Контрольная работа по теме «Экосистема»

Вариант 1

Задание 1. Определите правильность суждения. Исправьте неправильные суждения.

1. Биоценоз – это сообщество организмов в их связи с окружающей средой.

2. Рельеф, климат, почва, воздух – абиотические факторы.

3. Консументы разлагают органические остатки до неорганических соединений.

4. Роль продуцентов заключается в синтезе органических веществ.

5. Длина пищевой цепи живых организмов ограничивается потерей энергии на каждом трофическом уровне.

6. Вторичные консументы – это растительноядные животные.

7. Переход к паразитизму снижает возможность вида выжить в борьбе за существование.

8. Биокосное вещество биосферы представляет собой результат жизнедеятельности организмов и небиологических процессов.

9. Устойчивость биосферы обеспечивается круговоротом веществ.

10. Взаимоотношения подберезовика и березы являются примером паразитизма.


Задание 2. Выберите один правильный ответ.

1. Изначальным источником энергии в большинстве экосистем служат

1) минеральные вещества  3) пищевые объекты

2) солнечный свет  4) растения

2. Волки и львы находятся на одном трофическом уровне потому, что и те и другие

1) поедают растительноядных животных

2) являются продуцентами

3) имеют крупные размеры

4) рацион их разнообразен

3. На каждый последующий пищевой уровень переходит энергии

1) 1%  2) 10%  3) 50%  4) 100%

4. Истинными редуцентами в биоценозах являются

1) водоросли  3) хищники

2) растительноядные животные  4) бактерии и грибы

5. К абиотическим факторам среды относят

1) подрывание кабанами корней  3) образование колоний птиц

2) нашествие саранчи  4) обильный снегопад

6. Примером смены экосистемы служит

1) отмирание надземных частей растений зимой на лугу 

2) изменение внешнего облика лесного сообщества зимой 

3) зарастание водоема

4) сокращение численности хищников в лесу

7. Какая цепь питания правильно отражает передачу в ней энергии?

1) лисица→дождевой червь→еж→листовой опад 

2) еж→дождевой червь→листовой опад→лисица 

3) листовой опад→дождевой червь→еж→лисица


4) еж→лисица→дождевой червь→листовой опад

8. К консументам II порядка в биогеоценозе водоема относятся

1) растения, образующие фитопланктон 

2) рыбы, питающиеся растительной пищей 

Контрольная работа по теме «Экосистема»

Вариант 2

Задание 1. Определите правильность суждения. Исправьте неправильные суждения.

1. Пищевая цепь чаще всего имеет не более 3 – 5 звеньев.

2. В пустыне ограничивающим фактором продуктивности экосистемы является температура.

3. В пищевой цепи, включающей травянистые растения, саранчу, паука-крестовика, воробья и ястреба, консументом первого порядка является ястреб.

4. Агроценозы не способны к саморегуляции.

5. Редуценты разлагают органические остатки до неорганических соединений.

6. Биогенное вещество биосферы создается в процессе жизнедеятельности организмов.

7. Вся энергия, поступающая к растениям от Солнца, расходуется на синтез органических соединений.

8. Взаимоотношения акулы и рыбы-лоцмана являются примером паразитизма.

9. Устойчивость биосферы обеспечивается постоянным притоком солнечной энергии.

10. Зона оптимума – это значение фактора, которое наименее благоприятно для жизнедеятельности организма.

Задание 2. Выберите один правильный ответ.

1. Водоем, заселенный разнообразными видами растений и животных, – это

1) биогеоценоз  2) фитоценоз  3) биосфера  4) агроценоз


2. Экологический фактор, находящийся в недостатке или избытке, называется

1) биотическим  2) ограничивающим  3) антропогенным  4) абиотическим

3. Роль организмов редуцентов в экосистеме состоит в

1) использовании солнечной энергии

2) образовании органических веществ из неорганических

3) разрушении органических веществ до минеральных

4) образовании симбиотических связей с растениями

4. Какой из организмов в цепи (растение→кузнечик→лягушка→змея→еж) является консументом третьего порядка?

1) еж  2) змея  3) лягушка  4) кузнечик

5. Границы биосферы определяются

1) условиями, непригодными для жизни  3) колебаниями положительных температур

2) количеством выпадающих осадков  4) облачностью атмосферы

6. Процесс саморазвития биоценоза можно наблюдать на примере

1) весеннего половодья  3) случайного выброса нефтепродуктов

2) создания искусственного водоема  4) зарастания небольшого пруда

7. Определите правильно составленную пищевую цепь

1) ястреб→дрозд→гусеница→крапива  3) крапива→дрозд→гусеница→ястреб

2) гусеница→крапива→дрозд→ястреб  4) крапива→гусеница→дрозд→ястреб

8. К продуцентам в биогеоценозе водоема относятся

1) растения, образующие фитопланктон 

iv>

2) рыбы, питающиеся растительной пищей 

3) плотоядные рыбы 

4) бактерии, разлагающие ил на дне водоема 

9. К хищничеству относят взаимоотношения между

1) плотвой и щукой 

2) раком-отшельником и актинией 

3) плотвой и карпом 

4) хорьком и горностаем 

10. Сходство искусственной и естественной экосистем состоит в том, что они

1) содержат одинаковое число звеньев в сетях питания 

2) имеют одинаковую продуктивность биомассы растений 

3) не могут существовать без участия человека 

4) содержат одинаковые функциональные группы организмов 

Задание 3. Выберите три правильных ответа.

В экосистеме смешанного леса симбиотические отношения устанавливаются между

А)        березами и елями 

Б)        березами и грибами-трутовиками 

В)        тлями и муравьями 

Г)        ежами и насекомоядными птицами 

Д)        березами и подберезовиками 

Е)        черемухой и опыляющими ее мухами 

Задание 4. Вместо точек подберите соответствующие слова.

1. Длина пищевой цепи ограничивается … .

2. Геологическая оболочка Земли, заселенная живыми организмами и преобразуемая ими –  …. .


3. Температура, свет и влажность относятся к ……. факторам.

4. К продуцентам относятся ….. .

5. Антилопы и олени – это ….. .

6. Взаимоотношения подосиновика с корнями осины – …. .

Задание 5. Кратко ответьте на поставленные вопросы.

Какие факторы определяют границы биосферы в гидросфере? Какое вещество биосферы является биокосным? Приведите примеры. Какое значение имеет углерод в жизни живых организмов?

Задание 6. Ниже предложены две группы организмов. Они сгруппированы по определенному признаку, но один организм в каждой группе не имеет этого признака и поэтому является лишним. Определите, какой организм лишний. Ответ обоснуйте.

  I  II

  Дождевой червь  Уж

  Почвенная бактерия  Сокол

  Цианобактерия  Олень

  Мокрица  Лисица

  Рак  Волк

Задание 7. Решите задачу.

  На основании правила экологической пирамиды определите, сколько нужно планктона, чтобы в Черном море вырос и мог существовать один дельфин весом 400 кг (планктон→мелкая рыба→хищная рыба→дельфин).

3) плотоядные рыбы 

4) бактерии, разлагающие ил на дне водоема 

9. Взаимоотношения между березой и елью, растущими в одном лесу – иллюстрация

1)  симбиоза          3)  хищничества 

2)  конкуренции          4)  паразитизма 

>

10. Агроценозы отличаются от естественных экосистем

1) отсутствием консументов  3) большим видовым разнообразием 

2) не замкнутым круговоротом веществ  4) большей устойчивостью 

Задание 3. Выберите три правильных ответа.

В экосистеме тайги первый трофический уровень в цепях питания составляют

А) ели, лиственницы 

Б) копытень, кислица 

В) шляпочные грибы, бактерии гниения 

Г) мхи, папоротники 

Д) личинки насекомых, дождевые черви 

Е) бактерии гниения 

Задание 4. Вместо точек подберите соответствующие слова.

1. Наука о закономерностях взаимоотношений организмов, видов, сообществ со средой обитания – ….. .

2. Различают три группы экологических факторов –  …… .

3. Производители органического вещества –  …. .

4. Количество живого вещества, выраженное в единицах массы –  ….. .

5. Цианобактерии для синтеза органических соединений используют энергию ….. .

6. Хемо — и фотосинтезирующие бактерии – это …. .

Задание 5. Кратко ответьте на поставленные вопросы.

Какое вещество биосферы называют биогенным? Приведите примеры. Какие факторы определяют границы биосферы в атмосфере? Что такое диапазон выносливости?

Задание 6. Ниже предложены две группы организмов. Они сгруппированы по определенному признаку, но один организм в каждой группе не имеет этого признака и поэтому является лишним. Определите, какой организм лишний. Ответ обоснуйте.


  I  II

  Лошадь  Цианобактерии

  Овца  Подберезовик

  Кролик  Ель

  Бабочка  Береза

  Лисица  Боярышник

Задание 7. Решите задачу. 

На основании правила экологической пирамиды определите, сколько потребуется травы, чтобы вырос один орел весом 5 кг (трава→мыши→змеи→орел).

Источник: pandia.ru

В природе любой вид, популяция и даже отдельная особь живут не изолированно друг от друга и среды своего обитания, а, напротив, испытывают многочисленные взаимные влияния. Биотические сообщества или биоценозы — сообщества взаимодействующих живых организмов, представляющие собой устойчивую систему, связанную многочисленными внутренними связями, с относительно постоянной структурой и взаимообусловленным набором видов.

Для биоценоза характерны определенные структуры: видовая, пространственная и трофическая.

Органические компоненты биоценоза неразрывно связаны с неорганическими — почвой, влагой, атмосферой, образуя вместе с ними устойчивую экосистему — биогеоценоз.


Биогеноценоз  – саморегулирующаяся экологическая система, образованная совместно обитающими и взаимодействующими между собой и с неживой природой, популяциями разных видов в относительно однородных условиях среды.

— функциональные системы, включающие в себя сообщества живых организмов разных видов и их среду обитания. Связи между компонентами экосистемы возникают, прежде всего, на основе пищевых взаимоотношений и способов получения энергии.

Экосистема

— совокупность видов растений, животных, грибов, микроорганизмов, взаимодействующих между собой и с окружающей средой таким образом, что такое сообщество может сохраняться и функционировать необозримо длительное время. Биотическое сообщество (биоценоз) состоит из сообщества растений (фитоценоз), животных (зооценоз), микроорганизмов (микробоценоз).

Все организмы Земли и среда их обитания также представляют собой экосистему высшего ранга — биосферу, обладающую устойчивостью и другими свойствами экосистемы.

Существование экосистемы возможно благодаря постоянному притоку энергии извне — таким источником энергии, как правило, является солнце, хотя не для всех экосистем это справедливо. Устойчивость экосистемы обеспечивается прямыми и обратными связями между ее компонентами, внутренним круговоротом веществ и участием в глобальных круговоротах.


Учение о биогеоценозах разработано В.Н. Сукачевым. Термин «экосистема» введен в употребление английским геоботаником А. Тенсли в 1935 г., термин «биогеоценоз» — академиком В.Н. Сукачевым в 1942 г. В биогеоценозе обязательно наличие в качестве основного звена растительного сообщества (фитоценоз), обеспечивающего потенциальную бессмертность биогеоценоза за счет энергии, вырабатываемой растениями. Экосистемы могут не содержать фитоценоз.

Фитоценоз

— растительное сообщество, исторически сложившееся в результате сочетания взаимодействующих растений на однородном участке территории.

Его характеризуют:

— определенный видовой состав,

— жизненные формы,

— ярусность (надземная и подземная),

— обилие (частота встречаемости видов),

— размещение,

— аспект (внешний вид),

— жизненность,

— сезонные изменения,

— развитие (смена сообществ).

Ярусность (этажность)

— один из характерных признаков растительного сообщества, заключающийся как бы в поэтажном его разделении как в надземном, так и в подземном пространстве.


Надземная ярусность позволяет лучше использовать свет, а подземная — воду и минеральные вещества. Обычно в лесу можно выделить до пяти ярусов: верхний (первый) — высокие деревья, второй — невысокие деревья, третий — кустарники, четвертый — травы, пятый — мхи.

Подземная ярусность — зеркальное отражение надземной: глубже всех уходят корни деревьев, близ поверхности почвы расположены подземные части мхов.

По способу получения и использования питательных веществ все организмы делятся на автотрофы и гетеротрофы. В природе возникает непрерывный круговорот биогенных веществ, необходимых для жизни. Химические вещества извлекаются автотрофами из окружающей среды и через гетеротрофы вновь в нее возвращаются. Этот процесс принимает очень сложные формы. Каждый вид использует лишь часть содержащейся в органическом веществе энергии, доводя его распад до определенной стадии. Таким образом, в процессе эволюции в экологических системах сложились цепи и сети питания.

Большинство биогеоценозов имеют сходную трофическую структуру. Основу их составляют зеленые растения — продуценты. Обязательно присутствуют растительноядные и плотоядные животные: потребители органического вещества — консументы и разрушители органических остатков — редуценты.

Количество особей в пищевой цепи последовательно уменьшается, численность жертв больше численности их потребителей, так как в каждом звене пищевой цепи при каждом переносе энергии 80—90% ее теряется, рассеиваясь в виде теплоты. Поэтому число звеньев в цепи ограничено (3—5).

Видовое разнообразие биоценоза представлено всеми группами организмов — продуцентами, консументами и редуцентами.

Нарушение какого-либо звена в цепи питания вызывает нарушение биоценоза в целом. Например, вырубка леса приводит к изменению видового состава насекомых, птиц, а, следовательно, и зверей. На безлесном участке будут складываться другие цепи питания и сформируется другой биоценоз, что займет не один десяток лет.

Цепь питания (трофическая или пищевая)

— взаимосвязанные виды, последовательно извлекающие органическое вещество и энергию из исходного пищевого вещества; при этом каждое предыдущее звено цепи является пищей для последующего.

Цепи питания состоят из нескольких звеньев, в них включаются растения, растительноядные животные, хищники и паразиты.

Цепи питания в каждом природном участке с более или менее однородными условиями существования составлены комплексами взаимосвязанных видов, питающимися друг другом и образующими самоподдерживающуюся систему, в которой осуществляется круговорот веществ и энергии.

— Продуценты — автотрофные организмы (в основном зеленые растения) — единственные производители органического вещества на Земле. Богатое энергией органическое вещество в процессе фотосинтеза синтезируется из бедных энергией неорганических веществ (Н20 и С02).

Консументы — растительноядные и плотоядные животные, потребители органического вещества. Консументы могут быть растительноядными, когда они непосредственно используют продуценты, или плотоядными, когда они питаются другими животными. В цепи питания они чаще всего могут иметь порядковый номер с I по IV.

Редуценты — гетеротрофные микроорганизмы (бактерии) и грибы — разрушители органических остатков, деструкторы. Их еще называют санитарами Земли.

Трофический (пищевой) уровень — совокупность организмов, объединяемых типом питания. Представление о трофическом уровне позволяет понять динамику потока энергии в экосистеме.

  1. первый трофический уровень всегда занимают продуценты (растения),
  2. второй — консументы I порядка (растительноядные животные),
  3. третий — консументы II порядка — хищники, питающиеся растительноядными животными),
  4. четвертый — консументы III порядка (вторичные хищники).

Различают следующие виды пищевых цепей:

— в пастбищной цепи (цепи выедания) основным источником пищи служат зеленые растения. Например: трава  —> насекомые —> земноводные —> змеи —> хищные птицы.

детритные цепи (цепи разложения) начинаются с детрита — отмершей биомассы. Например: листовой опад —> дождевые черви —> бактерии. Особенностью детритных цепей является также то, что в них часто продукция растений не потребляется непосредственно растительноядными животными, а отмирает и минерализуется сапрофитами. Детритные цепи характерны также для экосистем океанических глубин, обитатели которых питаются мертвыми организмами, опустившимися вниз из верхних слоев воды.

Особенностью пищевых цепей паразитов является то, что они могут начинаться как с продуцентов (яблоня —> щитовка —> наездник), так и с консументов (корова—> паразитические черви —> простейшие —> бактерии —> вирусы).

Сети питания

— сложившиеся в процессе эволюции взаимоотношения между видами в экологических системах, при которых многие компоненты питаются разными объектами и сами служат пищей различным членам экосистемы. Упрощенно пищевую сеть можно представить как систему переплетающихся пищевых цепей.

Организмы разных пищевых цепей, получающие пищу через равное число звеньев этих цепей, находятся на одном трофическом уровне. В то же время разные популяции одного и того же вида, входящие в различные пищевые цепи, могут находиться на разных трофических уровнях. Соотношение различных трофических уровней в экосистеме можно изобразить графически в виде экологической пирамиды.

Экологическая пирамида

— способ графического отображения соотношения различных трофических уровней в экосистеме — бывает трех типов:

         • пирамида численности отражает численность организмов на каждом трофическом уровне;

         • пирамида биомасс отражает биомассу каждого трофического уровня;

         • пирамида энергии показывает количество энергии, прошедшее через каждый трофический уровень в течение определенного промежутка времени.

Правило экологической пирамиды

— закономерность, отражающая прогрессивное уменьшение массы (энергии, числа особей) каждого последующего звена пищевой цепи.

Пирамида численности

— экологическая пирамида, отражающая число особей на каждом пищевом уровне. В пирамиде чисел не учитываются размеры и масса особей, продолжительность жизни, интенсивность обмена веществ, однако всегда прослеживается главная тенденция — уменьшение числа особей от звена к звену. Например, в степной экосистеме численность особей распределяется так: продуценты — 150000, травоядные консументы — 20000, плотоядные консументы — 9000 экз./ар. Биоценоз луга характеризуется следующей численностью особей на площади 4000 м2: продуценты — 5 842 424, растительноядные консументы I порядка — 708 624, плотоядные консументы II порядка — 35 490, плотоядные консументы III порядка — 3.

Пирамида биомасс

— закономерность, согласно которой количество растительного вещества, служащего основой цепи питания (продуцентов), примерно в 10 раз больше, чем масса растительноядных животных (консументов I порядка), а масса растительноядных животных в 10 раз больше, чем плотоядных (консументов II порядка), т. е. каждый последующий пищевой уровень имеет массу в 10 раз меньшую, чем предыдущий. В среднем из 1000 кг растений образуется 100 кг тела травоядных животных. Хищники, поедающие травоядных, могут построить 10 кг своей биомассы, вторичные хищники — 1 кг.

Пирамида энергии

выражает закономерность, согласно которой поток энергии постепенно уменьшается и обесценивается при переходе от звена к звену в цепи питания. Так, в биоценозе озера зеленые растения — продуценты — создают биомассу, содержащую 295,3 кДж/см2, консументы I порядка, потребляя биомассу растений, создают свою биомассу, содержащую 29,4 кДж/см2; консументы II порядка, используя в пищу консументов I порядка, создают свою биомассу, содержащую 5,46 кДж/см2. Потеря энергии при переходе от консументов I порядка к консументам II порядка, если это теплокровные животные, увеличивается. Это объясняется тем, что у данных животных много энергии уходит не только на построение своей биомассы, но и на поддержание постоянства температуры тела. Если сравнить выращивание теленка и окуня, то одинаковое количество затраченной пищевой энергии даст 7 кг говядины и лишь 1 кг рыбы, так как теленок питается травой, а окунь-хищник — рыбой.

Таким образом, первые два типа пирамид имеют ряд существенных недостатков:

— Построение пирамиды численности может быть затруднено, если разброс численности организмов разных уровней велик (например, 500 тыс. злаков в основании пирамиды может соответствовать один конечный хищник). Кроме того, пирамида может оказаться перевернутой (в том случае, если продуцент очень крупный, или если большое число паразитов питаются на немногочисленных консументах).

— Пирамида биомасс отражает состояние экосистемы на момент отбора пробы и, следовательно, показывает соотношение биомассы в данный момент и не отражает продуктивность каждого трофического уровня (т. е. его способность образовывать биомассу в течение определенного промежутка времени). Поэтому в том случае, когда в число продуцентов входят быстрорастущие виды, пирамида биомасс может оказаться перевернутой.

— Пирамида энергии позволяет сравнить продуктивность различных трофических уровней, поскольку учитывает фактор времени. Кроме того, она учитывает разницу в энергетической ценности различных веществ (например, 1 г жира дает почти в два раза больше энергии, чем 1 г глюкозы). Поэтому пирамида энергии всегда суживается кверху и никогда не бывает перевернутой.

Экологическая пластичность

— степень выносливости организмов или их сообществ (биоценозов) к воздействию факторов среды. Экологически пластичные виды имеют широкую норму реакции, т. е. широко приспособлены к разной среде обитания (рыбы колюшка и угорь, некоторые простейшие живут как в пресных, так и в соленых водах). Узкоспециализированные виды могут существовать лишь в определенной среде: морские животные и водоросли — в соленой воде, речные рыбы и растения лотос, кувшинка, ряска обитают только в пресной воде.

В целом экосистема (биогеоценоз) характеризуется следующими показателями:

— видовым разнообразием,

— плотностью видовых популяций,

— биомассой.

Биомасса

— общее количество органического вещества всех особей биоценоза или вида с заключенной в нем энергией. Биомассу выражают обычно в единицах массы в пересчете на сухое вещество единицы площади или объема. Биомассу можно определить отдельно для животных, растений или отдельных видов. Так, биомасса грибов в почве составляет 0,05-0,35 т/га, водорослей — 0,06-0,5, корней высших растений — 3,0-5,0, дождевых червей — 0,2-0,5, позвоночных животных — 0,001-0,015 т/га.

В биогеоценозах различают первичную и вторичную биологическую продуктивность:

ü Первичная биологическая продуктивность биоценозов — общая суммарная продуктивность фотосинтеза, представляющая собой результат деятельности автотрофов — зеленых растений, например, сосновый лес 20— 30-летнего возраста за год производит 37,8 т/га биомассы.

ü Вторичная биологическая продуктивность биоценозов — общая суммарная продуктивность гетеротрофных организмов (консументов), которая образуется за счет использования веществ и энергии, накопленных продуцентами.

Каждый вид на Земле занимает определенный ареал, так как он способен существовать лишь в определенных условиях среды. Однако условия обитания в рамках ареала одного вида могут существенно отличаться, что приводит к распаду вида на элементарные группировки особей — популяции.

Популяция

— совокупность особей одного вида, занимающих обособленную территорию в пределах ареала вида (с относительно однородными условиями обитания), свободно скрещивающихся друг с другом (имеющих общий генофонд) и изолированных от других популяций данного вида, обладающих всеми необходимыми условиями для поддержания своей стабильности длительное время в меняющихся условиях среды. Важнейшими характеристиками популяции являются ее структура (возрастной, половой состав) и динамика численности.

Под демографической структурой популяции понимают ее половой и возрастной состав.

Пространственная структура популяции — это особенности размещения особей популяции в пространстве.

Возрастная структура популяции связана с соотношением особей различных возрастов в популяции. Особи одного возраста объединяют в когорты — возрастные группы.

В возрастной структуре популяций растений выделяют следующие периоды:

— латентный — состояние семени;

— прегенеративный (включает состояния проростка, ювенильного растения, имматурного и виргинильного растений);

— генеративный (обычно подразделяется на три подпериода — молодые, зрелые и старые генеративные особи);

— постгенеративный (включает состояния субсенильного, сенильного растений и фазу отмирания).

Принадлежность к определенному возрастному состоянию определяется по биологическому возрасту — степени выраженности определенных морфологических (например, степень расчлененности сложного листа) и физиологических (например, способность дать потомство) признаков.

В популяциях животных также можно выделить различные возрастные стадии. Например, насекомые, развивающиеся с полным метаморфозом, проходят стадии:

— яйца,

— личинки,

— куколки,

— имаго (взрослого насекомого).

Характер возрастной структуры популяции зависит от типа кривой выживания, свойственной данной популяции.

Кривая выживания отражает уровень смертности в различных возрастных группах и представляет собой снижающуюся линию:

  1. Если уровень смертности не зависит от возраста особей, отмирание особей происходит в данном типе равномерно, коэффициент смертности остается постоянным на протяжении всей жизни (тип I). Такая кривая выживания свойственна видам, развитие которых происходит без метаморфоза при достаточной устойчивости рождающегося потомства. Этот тип принято называть типом гидры — для нее свойственна кривая выживания, приближающаяся к прямой линии.
  2. У видов, для которых роль внешних факторов в смертности невелика, кривая выживания характеризуется небольшим понижением до определенного возраста, после которого происходит резкое падение вследствие естественной (физиологической) смертности (тип II). Близкий к этому типу характер кривой выживания свойствен человеку (хотя кривая выживания человека несколько более пологая и является чем-то средним между типами I и II). Этот тип носит название типа дрозофилы: именно его демонстрируют дрозофилы в лабораторных условиях (не поедаемые хищниками).
  3. Для очень многих видов характерна высокая смертность на ранних стадиях онтогенеза. У таких видов кривая выживания характеризуется резким падением в области младших возрастов. Особи, пережившие «критический» возраст, демонстрируют низкую смертность и доживают до старших возрастов. Тип носит название типа устрицы (тип III).

Половая структура популяции

— соотношение полов имеет прямое отношение к воспроизводству популяции и ее устойчивости.

Выделяют первичное, вторичное и третичное соотношение полов в популяции:

Первичное соотношение полов определяется генетическими механизмами — равномерностью расхождения половых хромосом. Например, у человека XY-хромосомы определяют развитие мужского пола, а XX — женского. В этом случае первичное соотношение полов 1:1, т. е. равновероятно.

Вторичное соотношение полов — это соотношение полов на момент рождения (среди новорожденных). Оно может существенно отличаться от первичного по целому ряду причин: избирательность яйцеклеток к сперматозоидам, несущим Х- или Y-хромосому, неодинаковой способностью таких сперматозоидов к оплодотворению, различными внешними факторами. Например, зоологами описано влияние температуры на вторичное соотношение полов у рептилий. Аналогичная закономерность характерна и для некоторых насекомых. Так, у муравьев оплодотворение обеспечивается при температуре выше 20 °С, а при более низких температурах откладываются неоплодотворенные яйца. Из последних вылупляются самцы, а из оплодотворенных — преимущественно самки.

Третичное соотношение полов — соотношение полов среди взрослых животных.

Пространственная структура популяции отражает характер размещения особей в пространстве.

Выделяют три основных типа распределения особей в пространстве:

единообразное или равномерное (особи размещены в пространстве равномерно, на одинаковых расстояниях друг от друга); встречается в природе редко и чаще всего вызвано острой внутривидовой конкуренцией (например, у хищных рыб);

конгрегационное  или  мозаичное («пятнистое», особи размещаются в обособленных скоплениях); встречается намного чаше. Оно связано с особенностями микросреды или поведения животных;

случайное или диффузное (особи распределены в пространстве случайным образом) — можно наблюдать только в однородной среде и только у видов, которые не обнаруживают никакого стремления к объединению в группы (например, у жука в муке).

Численность популяции обозначается буквой N. Отношение прироста N к единице времени dN / dt выражает мгновенную скорость изменения численности популяции, т. е. изменение численности в момент времени t. Прирост популяции зависит от двух факторов — рождаемости и смертности при условии отсутствия эмиграции и иммиграции (такая популяция называется изолированной). Разность рождаемости b и смертности d и представляет собой коэффициент прироста изолированной популяции:

       r = b—d.

Устойчивость популяции

— это ее способность находиться в состоянии динамического (т. е. подвижного, изменяющегося) равновесия со средой: изменяются условия среды — изменяется и популяция. Одним из важнейших условий устойчивости является внутреннее разнообразие. Применительно к популяции это механизмы поддержания определенной плотности популяции.

Выделяют три типа зависимости численности популяции от ее плотности.

Первый тип (I) — самый распространенный, характеризуется уменьшением роста популяции при увеличении ее плотности, что обеспечивается различными механизмами. Например, для многих видов птиц характерны снижение рождаемости (плодовитости) при увеличении плотности популяции; увеличение смертности, снижение сопротивляемости организмов при повышенной плотности популяции; изменение возраста наступления половой зрелости в зависимости от плотности популяции.

Второй тип (II) характеризуется постоянным темпом роста численности, который резко падает при достижении максимальной численности (лемминги при достижении максимальной плотности начинают массово мигрировать; достигнув моря, многие тонут). Одним из важнейших факторов поддержания численности популяций является внутривидовая конкуренция. Она может проявляться в различных формах: от борьбы за места для гнездования до каннибализма. Межвидовые отношения также играют важную роль. Отношения паразит — хозяин и хищник — жертва во многом зависят от плотности: распространение болезней происходит быстрее в популяциях с высокой плотностью, которая выступает эпидемиологическим фактором.

Третий тип (III) характерен для популяций, в которых отмечается «эффект группы», т. е. определенная оптимальная плотность популяции способствует лучшему выживанию, развитию, жизнедеятельности всех особей, что присуще большинству групповых и социальных животных. Например, для возобновления популяций разнополых животных как минимум необходима плотность, обеспечивающая достаточную вероятность встречи самца и самки.

Таким образом, оптимальная численность и плотность популяции поддерживаются благодаря внутрипопуляционным механизмам (увеличение/уменьшение рождаемости и смертности, изменение возраста наступления половой зрелости, внутривидовая конкуренция) и междвидовым механизмам (взаимоотношения хищник — жертва и паразит — хозяин).

 

Тематические задания

А1. Биогеоценоз образован

1) растениями и животными                      

2) животными и бактериями

3) растениями, животными, бактериями   

4) территорией и организмами

 

А2. Потребителями органического вещества в лесном биогеоценозе являются

1) ели и березы

2) грибы и черви

3) зайцы и белки 

4) бактерии и вирусы

 

А3. Продуцентами в озере являются

1) лилии

2) головастики

3) раки

4) рыбы

 

А4. Процесс саморегуляции в биогеоценозе влияет на

1) соотношение полов в популяциях разных видов

2) численность мутаций, возникающих в популяциях

3) соотношение хищник – жертва

4) внутривидовую конкуренцию

 

А5. Одним из условий устойчивости экосистемы может служить

1) ее способность к изменениям 

2) разнообразие видов

3) колебания численности видов

4) стабильность генофонда в популяциях

 

А6. К редуцентам относятся

1) грибы

2) лишайники

3) мхи 

4) папоротники

 

А7. Если общая масса полученной потребителем 2-го порядка равна 10 кг, то какова была совокупная масса продуцентов, ставших источником пищи для данного потребителя?

1) 1000 кг  

2) 500 кг  

3) 10000 кг 

4) 100 кг

 

А8. Укажите детритную пищевую цепь

1) муха – паук – воробей – бактерии  

2) клевер – ястреб – шмель – мышь

3) рожь – синица – кошка – бактерии 

4) комар – воробей – ястреб – черви

 

А9. Исходным источником энергии в биоценозе является энергия

1) органических соединений 

2) неорганических соединений

3) Солнца                               

4) хемосинтеза

 

А10. Взаимовыгодными можно считать отношения между липой и:

1) зайцами

2) пчелами

3) дроздами-рябинниками 

4) волками

 

А11. В одной экосистеме можно встретить дуб и

1) суслика

2) кабана

3) жаворонка 

4) синий василек

 

А12. Сети питания – это:

1) связи между родителями и потомством

2) родственные (генетические) связи

3) обмен веществ в клетках организма

4) пути передачи веществ и энергии в экосистеме

 

А13. Экологическая пирамида чисел отражает:

1) соотношение биомасс на каждом трофическом уровне

2) соотношение масс отдельного организма на разных трофических уровнях

3) структуру пищевой цепи

4) разнообразие видов на разных трофических уровнях

 

А14. Доля энергии, передаваемая на следующий трофический уровень, составляет приблизительно:

1) 10%           

2) 30%        

3) 50%        

4) 100%

Источник: biology100.ru

Что такое пищевая цепь?

Каждый организм должен получать энергию для жизни. Например, растения потребляют энергию солнца, животные питаются растениями, а некоторые животные питаются другими животными.

Пищевая (трофическая) цепь — это последовательность того, кто кого ест в биологическом сообществе (экосистеме) для получения питательных веществ и энергии, поддерживающих жизнедеятельность.

Читайте также: Отличие пищевой цепи от пищевой сети в экосистеме.

Автотрофы (продуценты)

Длина пищевой цепи в экосистемах ограничивается

Автотрофы — живые организмы, которые производят свою пищу, то есть собственные органические соединения, из простых молекул, таких как углекислый газ. Существует два основных типа автотрофов:

  • Фотоавтотрофы (фотосинтезирующие организмы) такие, как растения, перерабатывают энергию солнечного света для получения органических соединений — сахаров — из углекислого газа в процессе фотосинтеза. Другими примерами фотоавтотрофов являются водоросли и цианобактерии.
  • Хемоавтотрофы получают органические вещества благодаря химическим реакциям, в которых задействованы неорганические соединения (водород, сероводород, аммиак и т.д.). Этот процесс называется хемосинтезом.

Автотрофы являются основой каждой экосистемы на планете. Они составляют большинство пищевых цепей и сетей, а энергия, получаемая в процессе фотосинтеза или хемосинтеза, поддерживает все остальные организмы экологических систем. Когда речь идет об их роли в пищевых цепях, автотрофы можно назвать продуцентами или производителями.

Гетеротрофы (консументы)

Длина пищевой цепи в экосистемах ограничивается

Гетеротрофы, также известные как потребители, не могут использовать солнечную или химическую энергию, для производства собственной пищи из углекислого газа. Вместо этого, гетеротрофы получают энергию, потребляя другие организмы или их побочные продукты. Люди, животные, грибы и многие бактерии — гетеротрофы. Их роль в пищевых цепях заключается в потреблении других живых организмов. Существует множество видов гетеротрофов с разными экологическими ролями: от насекомых и растений до хищников и грибов.

Деструкторы (редуценты)

Длина пищевой цепи в экосистемах ограничивается

Следует упомянуть еще одну группу потребителей, хотя она не всегда фигурирует в схемах пищевых цепей. Эта группа состоит из редуцентов, организмов, которые перерабатываю мертвые органические вещества и отходы, превращаяя их в неорганические соединения.

Редуценты иногда считаются отдельным трофическим уровнем. Как группа, они питаются отмершими организмами, поступающими на различных трофических уровнях. (Например, они способны перерабатывать разлагающееся растительное вещество, тело недоеденной хищниками белки или останки умершего орла.) В определенном смысле, трофический уровень редуцентов проходит параллельно стандартной иерархии первичных, вторичных и третичных потребителей. Грибы и бактерии являются ключевыми редуцентами во многих экосистемах.

Редуценты, как часть пищевой цепи, играют важную роль в поддержании здоровой экосистемы, поскольку благодаря им, в почву возвращаются питательные вещества и влага, которые в дальнейшем используется продуцентами.

Уровни пищевой (трофической) цепи

Пищевая цепь представляет собой линейную последовательность организмов, которые передают питательные вещества и энергию начиная с продуцентов и к высшим хищникам.

Трофический уровень организма — это положение, которое он занимает в пищевой цепи.

Первый трофический уровень

Пищевая цепь начинается с автотрофного организма или продуцента, производящего собственную пищу из первичного источника энергии, как правило, солнечной или энергии гидротермальных источников срединно-океанических хребтов. Например, фотосинтезирующие растения, хемосинтезирующие бактерии и археи.

Второй трофический уровень

Далее следуют организмы, которые питаются автотрофами. Эти организмы называются растительноядными животными или первичными потребителями и потребляют зеленые растения. Примеры включают насекомых, зайцев, овец, гусениц и даже коров.

Третий трофический уровень

Следующим звеном в пищевой цепи являются животные, которые едят травоядных животных — их называют вторичными потребителями или плотоядными (хищными) животными (например, змея, которая питается зайцами или грызунами).

Четвертый трофический уровень

В свою очередь, этих животных едят более крупные хищники — третичные потребители (к примеру, сова ест змей).

Пятый трофический уровень

Третичных потребителей едят четвертичные потребители (например, ястреб ест сов).

Каждая пищевая цепь заканчивается высшим хищником или суперхищником — животным без естественных врагов (например, крокодил, белый медведь, акула и т.д.). Они являются «хозяевами» своих экосистем.

Когда какой-либо организм умирает, его в конце концов съедают детритофаги (такие, как гиены, стервятники, черви, крабы и т.д.), а остальная часть разлагается с помощью редуцентов (в основном, бактерий и грибов), и обмен энергией продолжается.

Стрелки в пищевой цепи показывают поток энергии, от солнца или гидротермальных источников до высших хищников. По мере того, как энергия перетекает из организма в организм, она теряется на каждом звене цепи. Совокупность многих пищевых цепей называется пищевой сетью.

Положение некоторых организмов в пищевой цепи может варьироваться, поскольку их рацион отличается. Например, когда медведь ест ягоды, он выступает как растительноядное животное. Когда он съедает грызуна, питающегося растениями, то становиться первичным хищником. Когда медведь ест лосося, то выступает суперхищником (это связано с тем, что лосось является первичным хищником, поскольку он питается селедкой, а она ест зоопланктон, который питается фитопланктоном, вырабатывающим собственную энергию благодаря солнечному свету). Подумайте о том, как меняется место людей в пищевой цепи, даже часто в течение одного приема пищи.

 

Типы пищевых цепей

Длина пищевой цепи в экосистемах ограничивается

В природе, как правило, выделяют два типа пищевых цепей: пастбищную и детритную.

Пастбищная пищевая цепь

Этот тип пищевой цепи начинается с живых зеленых растений, предназначенных для питания растительноядных животных, которыми питаются хищники. Экосистемы с таким типом цепи напрямую зависят от солнечной энергии.

Таким образом, пастбищный тип пищевой цепи зависит от автотрофного захвата энергии и перемещения ее по звеньям цепи. Большинство экосистем в природе следуют этому типу пищевой цепи.

Примеры пастбищной пищевой цепи:

  • Трава → Кузнечик → Птица → Ястреб;
  • Растения → Заяц → Лиса → Лев.

Детритная пищевая цепь

Этот тип пищевой цепи начинается с разлагающегося органического материала — детрита — который употребляют детритофаги. Затем, детритофагами питаются хищники. Таким образом, подобные пищевые цепи меньше зависят от прямой солнечной энергии, чем пастбищные. Главное для них — приток органических веществ, производимых в другой системе.

К примеру, такой тип пищевой цепи встречается в разлагающейся подстилке умеренного леса.

Энергия в пищевой цепи

Длина пищевой цепи в экосистемах ограничивается

Энергия переносится между трофическими уровнями, когда один организм питается другим и получает от него питательные вещества. Однако это движение энергии неэффективное, и эта неэффективность ограничивает протяженность пищевых цепей.

Когда энергия входит в трофический уровень, часть ее сохраняется как биомасса, как часть тела организмов. Эта энергия доступна для следующего трофического уровня. Как правило, только около 10% энергии, которая хранится в виде биомассы на одном трофическом уровне, сохраняется в виде биомассы на следующем уровне.

Этот принцип частичного переноса энергии ограничивает длину пищевых цепей, которые, как правило, имеют 3-6 уровней.

На каждом уровне, энергия теряется в виде тепла, а также в форме отходов и отмершей материи, которые используют редуценты.

Почему так много энергии выходит из пищевой сети между одним трофическим уровнем и другим? Вот несколько основных причин неэффективной передачи энергии:

  • На каждом трофическом уровне значительная часть энергии рассеивается в виде тепла, поскольку организмы выполняют клеточное дыхание и передвигаются в повседневной жизни.
  • Некоторые органические молекулы, которыми питаются организмы, не могут перевариваться и выходят в виде фекалий.
  • Не все отдельные организмы в трофическом уровне будут съедены организмами со следующего уровня. Вместо этого, они умирают, не будучи съеденными.
  • Кал и несъеденные мертвые организмы становятся пищей для редуцентов, которые их метаболизируют и преобразовывают в свою энергию.

Итак, ни одна из энергий на самом деле не исчезает — все это в конечном итоге приводит к выделению тепла.

Значение пищевой цепи

Длина пищевой цепи в экосистемах ограничивается

1. Исследования пищевой цепи помогают понять кормовые отношения и взаимодействие между организмами в любой экосистеме.

2. Благодаря им, есть возможность оценить механизм потока энергии и циркуляцию веществ в экосистеме, а также понять движение токсичных веществ в экосистеме.

3. Изучение пищевой цепи позволяет понять проблемы биоусиления.

В любой пищевой цепи, энергия теряется каждый раз, когда один организм потребляется другим. В связи с этим, должно быть намного больше растений, чем растительноядных животных. Автотрофов существует больше, чем гетеротрофов, и поэтому большинство из них являются растительноядными, нежели хищниками. Хотя между животными существует острая конкуренция, все они взаимосвязаны. Когда один вид вымирает, это может воздействовать на множество других видов и иметь непредсказуемые последствия.

Понравилась статья? Поделись с друзьями:

Источник: NatWorld.info