицы цистрона – реконы) и мутирование ( к нему способны частицы цистрона – мутоны)

4.Существуют структурные и функциональные гены.

5.Структурные гены кодируют синтез белка, а функциональные гены контролируют и направляют деятельность структурных генов.

6. Молекулы ДНК, входящие в состав гена, способны к репарации, поэтому не всякие повреждения гена ведут к мутациям.

дискретность — несмешиваемость генов;стабильность — способность сохранять структуру;

лабильность — способность многократно мутировать; специфичность — каждый ген кодирует свой признак;

Плейотропия —явление, при котором один ген обусловливает несколько признаков.

Пенетрантность – количественный показатель фенотипического проявления гена.

Экспрессивность- степень выраженности признака при реализации генотипа в различных условиях среды.

Эволюция понятия гена. Взгляды Н.Кольцова на биохимическую структуру гена. Экспериментальные доказательства роли ДНК в передаче наследственной информации ( явление трансформации в опытах Гриффитса, трансдукции, эксперименты Фринкель-Конрата с вирусом табачной мозайки, опыт Херши и Чейз с бактериофагом.


Ген/цистрон– участок ДНК, имеющий определенную последовательность нуклеотидов, содержащий информацию о структуре какого-либо одного белка. Ген — функциональная единица наследственной информации.

Он считал, что ген это гигантская молекула белка, однако сам принцип матричного синтеза, представление о репродукции молекул – носителей наследственной информации, сформулированная им оказалось верным.

Раньше считалось, что гены представляют собой часть хромосомы и яв­ляются неделимой единицей, обладающей рядом свойств: способностью определять признаки организма; способностью к рекомбинации, т. е. пе­ремещению из одной гомологичной хромосомы в другую при кроссинговере; способностью мутировать, давая новые аллельные гены.

В дальнейшем оказалось, что ген представляет собой сложную систе­му, в которой указанные особенности не всегда бывают нераздельными.

( процесс поглощения клеткой организма свободной молекулы ДНК из среды и встраивания её в геном, что приводит к появлению у такой клетки новых для неё наследуемых признаков, характерных для организма-донора ДНК.)

Источник: cyberpedia.su

Взаимодействие аллельных генов

Различают следующие виды взаимодействия аллельных генов:

  • полное доминирование,

  • неполное доминирование,

  • сверхдоминирование,

  • кодоминирование,

  • межаллельная комплементация,

  • аллельное исключение.


Полное доминирование

При полном доминировании действие одного гена (одного аллеля) из аллельной пары полностью скрывает присутствие в генотипе другого гена (аллеля). Фенотипически проявляемый ген называется доминантным и обозначается – А; подавляемый ген называется рецессивным и обозначается – а.

Впервые это явление открыто Г. Менделем в опытах на горохе. Признаки, подчиняющиеся законам Менделя, называются менделирующими.

Г. Мендель сформулировал три закона:

I – закон единообразия;

II – закон расщепления;

III – закон независимого наследования (расщепления).

Два первых закона относятся к моногибридному скрещиванию, третий — к ди- и полигибридному скрещиванию.

Неполное доминирование

Неполное доминирование имеет место в том случае, когда доминантный ген (аллель) не полностью скрывает присутствие в генотипе рецессивного гена (аллеля), и у гетерозигот наблюдается промежуточный характер наследования признака.


Пример: окраска цветков у ночной красавицы. Доминантные гомозиготные растения (АА) имеют красные цветки, рецессивные гомозиготные (аа) – белые, а гетерозиготные (Аа) – розовые.

Пример у человека – серповидноклеточная анемия, в основе которой лежит мутация гена, приводящая к замене в белке гемоглобина одной из 287

аминокислот – валина – на глутаминовую кислоту. В результате меняется строение гемоглобина и эритроциты приобретают форму серпа, что ведет к кислородной недостаточности. Гомозиготные организмы погибают в раннем возрасте, а гетерозиготы жизнеспособны, но страдают одышкой при физической нагрузке.

Источник: StudFiles.net

Полное доминирование

При полном доминировании фенотип гетерозиготы не отличается от фенотипа доминантной гомозиготы. Видимо, в чистом виде полное доминирование встречается крайне редко или не встречается вовсе. Например, люди, гетерозиготные по гену гемофилии А (сцепленный с Х-хромосомой рецессивный ген), имеют половинное количество нормального фактора свертывания по сравнению с гомозиготными по нормальному аллелю людьми, и активность фактора свертывания VIII у них в среднем вдвое ниже, чем у здоровых людей. В то же время у здоровых людей активность этого фактора варьирует от 40 до 300 % по сравнению со средней для популяции.
этому наблюдается значительное перекрывание признаков у здоровых и носителей-гетерозигот. При фенилкетонурии (аутосомно-рецессивный признак) гетерозиготы обычно считаются здоровыми, однако активность печёночного фермента фенилаланин-4-гидроксилазы у них вдвое ниже нормы, а содержание фенилаланина в клетках повышено, что, по некоторым данным, приводит к снижению IQ и повышенному риску развития некоторых психотических расстройств.

Неполное доминирование

При неполном доминировании гетерозиготы имеют фенотип, промежуточный между фенотипами доминантной и рецессивной гомозиготы. Например, при скрещивании чистых линий львиного зева и многих других видов цветковых растений с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. На молекулярном уровне самым простым объяснением неполного доминирования может быть как раз двукратное снижение активности фермента или другого белка (если доминантный аллель дает функциональный белок, а рецессивный — дефектный). Например, за белую окраску может отвечать дефектный аллель, который дает неактивный фермент, а за красную — нормальный аллель, который дает фермент, производящий красный пигмент. При половинной активности этого фермента у гетерозигот количество красного пигмента снижается вдвое, и окраска розовая. Могут существовать и другие механизмы неполного доминирования.

При неполном доминировании во втором поколении моногибридного скрещивания наблюдается одинаковое расщепление по генотипу и фенотипу в соотношении 1:2:1.

Кодоминирование


При кодоминировании, в отличие от неполного доминирования, у гетерозигот признаки, за которые отвечает каждый из аллелей, проявляются одновременно (смешанно). Типичный пример кодоминирования — наследование групп крови системы АВ0 у человека. Всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвертая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В). При кодоминировании назвать один из аллелей доминантным, а другой — рецессивным нельзя, эти понятия теряют смысл: оба аллеля в равной степени влияют на фенотип. На уровне РНК и белковых продуктов генов, видимо, подавляющее большинство случаев аллельных взаимодействий генов — это кодоминирование, ведь каждый из двух аллелей у гетерозигот обычно кодирует РНК и/или белковый продукт, и оба белка или РНК присутствуют в организме.

Относительный характер доминирования

Как уже отмечалось выше, характер доминирования зависит от уровня анализа признака. Рассмотрим это на примере серповидно-клеточной анемии. Гетерозиготные носители гена гемоглобина S (AS) на уровне моря имеют нормальную форму эритроцитов и нормальную концентрацию гемоглобина в крови (полное доминирование А над S).
больших высотах (более 2,5-3 тыс. м) у гетерозигот концентрация гемоглобина понижена (хотя и намного выше, чем у больных), появляются эритроциты серповидной формы (неполное доминирование А над S). Этот пример показывает, что доминантность может зависеть от условий. Гетерозиготы AS и гомозиготы SS обладают примерно одинаковой устойчивостью к малярии, гомозиготы АА подвержены малярии в большей степени. По данному проявлению ген S доминирует над А. Наконец, в эритроцитах носителей АS в равных количествах присутствуют оба варианта бета-глобиновых цепей — нормальный А и мутантный S (то есть наблюдается кодоминирование).

Эволюция доминантности

Новые мутации могут, конечно, сразу обладать доминантным проявлением в фенотипе диплоидных особей, но вероятность выживания мутантов вообще невелика, и поэтому преимущественно сохраняются именно рецессивные мутации. Впоследствии, если при каких-либо изменениях внешних условий новый признак окажется благоприятным, обусловливающий его мутантный аллель может вторично приобрести доминантное фенотипическое выражение (следует подчеркнуть, что доминантны и рецессивны, собственно говоря, не сами аллели, а их проявления в фенотипе). Переход аллеля от рецессивного к доминантному состоянию может быть обусловлен различными механизмами, действующими на разных уровнях преобразований наследственной информации в онтогенезе. Генетически такой переход может быть достигнут через отбор особых генов-модификаторов, влияющих на фенотипическое проявление мутантного аллеля (гипотеза Р.Фишера), или же через отбор аллелей с большей физиологической активностью (обеспечивающих более интенсивный синтез ферментов), чем первоначальный рецессивный вариант (гипотезы С.Райта и Д.Холдейна).
сущности, эти гипотезы не исключают, а взаимно дополняют друг друга, и эволюция доминантности может происходить путем отбора малых мутаций как структурных генов, так и генов- модификаторов.

Так или иначе, степень доминантности фенотипического проявления аллелей может эволюционировать, повышаясь под контролем отбора, если данный аллель становится благоприятным для его носителя при изменениях внешних условий. Примером этого может служить повышение доминантности аллеля, контролирующего темную окраску бабочек березовой пяденицы (Biston betu-laria), которое, по некоторым данным, произошло в течение последних ста лет в индустриальных районах Европы (явление, получившее название «индустриальный меланизм») (Н. Н. Иорданский «Эволюция жизни»)

См. также

  • Аллель
  • Гетерозигота
  • Гомозигота
  • Доминантный признак
  • Рецессивный признак
  • Законы Менделя
  • Взаимодействие неаллельных генов

Источник: dic.academic.ru