Что такое дыхание

Каждая клетка нуждается в энергии для жизни. Получение энергии происходит при расщеплении органических веществ в процессе дыхания. Такое расщепление происходит под воздействием кислорода и ещё называется окислением. В результате образуются вода, углекислый газ и свободная энергия.

Дыхание у растений принципиально не отличается от дыхания животных, или грибов. Какой газ растения выделяют при дыхании, такой же выделяют любые другие организмы. Это углекислый газ.

Схема дыхания растений

Рис. 1. Схема дыхания растений.

Известно, что на свету растения выделяют ещё и кислород, но это происходит в результате другого процесса – фотосинтеза.

Дыхание идёт круглосуточно, поэтому образование углекислого газа происходит постоянно. Также постоянно в клетки растений для их нормальной жизнедеятельности должен поступать кислород.

Это же справедливо и для растения в целом.

Таким образом, дыхание включает два процесса:

  • клеточное дыхание;
  • газообмен растения с внешней средой.

Клеточное дыхание растений

Дыхательными центрами клетки являются митохондрии. Они есть и у животных.

Именно в этих органоидах происходит окисление органических веществ. Обычно такими веществами являются углеводы, но дыхание может идти и за счёт белков или жиров.

При окислении выделяется энергия. Вода остаётся в клетке, а углекислый газ путём диффузии покидает клетку и может сразу использоваться в фотосинтезе.

Процесс дыхания ступенчатый. Вода и углекислый газ образуются не сразу, а являются конечными продуктами. До этого в ходе многих реакций образуются и вновь распадаются другие вещества – органические кислоты.

Газообмен с внешней средой

В отличие от животных, растения не имеют специальных органов дыхания. Газообмен осуществляется через отверстия в покровных тканях:

  • устьица;
  • чечевички.

Устьица располагаются на листьях. Каждое из них имеет клетки, способные менять тургор (наполненность водой) и закрывать устьичную щель. Устьичные щели осуществляют газообмен и испарение воды листьями.


Устьица под микроскопом

Рис. 2. Устьица под микроскопом.

Чечевички – это более крупные, чем устьица, щели на стеблях.

Чечевички на стволе берёзы

Рис. 3. Чечевички на стволе берёзы.

Воздух также может поступать в ткани растений в растворённом виде.

Дыхание и фотосинтез

Между процессами дыхания и фотосинтеза существует связь. Это процессы противоположные, и в растении следуют один за другим.

Фотосинтез является способом питания. В ходе этого процесса образуются вещества, содержащие энергию, полученную в виде света.

Дыхание – это способ освобождения энергии, запасённой в питательных веществах.

Дыхание в разных частях растения

Интенсивность дыхания не одинакова в разных органах. Наиболее активно дышат:

  • прорастающие семена;
  • распускающиеся цветы;
  • растущие органы.

Корни также, как и надземные органы, дышат. Для нормального дыхания корней необходимо рыхлить почву.

Что влияет на интенсивность дыхания

Факторами, влияющими на интенсивность дыхания, являются:

  • температура;
  • влажность;
  • содержание кислорода в воздухе.

При усилении любого из этих факторов дыхание становится интенсивнее.

Человек управляет дыханием семян и плодов для сохранения урожая и посевного материала. Для этого в помещениях, где хранятся семена, поддерживается необходимая влажность, температура и обеспечивается приток свежего воздуха.

Источник: obrazovaka.ru

БОЛЬШАЯ НАУКА В МАЛЕНЬКОМ ОГОРОДЕ

Известно, что любое растение «добывает» пищу не только из почвы, но и из воздуха. 95% урожая определяют органические вещества, полученные в зеленых листьях за счет воздушного питания растений — фотосинтеза, и лишь остальные 5% зависят от почвенного или минерального питания.

Тем не менее большинство садоводов основное внимание уделяют прежде всего минеральному питанию. Они регулярно вносят удобрения, рыхлят почву, поливают, забывая о воздушном питании растений. Даже приблизительно нельзя сказать, сколько мы «не добираем» урожая лишь из-за того, что как бы «не замечаем» фотосинтеза.

О масштабах фотосинтеза и его значении в природе можно судить уже по одному количеству солнечной энергии, перехватываемой зелеными листьями и «законсервированной» в растениях. Ежегодно только растения суши запасают в виде углеводов столько энергии, сколько могли бы израсходовать сто тысяч больших городов в течение 100 лет!

iv>

О значении и сущности фотосинтеза говорил еще К. А. Тимирязев в 1878 году в своей знаменитой книге «Жизнь растений». «Когда-то, где-то на Землю упал луч солнца, но упал он не на бесплодную почву, он упал на зеленую былинку пшеничного ростка, или лучше сказать на хлорофилловое зерно. Ударяясь о него, он потух, перестал быть светом, но не исчез. Он только затратился на внутреннюю работу. В той или иной форме он вошел в состав хлеба, послужившего нам пищей. Он преобразовался в наши мускулы, в наши нервы. Этот луч согревает нас. Он приводит нас в движение. Быть может, в эту минуту он играет в нашем мозгу…» Слова эти не устарели до сих пор. За прошедшие годы они лишь уточнились и дополнились новыми данными о дыхании.

У растений дыхание в основе своей — процесс, противоположный фотосинтезу. Молекула сахара глюкозы окисляется кислородом воздуха до углекислого газа и воды с выделением заключенной в углеводах энергии. Эта энергия идет на осуществление и поддержку всех жизненных процессов: поглощение и испарение воды и минеральных солей, рост и развитие растений.

Именно в освобождении энергии и направлении ее на нужды растений и заключается главный смысл дыхания, которое происходит во всех живых клетках растений.

По сути, дыхание поддерживает саму жизнь на Земле! Но как именно это происходит? За счет какой формы энергии? Не вдаваясь в подробности, скажем лишь, что весь смысл дыхания состоит в образовании аденозинтрифосфорной кислоты или сокращенно АТФ — органического вещества, в состав которого входят азотистое основание аденин, пятиуглеродистый сахар рибоза (вместе они составляют аденозин) и три остатка фосфорной кислоты, соединенные между собой фосфатной связью, при распаде которой и освобождается энергия, необходимая для всего живого на Земле.


Образно это можно сравнить с работой аккумуляторной батареи, которая отдает энергию по потребности и снова заряжается у растений за счет солнечной энергии при фотосинтезе.

Практически выходит, что урожай растений — это разница между фотосинтезом и дыханием: чем выше фотосинтез и ниже дыхание, тем выше урожай, и наоборот. В природе фотосинтез меняется сравнительно мало. Зато дыхание может возрастать в сто и даже тысячу раз. К тому же соотношение между производящими и потребляющими частями растений строится по принципу: один с сошкой (фотосинтез) — семеро с ложкой (дыхание). В самом деле, ведь фотосинтез идет только в листьях и только днем на свету, тогда как дышат растения круглые сутки, а накопление органических веществ (основы урожая) возможно лишь при условии, что фотосинтез намного превышает дыхание. К великому сожалению, это бывает значительно реже, чем хотелось бы.

К тому же все это мы рассматриваем сейчас в несколько упрощенном виде. На самом деле растение — единый целостный организм, в котором все процессы тесно взаимосвязаны, с одной стороны, друг с другом, с другой — с окружающей их внешней средой: светом, теплом, влагой. Влияние внешних условий на любое растение сложно, ведь в природе все условия действуют на растение одновременно. И пока мы не знаем, где же кончается действие одного из них и начинается действие другого и какое именно условие оказывается решающим в данный период роста и развития растения.

>

Чтобы ответить на этот вопрос и были сооружены огромные оранжереи с полностью управляемым климатом — климатроны. Один из них — климатрон Миссурийского ботанического сада в городе Сент-Луисе (США), построенный видным американским ученым Ф. Вентом. Он установил, что из всех внешних условий решающим фактором роста томатов является ночная температура. Если ночью она поднималась выше 24 или опускалась ниже 16 градусов, плоды вообще не завязывались. Ночная температура оказалась решающей и для урожая картофеля. Клубни лучше всего образовывались при температуре ночью около 12 градусов. Именно поэтому в жаркое лето 1999 года во многих зонах нашей страны, в том числе в Подмосковье, урожай картофеля снизился вдвое по сравнению с прошлыми годами.

Температура часто оказывается едва ли не «главным врагом» будущего урожая, причем не только тогда, когда бывает слишком низкой, но и в тех случаях, когда намного превышает оптимальную. Немецкие ученые X. Лир, Г. Польстер установили, что в ясные солнечные дни для получения урожая наиболее продуктивны ранние утренние часы, когда температура воздуха не превышает 20-25°С. Прирост органической массы в это время в 30 раз больше, чем при более высоких температурах.


И это вполне понятно и объяснимо. Именно в утренние часы фотосинтез достигает своего максимума, тогда как дыхание, сильно зависящее от температуры, становится минимальным. Вот почему растения особенно отзывчивы на утренние поливы. Воды, особенно огурцам, томатам, кабачкам, требуется много и желательно не очень холодной.

В совершенно необычную и непривычную среду попадают растения при выращивании их в закрытом грунте. В условиях теплиц все внешние факторы нередко начинают работать как бы против растений. Пытаясь с помощью обыкновенной пленки защитить растения от холода, мы никак не можем избавить их от перегрева, что сделать намного труднее. Ведь даже весной температура в теплицах иногда превышает оптимальную (около 20 градусов). Что же говорить о периоде апрель — август?

В пасмурные дни теплица невольно превращается для растений в темницу, скупые лучи солнца едва проникают сквозь пленку. Из-за нехватки света фотосинтез резко падает, тогда как дыхание идет своим чередом, нередко перекрывает фотосинтез и заметно снижает будущий урожай.

Другая беда подстерегает растения в теплице в ясные теплые солнечные дни. Теплица превращается в такие дни в раскаленную пустыню. «Перегрев» листьев и нехватка углекислого газа — основного «сырья» для создания углеводов — приводят к резкому падению фотосинтеза.


помним, что в воздухе содержится всего лишь 0,03% углекислого газа, или 3 части на 10 тысяч частей воздуха, и нехватка этого газа в теплицах в дневные часы — вполне обычное дело. Зато в сто и даже тысячу раз (в зависимости от температуры) возрастает дыхание. Естественно, что в эти часы о накоплении углеводов не может быть и речи. Наоборот, растение теряет даже то, что было накоплено в более благоприятное время.

А что необходимо делать садоводу? Прежде всего, регулярно следить за температурой с помощью размещенных внутри и снаружи теплицы термометров или, что лучше, психрометров (приборов с двумя термометрами, у одного из которых резервуар обтянут влажной материей), позволяющих одновременно наблюдать за температурой и относительной влажностью воздуха, что очень важно. Для защиты от перегрева хорошо иметь с обеих торцовых стен теплицы широкие двери. Вместе со свежим холодным воздухом через приоткрытые двери устремляется в теплицу поток углекислого газа, что заметно повышает фотосинтез, особенно при нехватке света.

Если этого недостаточно, нужны боковые окна, самое простое — прибить пленку внизу с боков к деревянным рейкам и скатывать ее, поднимая на нужную высоту.

Несколько слов о почвенном питании растений. До сих пор многие садоводы считают, что обильный урожай овощей можно вырастить лишь с помощью органических удобрений. Минеральные же удобрения, по их мнению, — сплошные ядовитые нитраты.


Что касается нитратов, то есть очень мудрая заповедь: «Не перекорми!» Вносить удобрений надо столько, сколько необходимо растениям, и не сразу, а дробно, по мере их потребления. Обо всем этом журнал «Наука и жизнь» писал уже много раз (см. № 4, 1992 г.; № 6, 1993 г.; №№ 3, 4, 5, 1999 г.).

В заключение несколько слов о выращивании овощей на балконах и лоджиях. Живем мы в однокомнатной квартире на втором этаже кирпичного дома в Красногорском районе Подмосковья. Вблизи нет зданий и затеняющих деревьев. Размер балкона 3 метра на 70 см. Овощи мы выращиваем по методу американского овощевода доктора Дж. Миттлайдера на смеси опилок с песком. Берем шесть литровых кружек опилок (без стружки), три кружки песка (без глины), две столовые ложки (с верхом) питательной смеси № 1 и одну столовую ложку (с верхом) смеси № 2. Смесь № 1 готовим следующим образом: 5 кг молотого известняка или доломитовой муки смешиваем с 40 г борной кислоты; смесь № 2-3 кг комплексного удобрения «Азофоска» смешиваем с 450 г (два с половиной стакана) сернокислого магния и 3 чайными ложками (без верха) борной и молибденовой кислоты.

Приготовленной смесью набиваем пластмассовые корытца для цветов и тазы с отверстиями 0,5 см в дне и с боков. Для подкормки растений в 1 литре горячей воды растворяем четыре чайные ложки (с верхом) смеси № 2. Всякий раз перед подкормкой берем из приготовленной емкости 100 г раствора и разбавляем его в 10 раз водой. Этого количества хватает на подкормку примерно 10 растений. Частота подкормок: в ясную теплую солнечную погоду — один раз в 7-10 дней, в холодную и пасмурную — два раза в месяц.


В корытцах выращиваем огурцы, в тазах — помидоры, по 1-3 штуки в каждом, в зависимости от размера посуды. Собираем по килограмму помидоров с каждого куста. Выращиваем их в основном из купленной рассады. Правда, в 1999 году сами вырастили рассаду, но несколько запоздали с посевом семян, и из нее выросли «игрушечные» помидоры высотой 40 см, сплошь усыпанные ярко-красными плодами, каждый размером со сливу. Но они были так красивы, что многие прохожие невольно останавливались, чтобы полюбоваться на это чудо.

На каждом балконе — свои условия для выращивания растений, и нельзя заранее сказать, что с северной стороны все овощи будут расти плохо, а с южной — наоборот, хорошо. Необходимое условие на все случаи: остекленные лицевая и тем более торцовая стороны балкона должны открываться на всю их ширину. Если этого нет, лучше оставить балкон или лоджию неостекленными, а в холодную погоду вносить растения в комнату.

САДОВОДУ — НА ЗАМЕТКУ

Многие новые сорта овощных культур позволяют избежать несоответствия своих требований реальным условиям выращивания. Так, устойчивы: к недостатку освещенности — гибриды томата F1 Оля, баклажана F1 Плутон, сорта салата Балет, Келтик; к пониженным температурам — сорта тыквы Улыбка, петрушки Берлинская, свеклы Детройт, редьки Чернавка, огурца Сириус, гибриды томатов F1 Леля, F1 Оля; к засухе — гибриды огурца F1 Мазай, сорта редиса Злата, баклажана Квартет.

Обеспечим библиотеки России научными изданиями!

Источник: www.nkj.ru

 

Дыхание и обмен веществ у растений

 

 

Растения, как все живые организмы, постоянно дышат. Для этого им необходим кислород. Он нужен и одноклеточным, и многоклеточным растениям. Кислород участвует в процессах жизнедеятельности клеток, тканей и органов растения.

Большинство растений получает кислород из воздуха через устьица и чечевички. Водные растения потребляют его из воды всей поверхностью тела. Некоторые растения, произрастающие на заболоченных местах, имеют особые дыхательные корни, поглощающие кислород из воздуха.

Дыхание – сложный процесс, протекающий в клетках живого организма, в ходе которого при распаде органических веществ высвобождается энергия, необходимая для процессов жизнедеятельности организма. Основным органическим веществом, участвующим в дыхательном процессе, являются углеводы, главным образом сахара (особенно глюкоза). Интенсивность дыхания у растений зависит от количества углеводов, накопленных побегами на свету.

Дыхание – это протекающий с участием кислорода процесс распада органических питательных веществ до неорганических (углекислого газа и воды), сопровождающийся выделением энергии, которая используется растением для процессов жизнедеятельности.

Дыхание – процесс, противоположный фотосинтезу. Сравним процессы дыхания и фотосинтеза в клетках зеленого листа Фотосинтез и дыхание растений растения.

Процесс дыхания связан с непрерывным потреблением кислорода днем и ночью. Особенно интенсивно идет процесс дыхания в молодых тканях и органах растения. Интенсивность дыхания обусловлена потребностями роста и развития растений. Много кислорода требуется в зонах деления и роста клеток. Образование цветков и плодов, а также повреждение и особенно отрывание органов сопровождается усилением дыхания у растений. По окончании роста, с пожелтением листьев и особенно в зимнее время интенсивность дыхания заметно снижается, но не прекращается.

Дыхание – непременное условие жизни растений.

Чтобы жить, растение обязательно должно получать путем питания и дыхания необходимые ему вещества и энергию.

Поглощенные вещества в процессе преобразований в клетках и тканях становятся веществами, из которых растение строит свое тело. Все преобразования веществ, происходящие в организме, всегда сопровождаются потреблением энергии. Зеленое растение (как автотрофный организм), поглощая световую энергию, преобразует ее в химическую и накапливает в сложных органических соединениях. В процессе дыхания при расщеплении органических веществ эта энергия высвобождается и используется растением на преобразование веществ и процессы жизнедеятельности, которые происходят в клетках.

Оба эти процесса – фотосинтез и дыхание – идут путем последовательных многочисленных химических реакций, в которых одни вещества преобразуются в другие.

Например, в процессе фотосинтеза из углекислого газа и воды образуются сахара, которые затем через ряд промежуточных реакций превращаются в крахмал, клетчатку или белки, жиры и витамины – вещества, необходимые растению для питания и запасания энергии.

Весь процесс дыхания протекает в клетках растительного организма. Он состоит из двух этапов, в ходе которых сложные органические вещества расщепляются на более простые, неорганические – углекислый газ и воду. На первом этапе при участии специальных белков, ускоряющих процесс (ферментов), происходит распад молекул глюкозы. В итоге из глюкозы образуются более простые органические соединения и выделяется немного энергии. Этот этап дыхательного процесса происходит в цитоплазме.

На втором этапе простые органические вещества, образовавшиеся на первом этапе, взаимодействуя с кислородом, окисляются – образуют углекислый газ и воду. При этом высвобождается много энергии. Второй этап дыхательного процесса протекает только с участием кислорода в специальных органоидах клетки – митохондриях.

Таким образом, в процессе дыхания происходит расщепление более сложных органических веществ на простые неорганические соединения – углекислый газ и воду. При этом растение обеспечивается высвобождающейся энергией. Одновременно идет передача различных химических элементов из одних соединений в другие. Эти превращения веществ в организме называют обменом веществ. Обмен веществ – один из важных признаков жизни.

Обмен веществ – это совокупность протекающих в организме различных химических превращений, обеспечивающих рост и развитие организма, его воспроизведение и постоянный контакт с окружающей средой.

Обмен веществ связывает все органы организма в единое целое. Вместе с этим благодаря обмену веществ организм объединяется с окружающей средой. Из нее растение поглощает вещества через корни и листья и выделяет в среду продукты своей жизнедеятельности. Дыхание, как и питание, – необходимое условие обмена веществ, а значит, и жизни организма.

Таблица 3.2. Характерные черты процессов фотосинтеза и дыхания

Фотосинтез Дыхание
Запасание энергии Освобождение энергии
Синтез органического вещества Разрушение органического вещества
Восстановление вещества Окисление вещества
Поглощение СО2 Выделение СО2
Выделение О2 Поглощение О2
Происходит в хлоропластах на свету Происходит в митохондриях в темноте

1. Видоизменения подземных побегов Фотосинтез и дыхание растений

2. Происхождение растений. Перейдите по ссылке http://tepka.ru/biologiya_5/24.html

3. Вегетативное размножение. Фотосинтез и дыхание растений

Воздушное питание растений – фотосинтез. Фотосинтез – создание органических веществ. Корневое питание дает растению только минеральные соли и воду. Органические вещества и заключенную в них энергию растение получает в процессе фотосинтеза (от греч. фотос – "свет" и синтезис – "соединение"). Фотосинтез протекает в хлоропластах. В ходе этого процесса за счет энергии солнечного света растение с помощью зеленого хлорофилла листьев образует необходимые ему органические вещества из неорганических – углекислого газа и воды. Так как основным поставщиком углекислого газа для фотосинтеза является воздух, то этот способ получения растением органических веществ называют воздушным питанием.

Фотосинтез всегда поддерживается корневым питанием – поглощением из почвы воды и минеральных солей. Без воды фотосинтез не происходит.

Зеленый лист – специализированный орган воздушного питания. Благодаря плоской форме листовой пластинки лист имеет большую поверхность соприкосновения с воздушной средой и солнечным светом. Присутствие же в мякоти листа многочисленных хлоропластов с хлорофиллом создает огромную фотосинтезирующую поверхность, превращая таким образом лист в могучую фабрику образования органических веществ.

Роль света в фотосинтезе. Доказать, что зеленое растение только на свету образует органические вещества, можно простым опытом. Зеленое растение, например пеларгонию зональную (герань), помещают в темный шкаф. Через 2-3 дня у этого растения черной бумагой или фольгой затемняют небольшую часть одного листа и ставят растение на свет. Через 8-10 часов срезают этот лист, снимают с него затемняющую пластинку. Затем для обесцвечивания листа его кипятят в спирте (при этом разрушается хлорофилл и зеленая окраска исчезает). После этого лист помещают в раствор йода. В результате проведения опыта можно увидеть, что незатемненная часть листа, содержавшая крахмал, посинела (крахмал от йода становится синим), тогда как затемненная часть листа приобрела желтый цвет йода. Это свидетельствует о том, что здесь, в затемненной части листа. крахмал не образовался, так как клетки листа не получали световой энергии. Крахмал – это органическое вещество, которое растение образует на свету в процессе фотосинтеза.

Фотосинтез

процесс, в котором зеленое растение из неорганических веществ (углекислого газа и воды) с использованием энергии солнечного света образует органические вещества – углеводы (глюкозу. фруктозу, крахмал), а также кислород.

Плауны. Хвощи. Папоротники.арство растений. Хвощи

Современные хвощи – многолетние травянистые растения с жестким стеблем и хорошо развитым подземным корневищем. От корневища отходят придаточные корни. Характерна членистость побегов. На стеблях в узлах мутовки ветвей и мелких чешуевидных листьев.

Фотосинтез и дыхание растений

Хвощи (слева направо): спороносный и бесплодный стебли полевого хвоща, лесной хвощ, луговой хвощ

Питание автотрофное – хлорофилл содержится в хлоропластах зеленых клеток летних побегов. Весной на корневищах вырастают побеги, которые заканчиваются спороносными колосками. Здесь формируются споры. Созревшие споры высыпаются и, попав в благоприятные условия, прорастают, образуются разнополые гаметофиты – половое поколение. Оплодотворение происходит в воде.

Развитие бесполого поколения хвоща – спорофит:

– Заросток (гаметофит) спермии + яйцеклетка зигота спорофит (зародыш) спора заросток (гаметофит).

Хвощи растут на полях, в лесах или около водоемов обычно на участках с влажной почвой (сохранилось всего около 30 видов). На полях, где живут хвощи, почва нуждается в известковании.

На хвощёвой подкормке коровы и козы дают больше молока. Питаются хвощами и некоторые дикие животные — олени и кабаны. В то же время для лошадей хвощи являются ядовитыми растениями.

В медицине используются препараты хвоща полевого, которые обладают разносторонним и разнообразным действием. Их применяют как мочегонное, противовоспалительное, кровоостанавливающее, общеукрепляющее, ранозаживляющее и вяжущее средство. Помогают они при сердечной недостаточности, улучшают водно-солевой обмен. В составе различных сборов хвощ применяют для лечения гипертонической болезни, подагры и заживления ран. Эффективно растение при отёках различного происхождения и экссудативных (влажных) плевритах.

В народной медицине область применения хвоща та же. Кроме того, считают, что трава хвоща помогает при некоторых злокачественных новообразованиях, внутренних и наружных кровотечениях, жёлчно- и почечнокаменной болезни.

Царство растений. Плауны

Многолетние вечнозеленые, травянистые растения с прямостоячими и ползучими побегами, встречаются в хвойных и смешанных лесах. Произошли от псилофитов. От стелющихся по земле участков побега отходят придаточные корни. Листья мелкие, различной формы, располагаются на побегах поочередно, супротивно или мутовчато.

Фотосинтез и дыхание растений

Плауны (слева направо): плаун-баранец, плаун булавовидный, плаун годичный

Размножение вегетативное – за счет отмирания участков старых побегов и укоренения жизнеспособных фрагментов, которые дают начало новым растениям. Бесполое размножение осуществляется и спорами.

Виды плаунов используют как лекарственные, красильные, косметические и декоративные растения.

В научной медицине применяют споры (обычно плауна булавовидного) — прежде в России их называли ликоподий, или плаунное семя — для приготовления детских присыпок, пересыпания пилюль. Споры содержат до 50 % жирного невысыхающего масла, алкалоиды, фенольные кислоты, белки, сахара, минеральные соли. Наравне со спорами этого вида используют споры плаунов годичного и сплюснутого.

Заготовку спор производят в конце лета — начале осени, после пожелтения спороносных колосков. Колоски срезают ножницами или острым ножом, обычно в сырую погоду, складывая в мешочки из плотной ткани, затем высушивают на открытом воздухе и просеивают через мелкое сито для отделения спор.

В народной медицине споры плаунов применяют как заживляющее средство для засыпки ран, ожогов, обморожений, при экземах, фурункулах, лишаях, рожистых воспалениях. Стебли используют при заболеваниях мочевого пузыря, печени, дыхательных органов, при недержании мочи, болях в желудке, при геморрое, диспепсиях и ревматизме.
Побеги плауна-баранца применяются как рвотное, слабительное средство, для лечения хронического алкоголизма и табакокурения. Всё растение плауна-баранца содержит ядовитый алкалоид селягин, поэтому лечение должно проводиться под наблюдением врача.

В ветеринарии применяют плауны сплюснутый и баранец, для лечения поноса у коров. Отвар из побегов имеет также и инсектицидное действие, им моют животных (коров, коней, овец, свиней) для защиты от паразитов.

В косметологии плауны применяют при фурункулёзе и против облысения.

Споры также применяют в металлургии для обсыпания форм при фасонном литье — при сгорании их образуется слой газов, препятствующих прилипанию изделия и придающих металлу гладкую поверхность.

В пиротехнике споры иногда добавляют в составы бенгальских огней.

Стебли всех видов плауна дают синюю краску, пригодную для окрашивания тканей.

Источник: cyberpedia.su

Интересный факт из биологии, что процесс фотосинтеза осуществляется только днем с использованием энергии Солнца. Откуда растения получают энергию ночью, когда фотосинтез невозможен? Что происходит зимой, когда деревья сбрасывают свои зеленые листья? Неужели жизнь растения совсем замирает? В статье мы узнаем всё о дыхании растений.

Первое, что мы обычно узнаем о растениях на уроках биологии — это то, что они снабжают нас кислородом и очищают воздух от углекислого газа. Да, действительно, растения в процессе фотосинтеза используют СО2 для синтеза сахаров и выделяют кислород. А как же дыхание? Дышат ли растения?

Растения дышат

Растения так же, как и мы с вами, относятся к аэробным организмам, а это значит, что для их жизнедеятельности нужен кислород. В растительных клетках, как и в клетках других ядерных организмов, есть «энергетические станции» — митохондрии. Для чего?

В процессе дыхания органические вещества (как правило, углеводы) «сгорают» в митохондриях с использованием кислорода. Синтезируется энергетическая валюта клеток — АТФ, образуются вода и углекислый газ, а часть энергии выделяется в форме тепла.

Итак, фотосинтез у растений происходит на свете, а дыхание — 24 часа в сутки! Фотосинтез осуществляют только зеленые части растений, а дышат все его части!

Днем, когда фотосинтез и дыхание осуществляются одновременно, количество кислорода, образующегося обычно превышает количество выделенного углекислого газа. Ночью в воздух выделяется только углекислый газ.

Именно с этим связано существование ложных представлений о растениях-вампирах, которые отбирают энергию (это объясняют чрезмерным потреблением кислорода и выделением углекислого газа). Но приходилось ли вам ночевать когда в лесу в палатке?

Наверное, дышалось легко и никто не почувствовал недостатка кислорода. Надо понимать, что количество выделенного растением углекислого газа или поглощенного кислорода ночью незначительная по сравнению с тем количеством кислорода, которое она выделяет в день.

На самом деле люди, дыша, выделяют значительно больше углекислого газа, чем растения. Для того, чтобы образовалось столько углекислого газа, сколько его выделяет обычный человек, надо бы было почти 10000 кг растений! Если в вашей спальне их именно столько — открывайте двери и окна. Столько нет? Спите спокойно!

Итак, комнатные растения — прекрасные поставщики кислорода, особенно в зимний период. Многие из них обладают бактерицидными свойствами, а один из лучших способов очистки воздуха — правильное озеленение комнаты, в том числе использование растений, которые выделяют фитонциды (природные антибиотики). Установлено, что люди, у которых дома много растений, гораздо реже болеют, в частности гриппом.

листья, стебли, корни и даже цветы. Интересно, что корни дышат слабее, чем фотосинтезирующие листья. А лепестки цветов (видоизмененные листья) дышат в 18-20 раз активнее, чем листья. Лиственные деревья дышат активнее, чем хвойные, а у растений засушливых земель — суккулентов — скорость дыхания очень низкая.

Интенсивность дыхания зависит от многих факторов: времени года, времени суток, температуры, интенсивности освещения и др.

Всего в процессе развития клеток, тканей, органов растений интенсивность дыхания сначала растет, достигает максимума на время максимальной скорости роста, а затем постепенно снижается. Человек также больше энергии требует в период активного роста.

Молодые деревья тратят треть суточных продуктов фотосинтеза на дыхание. Части растений, завершили рост (старые листья, стебли, древесина или созревшее семена) имеют невысокую интенсивность дыхания, но она никогда не падает до нуля.

У растений также бывают периоды кратковременного и усиленного дыхания. В сочных плодах перед полным созреванием происходит временная (2-3 дня) активация дыхания — климактерический подъем дыхания. Примером проявления активного дыхания растений является высокое содержание углекислого газа (до 13%, в норме — 0,03%) в атмосфере элеваторов, где хранят зерно.

Вследствие дыхания образуется вода, которая увлажняет семена, и выделяется тепло. Дышать в таких помещениях очень трудно. Температура семена на элеваторах может достигать + 60-90 ° С, и тогда семена «горят» и теряют способность прорастать.

Дыхание зависит и от атмосферного давления. Американский биолог Фрэнк Браун обнаружил, что дыхание в клетках ячеек клубней картофеля усиливается за роста атмосферного давления и наоборот. Глазки картофеля на двое суток раньше, чем барометр «предусматривают» изменение погоды. Перед дождем, то есть за снижения давления, они задерживают дыхание.

от -25 ° С до + 50- 60 ° С. Для большинства растений минимальная температура дыхания составляет 0 ° С. В промежутке температур от 0 ° C до 30 ° C с повышением температуры на каждые 10 ° C интенсивность дыхания возрастает только в 2 раза. При температурах свыше 40-50 ° C дыхания замедляется.

Высокие температуры — одна из причин усиленного дыхания тропических растений, которые «сжигают» 70-80% суточных продуктов фотосинтеза. Самая благоприятная температура для дыхания 35-40 ° С, для фотосинтеза она ниже на 5-10 ° С. Поэтому при высоких температурах растение интенсивно расходует органические вещества, а их синтез почти прекращается, что приводит к снижению урожая многим видам растений.

Да, растения продолжают дышать зимой! Летних запасов углеводов вполне достаточно для того, чтобы пережить зиму и восстановить рост весной. Почки плодовых деревьев дышат с -14 ° С, а хвоя сосны — даже при -25 ° С!

Растения зимой

Усиливаются процессы дыхания у растений, пораженных болезнью. Профессор Калифорнийского университета С. Е. Ярвуд измерял температуру листьев растений, инфицированных вирусом или грибком, и сравнивал ее с температурой здорового растения. Температура больных частей растения повышалась аж на 2 ° С.

Разве не напоминают вам растения больных детей? Вспомните себя с температурой 38,6 ° С. Повышенная температура в устойчивых к заболеванию растений длится дольше, чем у неустойчивых. Оказывается, что в таких условиях в клетках синтезируются защитные фенольные соединения, ядовитые для возбудителей болезни. Усиленно дышат и раненые растения, что тоже приводит к заметному повышению их температуры в участках повреждения.

Дыхание — это не только процесс поставки энергии для роста и развития растительного организма. От дыхания зависит поглощение воды и питательных минеральных элементов. На промежуточных этапах дыхания образуются соединения (органические кислоты, сахар), используемых в различных реакциях обмена веществ. В засушливых условиях вода выделяется при дыхании, что может уберечь растение от обезвоживания! Подобно механизмам обеспечения водой верблюда, правда?

Растения не имеют специальных органов дыхания, похожих на наши легкие. Кислород поступает к ним через естественные отверстия. Кроме этого, растения используют тот кислород, который образуется в процессе фотосинтеза. Надземные части растений получают кислород из воздуха непосредственно через поры.

Поры в листьях — это устьица, Поры на ветвях деревьев — чечевички. Как правило, устьица находятся с нижней стороны листочка. Они образованы особыми замыкающими клетками, содержащие зеленый пигмент хлорофилл. Через щель в листочек поступает воздух и испаряется влага.

На листочках водных растений, листья которых плавают на поверхности воды (например, кувшинки), устьица расположены только на верхней поверхности листа. Количество устьиц на 1 мм2 листа в среднем составляет 300! Меньше устьиц обнаружено в листьях традесканции — 14 на мм2, а больше всего — в листьях дуба болотного — 1200 на мм2. Корни растений имеют поры.

На берегах Юго-Восточной Азии, Океании, Австралии, Мадагаскара, Экваториальной Африки на грани моря и суши растут мангровые растения. К ним относятся около 40 видов деревьев и кустарников, приспособившиеся к приливам, во время которых они до верхушки кроны погружаются в воду.

Мангры - растения в воде

Мангры называют растениями-амфибиями. Во время отлива обнажается илистый грунт, пронизанный корнями и почти без кислорода. Как же мангровые растения выживают в таких условиях?

Мангры получают кислород с помощью особых дыхательных корней-пневматофор, которые, в отличие от обычных, растут вверх, имеют пористое строение и большие межклетники, заполненные воздухом. К условиях недостатка кислорода приспособлены и листья таких растений.

Так, авиценния — растение, названная в честь древнего персидского учёного-энциклопедиста врача и философа Авиценна, — во время прилива почти вся покрывается
водой, а нижняя поверхность ее листьев густо опушенная. Под водой между волосками задерживаются пузырьки воздуха, кислород которого растение использует во время затопления. А корни авиценнии — это прямостоячие вырасти, поднимающиеся на 20-25 см над поверхностью почвы. Благодаря хорошо развитой системе межклетников, воздух легко поступает в корень.

Пневматофоры есть не только у мангров, но и у растений, растущих на пресноводных болотах тропических и умеренных широт. В Новой Гвинее они есть у ротанговой пальмы, которую используют для изготовления мебели. Стебли этой лианы достигают иногда 200-300 м.

В Северной Америке пневматофоры у болотного кипариса — дерева, произрастающего в 35-45 м с диаметром ствола до 2 м. Цилиндрические пневматофоры этого дерева выступают над поверхностью почвы, особенно у растений, произрастающих недалеко от воды. На болоте люди могут ходить по пневматофору, как по мостовой. Мексиканцы устраивают в них улья.

В воздухе содержится примерно 21% кислорода.
Этого вполне достаточно для нормальной жизнедеятельности растений. Правильный уход за растениями способствует нормальному дыханию. Регулярно мойте или протирайте листики от пыли. Но помните, что с опушенными листочками делать это нужно очень осторожно, желательно использовать специальную кисточку.

Есть случаи, когда растения оказываются в условиях недостатка кислорода. Чаще всего эта проблема касается корней. В хорошо аэрированной почве кислорода не меньше, чем в воздухе — 7-12%, в плохо обработанном его содержание снижается до 2%. Именно поэтому не стоит обильно поливать комнатные растения.

Блокировка доступа воздуха к корням приводит к тому, что растение буквально тонет в воде загнивают корни, листочки опускаются и желтеют.

Как помочь такой ситуации?

Выньте растение из горшка, очистите от почвы, промойте и осмотрите корни. Если они прочные и невредимы, пересадите растение в горшок со свежей, чуть увлажненной землей. На дно горшка насыпьте керамзит или мелкие глиняные черепки (дренаж), что будет способствовать лучшему газообмена корней.

Поместите горшок в затененное место подальше от прямых солнечных лучей и поливайте только тогда, когда верхний слой почвы подсохнет вглубь на несколько сантиметров. Еще меньше кислорода в очень заболоченных почвах. В них корни повреждаются, отмирают, и рост растений замедляется или вовсе прекращается.

Мимоза, которая способна моментально составлять свои листочки в ответ на прикосновение, в анаэробных условиях цепенеет и не реагирует ни на одно раздражение.

Выдающийся французский ученый Луи Пастер показал, что растения в среде без кислорода образуют не только СО2, но и спирт. В естественных условиях это возможно при вымокании.

Спирт обнаруживают даже в воде у растений. Вследствие частых разливов в бассейне реки Амазонки образуются непроточные мелкие водоемы, которые очень хорошо прогреваются и освещаются. Затопленые растения таких водоемов превращают сахар в спирт — происходит процесс брожения.

Местные жители научились использовать такую «воду» для приготовления напитков. Некоторые виды амазонских рыб переходят к нересту лишь тогда, когда в водоемах есть определенное количество спирта. Незначительные количества спирта у плодах яблок, мандаринов и др. Однако некоторые растения, которые живут в условиях постоянного затопления, приспособились к недостатку кислорода.

Так возникли дыхательные корни или пневматофоры у растений мангровых зарослей. Знакомый вам ситник имеет особую ткань — аеренхиму, для которой свойственны большие межклетники, заполненные воздухом.

Аэренхима образуется и в корнях других растений в ответ на недостаток кислорода, Формируются дополнительные корни, которые значительно толще, имеют хорошо развитую аеренхиму и обеспечивают процессы дыхания. Ученые установили, что рогоз, ива, другие болотные растения в условиях нормального обеспечения кислородом дышат в 2-3 раза слабее, чем растения, не приспособленные к кислородному дефицита (горох, фасоль, пшеница или тополь).

Сниженая интенсивность дыхания связана с их низкой потребностью в кислороде. Содержание сахаров в их корнях выше, а расходы за недостатка кислорода экономные. Интересно, что болотные и водные растения в условиях анаэробиозу накапливают не этиловый спирт, а менее ядовитые для растения молочную и яблочную кислоты.

Таким образом, водные и болотные растения приспособились к недостатку кислорода двумя способами: путем изменения обмена веществ и особого строения. Несмотря на полезные приспособления, длительная нехватка кислорода вредит даже таким растениям. Однако благодаря аэренхиме и пневматофору они успешно заселяют субстраты, на которых другие организмы не могут расти.

Источник: obuchonok.ru