В экологии — науке о взаимодействии живых организмов между собой и с окружающей средой, — понятие экосистемы является одним из основных. Человеком, которым ввел его в обиход, стал британский ботаник и один из первых экологов в мире Артур Тенсли. Термин «экосистема» появился в 1935 г. Однако в отечественной экологии его предпочитали заменять такими понятиями, как «биогеоценоз» и «биоценоз», что не совсем верно.

В статье раскрыто понятие экосистемы, структуры экосистемы и ее отдельных составных частей.

Суть понятия

Все сообщества существующих ныне живых организмов связывают с неорганической средой тесные материально-энергетические связи. Так, растения могут развиваться только за счет постоянного поступления в них воды, кислорода, углекислого газа, минеральных солей. Жизнедеятельность гетеротрофов возможна только за счет автотрофов. Однако при этом они также нуждаются в воде и кислороде. Любое конкретное местообитание могло бы обеспечить необходимыми для жизни населяющих его организмов неорганическими соединениями лишь на короткий срок, если бы они не возобновлялись.


Возврат биогенных элементов в среду происходит непрерывно. Процесс идет как во время жизни организмов (дыхание, дефекация, экскрекция), так и после их смерти. Иными словами, их сообщество с неорганической средой образует определенную специфическую систему. В ней поток атомов, обусловленный жизнедеятельностью организмов, замыкается, как правило, в круговорот. По сути, это и есть экосистема. Структура экосистемы позволяет более глубоко изучить ее строение и характер существующих связей.

Определение экосистемы

Отцом экосистемной экологии считают американского биолога Юджина Одума, известного своими новаторскими работами в этой области. В связи с этим, пожалуй, логично будет привести именно его толкование рассматриваемого в статье термина.

По словам Ю. Одума, всякое единство, в состав которого входят все организмы данного участка, взаимодействующие с физической средой таким способом, когда создается поток энергии с четко определенной трофической структурой, видовым разнообразием и круговоротом веществ (обмен энергией и веществами между абиотической и биотической частями) внутри системы, есть экосистема. Структура экосистемы может рассматриваться с различной точки зрения. Традиционно выделяют три ее вида: трофическую, видовую и пространственную.

Соотношение понятий экосистема и биогеоценоз


Учение о биогеоценозе было разработано советским геоботаником и географом Владимиром Сукачевым в 1942 г. За рубежом оно практически не используется. Если обратиться к определениям терминов «экосистема» и «биогеоценоз», то видно, что между ним нет никакой разницы, по сути, они являются синонимами.

Однако на практике существует весьма распространенное мнение о том, что идентичными их можно назвать лишь с определенной долей условности. Термин «биогеоценоз» акцентирует внимание на связи биоценоза с каким-либо конкретным участком водной среды или суши. В то время как экосистема подразумевает любой абстрактный участок. В связи с этим биогеоценозы принято рассматривать как ее частные случаи.

О составе и структуре экосистем

В любой экосистеме можно выделить два компонента – абиотический (неживой) и биотический (живой). Последний, в свою очередь, делится на гетеротрофный и автотрофный, в зависимости от способа получения энергии организмами. Эти компоненты формируют так называемую трофическую структуру.

Единственным источником поддержания различных процессов в экосистеме и энергии для нее служат продуценты, т. е. организмы, способные усваивать энергию солнца. Они представляют собой первый трофический уровень. Последующие формируются за счет консументов. Замыкается трофическая структура экосистемы редуцентами, функция которых заключается в переводе неживого органического вещества в минеральную форму, которая в дальнейшем может быть усвоена автотрофными организмами. То есть наблюдается тот самый круговорот и непрерывный возврат биогенных элементов в среду, о котором говорил Ю.Одум.

Составляющие части экосистем

Структура сообщества экосистемы имеет следующие составляющие части:


  • климатический режим, который определяет освещение, влажность, температуру и иные физические характеристики среды;
  • включенные в круговорот неорганические вещества (азот, фосфор, вода и т. д.);
  • связывающие абиотическую и биотическую части в процессе круговорота энергии и вещества органические соединения;
  • создатели первичной продукции – продуценты;
  • фаготрофы (макроконсументы) – поедающие другие организмы гетеротрофы или крупные частицы органических веществ;
  • редуценты – бактерии и грибы (главным образом), разрушающие путем минерализации мертвое органическое вещество, возвращая его тем самым в круговорот.

Итак, биотическая структура экосистем состоит из трех трофических уровней: продуценты, консументы и редуценты. Именно они формируют так называемую биомассу (совокупная масса животных и растительных организмов) биогеоценоза. Для Земли в целом она равна 2423 миллиарда тонн, причем люди «дают» около 350 миллионов тонн, что пренебрежительно мало по сравнению с общим весом.

Продуценты

Продуценты – это всегда первое звено пищевой цепи. Данный термин объединяет все организмы, которые обладают способностью производить из неорганических веществ органические, т. е. являются автотрофами. Главным образом продуценты представлены зелеными растениями. Они синтезируют органические соединения из неорганических в процессе фотосинтеза. Кроме того, к ним можно отнести несколько видов хемотрофных бактерий. Они могут осуществлять исключительно химический синтез без энергии солнечного света.

Консументы


В биотическую структуру и состав экосистемы входят также гетеротрофные организмы, которые потребляют уже готовые органические соединения, создаваемые автотрофами. Их называют консументами. Они, в отличие от редуцентов, не обладают способностью разлагать до неорганических соединений органические вещества.

К консументам принадлежат все животные, а также некоторые насекомоядные (росянка, венерина мухоловка и др.) и паразитические растения, микроорганизмы. Консументы делятся на несколько порядков, но, как правило, их редко бывает более четырех. Связано это с тем, что на каждом этапе передачи энергии и вещества трофическая цепь теряет до 90%.

К консументам I порядка принадлежат все те организмы, которые питаются непосредственно продуцентами. К ним относятся растения-паразиты и травоядные животные. Питающиеся ими хищники – это консументы II порядка. К этой же группе принадлежат паразиты травоядных животных.

Интересно, что в отличных пищевых цепях один и тот же вид может принадлежать к разным порядкам консументов. Примеров тому — великое множество. В частности, мышь. Она – это консумент как первого, так и второго порядка, так как питается и растительноядными насекомыми, и растениями.

Редуценты


Термин «редуценты» имеет латинское происхождение и дословно переводится, как «восстанавливаю, возвращаю». Это в полной мере отражает их значение в экологической структуре экосистем. Редуценты или деструкторы – это организмы, которые разрушают, превращая в простейшие органические и неорганические соединения, отмершие останки живого. Они возвращают в почву в доступном для продуцентов виде воду и минеральные соли и, тем самым, замыкают круговорот веществ в природе. Ни одна экосистема обойтись без редуцентов не может.

Не меньший интерес представляет видовая и пространственная структуры экосистем. Они отражают видовое разнообразие организмов и их распределение в пространстве в соответствии с индивидуальными потребностями и условиями обитания.

Видовая структура

Видовая структура представляет собой совокупность всех видов, составляющих экосистему, их взаимосвязь между собой и соотношение численности. В одних случаях первенство — за животными, например, биоценоз кораллового рифа, в других ведущую роль играют растения (пойменные луга, дубовые и еловые леса, ковыльная степь). Видовая структура экосистемы отражает ее состав в том числе и по количеству видов. Он зависит главным образом от географического положения места. Наиболее известная закономерность заключается в том, что чем ближе к экватору, тем флора и фауна разнообразнее. Причем это касается всех форм жизни, от насекомых до млекопитающих, от лишайников и мхов до цветковых растений.


Так, один гектар дождевых лесов Амазонки – это дом почти для 400 деревьев, принадлежащих более, чем к 90 видам, а на каждом из них произрастает более 80 различных эпифитов. В то же время на аналогичной площади елового или соснового леса умеренной полосы произрастает всего лишь 8-10 видов деревьев, а в тайге разнообразие ограничивается 2-5 видами.

Горизонтальная пространственная структура экосистемы

Многочисленные виды экосистемы в пространстве могут распределяться различным образом, но всегда в соответствии с их потребностями и требованиями к местообитанию. Такое размещение животных и растений в экосистеме получило название пространственной структуры. Она может быть горизонтальной и вертикальной.

Живые организмы в пространстве распределяются неравномерно. Как правило, они формируют группировки, что является приспособленческой особенностью. Подобного рода скопления определяют горизонтальную структуру экосистемы. Она проявляется в пятнистости, узорчатости. Например, колонии кораллов, перелетные птицы, стада антилоп, заросли вереска (на фото выше) или брусники. К структурным (элементарным) единицам горизонтального строения растительных сообществ относится микрогруппировка и микроценоз.

Вертикальная пространственная структура


Совместно произрастающие группы различных видов растений, которые различаются по положению ассимилирующих органов (стебли и листья, корневища, луковицы, клубни и т.д.) называют ярусами. Именно они характеризуют вертикальную структуру экосистемы. Экосистема леса является наиболее ярким примером в этом случае. Как правило, ярусы представлены различными жизненными формами кустарников, кустарничков, деревьев, трав и мхов.

Ярусы пространственной структуры

Первый ярус практически всегда представлен крупными деревьями, у которых листва расположена высоко над землей и хорошо освещается солнцем. Второй (подпологовый) ярус составляют не такие рослые виды, они могут поглощать неиспользованный свет. Далее находится подлесок, представленный настоящими кустарниками (орешник, крушина, рябина и пр.), а также кустарниковыми формами деревьев (лесная яблоня, груша и т. д.), которые при нормальных условиях могли бы вырасти до высоты деревьев первого яруса. Следующий уровень – это подросток. К нему относят молодые деревья, которые в перспективе могут «вытянуться» в первый ярус. Например, сосна, дуб, ель, граб, ольха.

Для вертикального вида структуры экосистемы (пространственной) характерно наличие травно-кустарничкового яруса. Его составляют лесные кустарники и травы: земляника, кислица, ландыш, папоротники, черника, ежевика, малина и пр. За ним следует заключительный ярус – мохово-лишайниковый.

Отметим, что лианы, эпифиты, а также растения-паразиты относят к группе внеярусной растительности. Это связано с тем, что весьма затруднительно отнести их к какому-либо конкретному ярусу.

Пространственные границы экосистемы


Как правило, увидеть чёткую границу между экосистемами в природе невозможно, если она не представлена различными факторами ландшафта (реки, горы, холмы, обрывы и пр.). Чаще всего они объединены плавными переходами. Последние фактически могут сами являться отдельными экосистемами. Образующиеся на стыке сообщества принято называть экотонами. Термин введен в 1905 г. американским ботаником и экологом Ф. Клементсом.

Роль экотона заключается в поддержании биологического разнообразия экосистем между которыми он находится за счет так называемого краевого эффекта — сочетание определенных факторов среды, присущих различным экосистемам. Это обуславливает большое условий для жизни, а следовательно, экологических ниш. В связи с этим в экотоне могут существовать виды из разных экосистем, а также сугубо специфичные виды. Примером такой зоны является устье реки с прибрежно-водными растениями.

Временные границы экосистем

Природа под влиянием различных факторов меняется. На одном и том же месте с течением времени могут развиваться различные экосистемы. Период времени, за который происходит перемена, может быть как длительным, так и относительно коротким (1-2 года). Длительность существования определенной экосистемы определяется так называемой сукцессией, т. е. закономерной и последовательной сменой на определенном участке территории одних сообществ другими в результате внутренних факторов развития биогеоценоза.


Источник: www.syl.ru

С экосистемных позиций, озеро, лес или какие-нибудь другие элементы природы представляются нам состоящими из двух основных компонентов: автотрофного компонента (автотрофный — значит самопитающийся), способного фиксировать световую энергию и использовать в пищу простые неорганические вещества, и геротрофного компонента (гетеротрофный значит питающийся готовыми органическими веществами), который разлагает, перестраивает и использует сложные вещества, синтезированные автотрофными организмами.

Эти функциональные компоненты расположены в виде налегающих друг на друга слоев, причем наибольшее число автотрофных организмов расположено в верхнем слое, куда поступает световая энергия, тогда как интенсивная гетеротрофная деятельность сосредоточена в местах скопления органического вещества в почве и в иле.

С точки зрения структуры, удобно выделить четыре компонента экосистемы: 1) абиотические вещества — основные элементы и составные части среды; 2) производители — продуценты, автотрофные элементы (в основном зеленые растения); 3) крупные потребители, или макроконсументы, — гетеротрофные организмы (главным образом животные, пожирающие другие организмы или измельчающие органические вещества); 4) разлагатели, или микроконсументы (называемые также сапрофитами или сапробными организмами), гетеротрофные организмы (в основном бактерии и грибы), которые разлагают сложные составные компоненты мертвой протоплазмы, абсорбируют продукты распада и освобождают простые вещества, используемые продуцентами.


Эти экосистемы — наиболее крайние типы, встречающиеся в биосфере; они сильно подчеркивают сходства и отличия всех экосистем. Наземная экосистема (представлена полем, изображенным слева) и открытая водная система (представлена либо озером, либо морем, изображенным справа) населены абсолютно разными организмами, за исключением, может быть, некоторых бактерий, способных жить и в той и в другой среде.

Несмотря на это, в обоих типах экосистем присутствуют и действуют основные экологические компоненты. На суше автотрофы обычно представлены крупными растениями, обладающими корнями; тогда как в глубоких водоемах роль автотрофов берут на себя микроскопические взвешенные в воде растения, носящие название фитопланктона (phyton — растение; plankton — взвешенный). При определенном количестве света и минеральных веществ за определенный период времени мельчайшие растения способны образовывать такое же количество пищи, как и крупные растения. Оба типа продуцентов обеспечивают жизнь одинаковому количеству консументов и разлагателей. В дальнейшем сходства и различия сухопутных и водных экосистем будут разобраны более детально.

Для того чтобы понять взаимоотношение строения и функции, необходимо оценить структуру экосистемы с разных точек зрения. Связь продуцентов и консументов представляет собой один тип структуры, называемой трофической (trophe — питание), и каждый «пищевой» уровень носит название трофического уровня. Количество живого материала на различных трофических уровнях или в популяции носит название «урожая в поле», термин, одинаково применимый как к растениям, так и к животным. «Урожай в поле» может быть выражен или количеством организмов на единицу площади, или количеством биомассы, т. е. массы тела организмов (живой вес, сухой вес, сухой вес без зольного остатка, вес углерода, количество калорий), или в каких-либо других единицах, пригодных для целей сравнения. «Урожай в поле» не только представляет собой потенциальную энергию, но играет большую роль в снижении колебаний физических условий, а также и как обиталище, или жизненное пространство, для организмов. Таким образом, деревья в лесу не только являются запасами энергии, которые обеспечивают пищу или топливо, но изменяют климат и создают убежища для птиц и людей.

Количество безжизненного материала, как-то: фосфора, азота и т. д., имеющееся в данное время, может рассматриваться как состояние стабильности, или стабильное количество. Необходимо различать количества материалов и организмов, имеющихся в наличии в тот или иной момент времени в среднем на протяжении определенного периода, и скорость изменений состояния стабильности и «урожай в поле» за единицу времени. Функции изменения скоростей будут в деталях рассмотрены после знакомства с некоторыми другими аспектами структуры экосистемы.

Количество и распределение как неорганических, так и органических веществ, сосредоточенных либо в биомассе, либо в окружающей среде, должны считаться важной характеристикой любой экосистемы. Об этом в общей форме можно было бы говорить как о биохимической структуре. Так, например, огромный экологический интерес представляет знание количества хлорофилла на единицу земной или водной поверхности. Крайне важно знать также количество органического вещества, растворенного в воде. Помимо этого, необходимо представлять видовую структуру экосистемы. Экологическая структура отражает не только число тех или иных видов, но и видовое разнообразие экосистемы. Последнее проявляется в форме отношений между видами и числом индивидов или биомассой и в форме рассеяния (пространственного распределения) индивидов всех видов, входящих в состав сообщества.

Надо подчеркнуть, что экосистемы могут быть ограничены различными размерами. Объектами исследования может быть небольшой пруд, большое озеро, участок леса и даже маленький аквариум. Экосистемой можно считать любую единицу, если в ней присутствуют ведущие и взаимодействующие компоненты, создающие хотя бы на короткое время функциональную стабильность. Наша биосфера как целое представляет собой серию переходов — градиентов (от гор к долинам, от побережий к глубинам моря и т. д.), которые в сумме создают «хемостат», а именно константность химического состава воздуха и воды в течение долгого периода времени. Не особенно важно, где проводить границы между градиентами, поскольку экосистема в первую очередь представляет собой функциональное единство. Надо, конечно, указать, что в природе часто встречаются разрывы в градиентах, которые обеспечивают удобные и функционально логические границы. Так, например, берег озера может быть понят как правильная граница между двумя резко отличными экосистемами, а именно озером и лесом. Чем больше и чем разнообразнее экосистема, тем она стабильней и относительно независимей от действия прилегающих систем. Так, озеро целиком может рассматриваться как более самостоятельная единица, чем часть озера, однако для целей исследования можно считать экосистемой даже отдельную часть озера.

Источник: www.activestudy.info

Понятие биоценоза, биогеоценоза, экосистемы

Живые организмы находятся между собой и абиотическими условиями среды обитания в определённых отношениях, образуя тем самым так называемые экологические системы.

Ведущим компонентом в биоценозе является фитоценоз. Он определяет, каким будет зооценоз и микробоценоз.

Термин экосистема был предложен английским учёным А. Тенсли (1935), а термин биогеоценоз — российским учёным В. Н. Сукачевым (1942). «Экосистема» и «биогеоценоз» — понятия близкие, но не синонимы. Биогеоценоз — это экосистема в границах фитоценоза. Экосистема — понятие более общее. Каждый биогеоценоз — это экосистема, но не каждая экосистема — биогеоценоз. Единая экосистема нашей планеты называется биосферой. Биосфера — экосистема высшего порядка.

Структура и функционирование экосистем

Различают видовую, пространственную и экологическую структуры биоценоза.

Любая популяция занимает определённое местообитание и определённую экологическую нишу. Местообитание — это территория, занимаемая популяцией, с комплексом присущих ей экологических факторов. Экологическая ниша — место популяции в природе, включающее не только положение вида в пространстве, но и функциональную роль его в сообществе (например, трофический статус) и его положение относительно абиотических условий существования (температуры, влажности и т. п.). Местообитание — это как бы «адрес» организма, а экологическая ниша — это его «профессия».

Функциональные группы организмов в экосистеме

Группа Характеристика Организмы
Продуценты Автотрофные организмы, способные производить органические вещества из неорганических, используя фотосинтез или хемосинтез Растения и автотрофные бактерии
Консументы Гетеротрофные организмы, потребляющие органическое вещество продуцентов или других консументов Животные, гетеротрофные растения, некоторые микроорганизмы
Редуценты Гетеротрофные организмы, питающиеся органическими остатками и разлагающие их до минеральных веществ Сапротрофные бактерии и грибы

Пищевые цепи и сети. Питаясь друг другом, живые организмы образуют цепи питания.

В пищевой цепи редко бывает больше 4–5 трофических уровней.

Трофические уровни в цепи питания

Уровень Группа организмов Организмы
Первый Продуценты Автотрофные организмы, преимущественно зелёные растения
Второй Консументы первого порядка Растительноядные животные
Третий Консументы второго порядка Первичные хищники, питающиеся растительноядными животными
Четвёртый Консументы третьего порядка Вторичные хищники, питающиеся плотоядными животными
Последний Редуценты Сапротрофные бактерии и грибы, осуществляющие минерализацию — превращение органических остатков в неорганические вещества

Типы пищевых цепей

Тип Характеристика Примеры
Цепи выедания (или пастбищные) Пищевые цепи, начинающиеся с живых фотосинтезирующих организмов Фитопланктон → зоопланктон → рыбы микрофаги → рыбы макрофаги → птицы ихтиофаги
Цепи разложения (или детритные) Пищевые цепи, начинающиеся с отмерших остатков растений, трупов и экскрементов животных Детрит → детритофаги → хищники микрофаги → хищники макрофаги

Таким образом, поток энергии, проходящий через экосистему, разбивается как бы на два основных направления. Энергия к консументам поступает через живые ткани растений или через запасы мертвого органического вещества. Цепи выедания преобладают в водных экосистемах, цепи разложения — в экосистемах суши.
В сообществах пищевые цепи сложным образом переплетаются и образуют пищевые сети. В состав пищи каждого вида входит обычно не один, а несколько видов, каждый из которых, в свою очередь, может служить пищей нескольким видам. С одной стороны, каждый трофический уровень представлен многими популяциями разных видов, с другой стороны, многие популяции принадлежат сразу к нескольким трофическим уровням. В результате благодаря сложности пищевых связей выпадение какого-то одного вида часто не нарушает равновесия в экосистеме.

Поток энергии и круговорот веществ в экосистеме. В экосистеме органические вещества синтезируются автотрофами из неорганических веществ. Затем они потребляются гетеротрофами. Выделенные в процессе жизнедеятельности или после гибели организмов (как автотрофов, так и гетеротрофов) органические вещества подвергаются минерализации, то есть превращению в неорганические вещества. Эти неорганические вещества могут быть вновь использованы автотрофами для синтеза органических веществ. Так осуществляется биологический круговорот веществ.
В то же время энергия не может циркулировать в пределах экосистемы. Поток энергии (передача энергии), заключенной в пище, в экосистеме осуществляется однонаправлено от автотрофов к гетеротрофам.
При передаче энергии с одного трофического уровня на другой большая часть энергии рассеивается в виде тепла (в соответствии со вторым законом термодинамики) и только около 10 % от первоначального количества передаётся по пищевой цепи.
В результате пищевые цепи можно представить в виде экологических пирамид. Различают три основных типа экологических пирамид.

Пирамида чисел (а) показывает, что если бы мальчик питался в течение одного года только телятиной, то для этого ему потребовалось бы 4,5 телёнка, а для пропитания телят необходимо засеять поле в 4 га люцерной, что составит 2 х 107 растений. В пирамиде биомасс (б) число особей заменено их биомассой. В пирамиде энергии (в) учтена солнечная энергия. Люцерна использует 0,24 % солнечной энергии. Для накопления продукции телятами в течение года используется 8 % энергии, аккумулированной люцерной. На развитие и рост ребёнка в течение года используется 0,7 % энергии, аккумулированной телятами. В результате чуть более одной миллионной доли солнечной энергии, падающей на поле в 4 га, используется для пропитания ребёнка в течение одного года.

Биологическая продуктивность экосистем

Прирост биомассы в экосистеме, созданной за единицу времени, называется биологической продукцией (продуктивностью). Различают первичную и вторичную продукцию сообщества.
Первичная продукция — биомасса, созданная за единицу времени продуцентами. Она делится на валовую и чистую. Валовая первичная продукция (общая ассимиляция) — это общая биомасса, созданная растениями в ходе фотосинтеза. Часть её расходуется на поддержание жизнедеятельности растений — траты на дыхание (40–70%). Оставшаяся часть составляет чистую первичную продукцию (чистая ассимиляция), которая в дальнейшем используется консументами и редуцентами или накапливается в экосистеме.
Вторичная продукция — биомасса, созданная за единицу времени консументами. Она различна для каждого следующего трофического уровня.
Масса организмов определённой группы (продуцентов, консументов, редуцентов) или сообщества в целом называется биомассой. Самой высокой биомассой и продуктивностью обладают тропические дождевые леса, самой низкой — пустыни и тундры.
Если в экосистеме скорость прироста растений (образования первичной продукции) выше темпов переработки её консументами и редуцентами, то это ведёт к увеличению биомассы продуцентов. Если при этом присутствует недостаточная утилизация продуктов опада в цепях разложения, то происходит накопление мёртвого органического вещества. Это ведёт к заторфовыванию болот, образованию мощной лесной подстилки и т. п. В стабильных экосистемах биомасса остаётся постоянной, так как практически вся продукция расходуется в цепях питания.

Динамика экосистем

Изменения в сообществах могут быть циклическими и поступательными.

Типы сукцессий
Тип Характеристика Примеры
В зависимости от участия человека
Природные Происходят под действием естественных причин, не связанных с деятельностью человека Появление пруда в результате деятельности бобров; восстановление биоценоза после пожара, вызванного естественными причинами
Антропогенные Обусловлены деятельностью человека Эвтрофикация (зарастание) водоёма в результате попадания в него азотных и фосфорных удобрений с сельскохозяйственных полей; восстановление биоценоза после пожара, вызванного человеком
В зависимости от первоначального состояния субстрата, на котором развивается сукцессия
Первичные Развиваются на субстрате, не занятом живыми организмами Развиваются на скалах, обрывах, застывшей лаве, сыпучих песках, отмелях, в новых водоёмах
Вторичные Происходят на месте уже существующих биоценозов после их нарушения В результате вырубки леса, пожара, распашки, осушения, орошения земель
В зависимости от причин, вызвавших сукцессию
Аутогенные (самопорождающиеся) Возникают вследствие внутренних причин (изменения среды под действием сообщества) Регулярно-периодическое выгорание калифорнийской и австралийской чапарали в результате формирования огнеопасной среды
Аллогенные (порожденные извне) Вызваны внешними причинами Опустынивание степей в результате изменения климата (уменьшения количества осадков)

В своём развитии экосистема стремится к устойчивому состоянию. Сукцессионные изменения происходят до тех пор, пока не сформируется стабильная экосистема, производящая максимальную биомассу на единицу энергетического потока. Сообщество, находящееся в равновесии с окружающей средой, называется климаксным.

Природные экосистемы

В зависимости от природных и климатических условий можно выделить три группы и ряд типов природных экосистем (биомов). В основе классификации для наземных экосистем лежит тип естественной (исходной) растительности, для водных экосистем — гидрологические и физические особенности.
Наземные экосистемы:
1. Тундра: арктическая и альпийская.
2. Бореальные хвойные леса.
3. Листопадный лес умеренной зоны.
4. Степь умеренной зоны.
5. Тропические злаковники и саванна.
6. Чапараль (районы с дождливой зимой и засушливым летом).
7. Пустыня: травянистая и кустарниковая.
8. Полувечнозелёный тропический лес (районы с выраженными влажным и сухим сезонами).
9. Вечнозелёный тропический дождевой лес.
Пресноводные экосистемы:
1. Лентические (стоячие воды): озера, пруды, водохранилища и др.
2. Лотические (текучие воды): реки, ручьи, родники и др.
3. Заболоченные угодья: болота, болотистые леса, марши (приморские луга).
Морские экосистемы:
1. Открытый океан (пелагическая экосистема).
2. Воды континентального шельфа (прибрежные воды).
3. Районы апвеллинга (плодородные районы с продуктивным рыболовством).
4. Эстуарии (прибрежные бухты, проливы, устья рек, лиманы, солёные марши и др.).
5. Глубоководные рифтовые зоны.
Помимо основных типов природных экосистем (биомов) различают переходные типы — экотоны. Например, лесотундра, смешанные леса умеренной зоны, лесостепь, полупустыни и др.

Антропогенные экосистемы

Агроэкосистемы (сельскохозяйственные экосистемы, агроценозы) — искусственные экосистемы, возникающие в результате сельскохозяйственной деятельности человека (пашни, сенокосы, пастбища). Агроэкосистемы создаются человеком для получения высокой чистой продукции автотрофов (урожая). В них, так же как в естественных сообществах, имеются продуценты (культурные растения и сорняки), консументы (насекомые, птицы, мыши и т. д.) и редуценты (сапротрофные грибы и бактерии). Обязательным звеном пищевых цепей в агроэкосистемах является человек.
Отличия агроценозов от естественных биоценозов:
• незначительное видовое разнообразие (агроценоз состоит из небольшого числа видов, имеющих высокую численность);
• короткие цепи питания;
• неполный круговорот веществ (часть питательных элементов выносится с урожаем);
• источником энергии является не только Солнце, но и деятельность человека (мелиорация, орошение, применение удобрений);
• искусственный отбор (действие естественного отбора ослаблено, отбор осуществляет человек);
• отсутствие саморегуляции (регуляцию осуществляет человек) и др.
Таким образом, агроценозы являются неустойчивыми системами и способны существовать только при поддержке человека.
Урбосистемы (урбанистические системы) — искусственные системы (экосистемы), возникающие в результате развития городов и представляющие собой средоточие населения, жилых зданий, промышленных, бытовых, культурных объектов и т. д.

Источник: examer.ru

Понятие экосистемы и биогеоценоза

Термин «экосистема» впервые был предложен английским экологом А. Тенсли в 1935 г. Он рассматривал экосистемы как основные структурные единицы природы на планете Земля.

Экосистема — комплекс из сообщества живых организмов и среды их обитания, в котором происходит обмен веществом и энергией.

Экосистемы не имеют определенной размерности. Гниющий пень с населяющими его беспозвоночными животными, грибами и бактериями представляет собой экосистему небольшого масштаба (микроэкосистема). Озеро с водными и околоводными организмами является экосистемой среднего масштаба (мезоэкосистема). А море с его многообразием водорослей, рыб, моллюсков, ракообразных — экосистема крупного масштаба (макроэкосистема).

Для обозначения подобных систем на однородных участках суши русский геоботаник В. Н. Сукачев в 1942 г. предложил термин «биогеоценоз».

Биогеоценоз — исторически сложившаяся совокупность живых (биоценоз) и неживых (биотоп) компонентов однородного участка суши, где происходит круговорот веществ и превращение энергии.

Как видно из приведенного определения, биогеоценоз включает две структурные части — биоценоз и биотоп. Каждая из этих частей состоит из определенных компонентов, которые между собой взаимосвязаны.

Биогеоценоз и экосистема — близкие понятия, обозначающие биосистемы одного уровня организации. Общим признаком для этих систем является наличие в них обмена веществом и энергией между живым и неживым компонентами. Однако вышеуказанные понятия не являются синонимами. Экосистемы имеют разную степень сложности, разные масштабы, они могут быть естественными (природными) и искусственными (созданными человеком). В качестве отдельных экосистем могут рассматриваться капля воды из лужи с микроорганизмами, болотная кочка с ее населением, озеро, луг, пустыня и, наконец, биосфера — экосистема самого высокого ранга.

Биогеоценоз отличается от экосистемы территориальной ограниченностью и определенным составом популяций (биоценоз). Его границы определяются наземным растительным покровом (фитоценозом). Изменение растительности свидетельствует об изменении условий в биотопе и о границе с соседним биогеоценозом. Например, переход от древесной растительности к травянистой свидетельствует о границе между лесным и луговым биогеоценозами. Биогеоценозы выделяют только на суше.

Следовательно, понятие «экосистема» более широкое, чем «биогеоценоз». Экосистемой можно назвать любой биогеоценоз, а вот биогеоценозом можно назвать только наземные экосистемы.

С точки зрения обеспечения питательными веществами биогеоценозы более автономны (независимы от других биогеоценозов), чем экосистемы. В каждом из устойчивых (существующих длительное время) биогеоценозов осуществляется свой круговорот веществ, сопоставимый по характеру с круговоротом веществ в биосфере планеты Земля, но только в гораздо меньшем масштабе. Экосистемы же более открытые системы. Это еще одно отличие биогеоценозов от экосистем.

Структура экосистемы

В экосистеме виды организмов выполняют разные функции, благодаря которым осуществляется круговорот веществ. В зависимости от роли, которую виды играют в круговороте, их относят к разным функциональным группам: продуцентам, консументам или редуцентам.

Продуценты (от лат. producens — создающий), или производители, — автотрофные организмы, синтезирующие органическое вещество из минерального с использованием энергии. Если для синтеза органического вещества используется солнечная энергия, то продуцентов называют фотоавтотрофами. К фотоавтотрофам относятся все зеленые растения, лишайники, цианобактерии, автотрофные протисты, зеленые и пурпурные бактерии. Продуценты, использующие для синтеза органического вещества энергию химических реакций окисления неорганических веществ, называются хемоавтотрофами. Ими являются железобактерии, бесцветные серобактерии, нитрифицирующие и водородные бактерии.

Консументы (от лат. consumo — потребляю), или потребители, — гетеротрофные организмы, потребляющие живое органическое вещество и передающие содержащуюся в нем энергию по пищевым цепям. К ним относятся все животные и растения-паразиты. В зависимости от вида потребляемого органического вещества консументы подразделяются на порядки. Организмы, потребляющие продуцентов, называются консументами I порядка. К ним относятся растительноядные животные (саранча, грызуны, парно- и непарнокопытные животные) и растения-паразиты. Консументов I порядка потребляют консументы II порядка, которые представлены плотоядными животными. Консументами III и последующих порядков являются плотоядные животные, питающиеся консументами II и последующих порядков. Количество порядков консументов в экосистеме ограниченно и определяется объемом биомассы, созданной продуцентами.

Редуценты (от лат. reducens — возвращающий), или разрушители, — гетеротрофные организмы, разрушающие отмершее органическое вещество любого происхождения до минерального. Образующееся минеральное вещество накапливается в почве и в дальнейшем поглощается продуцентами. В экологии отмершее органическое вещество, вовлеченное в процесс разложения, называется детритом. Детрит — отмершие остатки растений и грибов, трупы и экскременты животных с содержащимися в них бактериями.

В процессе разложения детрита участвуют детритофаги и редуценты. К детритофагам относятся мокрицы, некоторые клещи, многоножки, ногохвостки, жуки мертвоеды, некоторые насекомые и их личинки, черви. Они потребляют детрит и в ходе жизнедеятельности оставляют содержащие органику экскременты. Истинными редуцентами считаются грибы, гетеротрофные протисты, почвенные бактерии. Все представители детритофагов и редуцентов, отмирая, также образуют детрит.

Роль редуцентов в природе очень велика. Без них в биосфере накапливались бы отмершие органические остатки, а минеральные вещества, необходимые продуцентам, иссякли бы. И жизнь на Земле в той форме, которую мы знаем, прекратилась бы.

Взаимосвязь функциональных групп в экосистеме можно показать на следующей схеме.

В экосистеме с большим видовым разнообразием может осуществляться взаимозаменяемость одного вида другим без нарушения функциональной структуры.

Экосистема — комплекс из сообщества живых организмов и среды их обитания, в котором происходит обмен веществом и энергией. Наземные экосистемы называют биогеоценозами. Биогеоценоз — совокупность биоценоза и биотопа, где осуществляется круговорот веществ и превращение энергии. Функциональными компонентами экосистемы являются продуценты, консументы и редуценты.

Источник: jbio.ru

Каждый, кто хотя бы немного интересовался жизнью природы, чётко представляет, что жизне­деятельность организмов обусловлена не только различными абиотически­ми факторами (температурой, солёностью, кислородом, магнитным полем Земли, светом, почвой, влажностью), но и биотическими, то есть взаимны­ми отношениями разных видов живых организмов друг с другом. В резуль­тате между популяциями разных видов организмов, обитающих в опреде­лённых климатических, физических и химических условиях, возникают закономерные связи, имеющие чёткую структуру. Эти связи организмов друг с другом и с абиотическими компонентами среды обитания формиру­ют экологическую систему (экосистему) (рис. 127).

Любая экосистема состоит из следующих компонентов:

  • климатический режим, химические и физические характеристики среды;
  • неорганические вещества (макроэлементы и микроэлементы) и некоторые органические вещества, формирующие гумус (от лат. гумус — земля) почвы;
  • продуценты (от лат. продуценс — производящий, создающий) —производители органического вещества — автотрофные организмы, главным образом, зелёные фотосинтезирующие растения;
  • консументы (от лат. консуменс — потребляющий) — потреби­тели органического вещества — животные, паразитичес­кие грибы и бактерии, поедающие созданное растениями органическое вещество;
  • редуценты (от лат. редуцетис — возвращающий, восстанав­ливающий) — бактерии и грибы, которые разрушают мёрт­вые тела или отработанное органическое вещество до состоя­ния простых неорганических соединений (воды, углекислого газа, оксидов серы и др.), которые усваиваются растениями. Материал с сайта http://worldofschool.ru

Таким образом, любой природный объект: лес, озеро, пруд, луг, сад, поле и даже городской двор — это экосистема, состоя­щая из абиотической и биотической частей. Биотическая часть включает автотрофный и гетеротрофный компоненты.

Важным свойством экосистем является их способность к само­организации, саморегуляции и саморазвитию.

Составные части экосистемы
Рис. 127. Сравнение структуры наземной (а) и водной (б) экосистем: I — абиотические вещества (неорганические и органические); II — продуценты (высшие растения на суше, одноклеточные водоросли в воде); III — консументы; IV — редуценты

Популяции разных видов организмов формируют межви­довые сообщества, которые вместе с абиотическими факто­рами среды называют экосистемами. Экосистемы бывают нескольких уровней: элементарные экосистемы — биогеоце­нозы, биомы — совокупности экосистем одной климатичес­кой зоны и биосфера глобальная экосистема Земли.

Источник: WorldOfSchool.ru