Посеем в почву семя любого растения и хорошо польем его. Через несколько дней из земли покажется проросток, он желтоватого цвета, но на свету очень быстро становится зеленым. Что означает эта перемена? Сначала проросток жил еще за счет запасов питательных веществ (жира, крахмала, белков), которые накопило для него в семенах материнское растение. А теперь он начал самостоятельную жизнь: в нем на свету происходит фотосинтез. Крошечное зеленое растеньице, поглощая углекислый газ и воду, строит из них, используя энергию солнечных лучей, углеводы, сахар и крахмал, а часть кислорода воды выделяет в атмосферу.

Чем же питается растение и откуда берет оно остальные питательные вещества? Известно, что в состав протоплазмы клеток растения входят белки. Значит, растение должно получать материал для построения белков — азот. Азот растение берет из почвы в виде солей азотной кислоты и аммония. Из этих солей и созданных в процессе фотосинтеза углеводов в растении образуются белки — вещества, составляющие основу всего живого. Этой замечательной способностью — из углекислого газа и воды под влиянием солнечной энергии создавать сложные органические вещества — углеводы, а из углеводов и минерального азота образовывать белки — зеленое растение и отличается от животного организма.


Однако растению нужны соли, содержащие не только азот, но и другие минеральные вещества, в состав которых входят химические элементы: фосфор, сера, калий, железо, кальций, магний. Кроме того, в ничтожных количествах ему нужны и микроэлементы: бор, цинк, медь, молибден, марганец и др.

Воды растению нужно очень много, ведь его тело больше чем на 80% состоит из воды. Но усваивает оно лишь 2—3% поглощенной воды, остальные 98—97% ее все время испаряются с поверхности растения. Такая трата воды только на первый взгляд кажется бесполезной.

Опыт показывает, что, постоянно испаряя воду, растение защищает себя от перегревания. Лишь очень устойчивые к повышению температуры тела растения, например кактусы, испаряют мало воды. Если бы пшеница испаряла воду так же слабо, она быстро погибла бы в жаркий солнечный день. Измерьте температуру пшеницы, и она окажется примерно одинаковой с температурой окружающего воздуха. А у кактуса в солнечный день температура будет на 5—15° выше температуры воздуха. У этого обитателя знойных пустынь температура тела может достигать 62—65°, а пшеница, если нагреется выше 45°, погибнет через несколько минут.

Физиология растений


Наука, изучающая жизнь растений, называется физиологией растений. Основоположником этой науки в нашей стране был Климент Аркадьевич Тимирязев, профессор Московского университета и Петровской земледельческой и лесной академии (ныне Московская сельскохозяйственная академия им. Тимирязева). Он считал, что физиология растений и агрохимия составляют основу рационального, т. е. правильного, растениеводства. Его исследования процесса фотосинтеза вошли в золотой фонд мировой науки.

Сейчас физиологи растений уже знают, как питается, растет и развивается растение. Но перед наукой встала еще и другая задача, решение которой имеет важное значение для земледелия: одинакова ли потребность различных растений в количестве и качестве питательных веществ, в солнечном свете, тепле и других жизненных условиях?

Основные закономерности жизни растений изучает общая физиология растений, а изучением своеобразия жизни отдельных видов и даже сортов культурных растений — хлопчатника, кукурузы, сахарной свеклы, пшеницы и др. — занимается частная физиология растений. Основоположником этой области науки о жизни растений тоже был К. А. Тимирязев. В замечательной книге «Земледелие и физиология растений» он показал, как важно для успеха в земледелии изучать жизнь растений. В одной из глав своей книги Тимирязев описал строение и жизнь льна и показал, как применить эти знания в агрономии. По существу эта работа К. А. Тимирязева была первым обобщением по частной физиологии растений.


Много важнейших вопросов, тесно связанных с практикой земледелия, решили физиологи растений.

Оказывается, отдельные виды растений, например пшеница и фасоль, и даже отдельные сорта отличаются друг от друга потребностями в минеральном питании. Для примера возьмем потребность фасоли и пшеницы в минеральных элементах, знать которую необходимо, чтобы правильно удобрять почву под эти культуры и получать хороший урожай. Для фасоли надо много калия и фосфора, для пшеницы — азота и фосфора, но последнего несколько меньше, чем для фасоли. Фасоль не нуждается в азотном удобрении: азотом снабжают ее клубеньковые бактерии, живущие на корнях. Однако не всегда в почве есть эти бактерии. Чтобы на корнях обязательно образовались клубеньки, надо почву заразить этими бактериями. Такое бактериальное удобрение — нитрагин — изготовляется на заводах.

Для роста и развития растениям необходим свет. Если в поле очень загущен посев, то урожай получится плохой. Надо сеять так, чтобы растения не мешали друг другу. Поэтому очень важно для каждого вида растений установить норму высева семян на единицу площади.

Для одной и той же культуры необходим разный уход в зависимости от того, находится ли она в поливных (орошаемых) или неполивных (богарных) условиях.

iv>

Пшенице при орошении нужно больше элементов минерального питания, так как она дает больший урожай. Разные виды хлопчатника в Средней Азии нуждаются в различном количестве воды. Более скороспелому виду хлопчатника — упланду — нужно 5—6 тыс. м3 воды на гектар посева, а более позднеспелому виду — египетскому — 8—10 тыс. м3. Поливы очень важно делать вовремя, от этого во многом зависит урожай. Лучше всего «спросить» само растение, когда ему нужен полив. Физиологи растений определяют время полива по концентрации выжатого из растения сока. Делается это в несколько минут при помощи прибора рефрактометра. Когда концентрация сухого вещества в соке достигнет величины около 10%, растение надо поливать. Опыт показал, что полив, проведенный на такой строго научной основе, сильно повышает урожай хлопчатника.

В засушливых районах нужно высевать более засухоустойчивые сорта растений. Определить, какие же сорта лучше отвечают этим требованиям, тоже помогают физиологи растений.

Мы знаем, что просо более засухоустойчиво, чем ячмень, а ячмень более засухоустойчив, чем пшеница. Обезвоживание и перегрев клеток засухоустойчивые растения переносят лучше, чем не устойчивые к засухе, и даже в условиях засухи дадут лучший урожай. Если сравнить два сорта мягких устойчивых пшениц, например сорта Альбидум 43 и Пиротрикс, то их физиологические признаки говорят о том, что сорт Альбидум устойчив как к обезвоживанию, так и к перегреву, а сорт Пиротрикс более устойчив к обезвоживанию и менее устойчив к перегреву.


Можно ли повысить устойчивость растений к засухе? Оказывается, можно. Ученые-селекционеры выводят специальные засухоустойчивые сорта. Важна и закалка семян. Ученые установили, что переносить засуху растениям помогают и удобрения, в частности содержащие микроэлементы (бор и цинк), наряду, конечно, с агротехникой, способствующей задержанию воды в почве (снегозадержание), правильная обработка почвы, борьба с сорняками, которые расхищают влагу.

Засоление почвы

В засушливом климате очень большой урон посевам приносит и засоление почвы. С засолением почвы борются, вымывая из почвы избыток солей в зимнее время большими порциями воды. Кроме того, можно увеличить продуктивность самого растения на засоленных почвах, приспособив к ним культурные растения. Селекционеры еще не добились хороших результатов в выведении солеустойчивых сортов. И здесь им на помощь пришли физиологи растений, они нашли причину этих неудач. Дело в том, что почва в разных местах засоляется разными солями. В одном месте преобладает хлористый натрий (хлоридное засоление), в другом — сернокислый натрий (сульфатное засоление), в третьем — углекислый натрий (сода).

Оказывается, растения, по-разному приспособляются к той или иной засоленной почве, т.

>
обмен веществ в них идет по-разному. На хлоридном засолении обмен падает, замедляется, на сульфатном — возрастает. Естественно, что и селекцию надо вести применительно к разным типам засоления почвы. В Средней Азии каждая большая долина имеет свой тип засоления. Например, в Голодной степи преобладает хлоридное засоление, а в Ферганской — сульфатное. Очевидно, и агротехника, и методы селекции должны быть для этих почв разные — применительно к типу засоления.

Вот какие важные для земледелия вопросы решает наука, которая называется частной физиологией растений.

Но много еще не разгаданных наукой тайн жизни растений надо открыть и сделать достоянием человечества. Может быть, для кого-нибудь из вас, наши читатели, разгадка одной из таких тайн станет делом всей жизни.

Источник: www.what-this.ru

Вопрос 1. Что такое фотосинтез? Назовите вещества, необходимые для его осуществления.

Фотосинтез – это процесс образования органических веществ и кислорода из углекислого газа и воды в листьях зеленых растений на солнечном свету.

Вопрос 2. Закончите предложения.

Фотосинтез происходит в растительных клетках, которые содержат органоиды хлоропласты. В них содержится зелёный пигмент хлорофилл, который придает растению окраску и обеспечивает фотосинтез.

У большинства растений основным органом, обеспечивающим осуществление фотосинтеза, является лист, еще фотосинтез может протекать в стеблях и зеленых плодах.


Вопрос 3. Известно, что наземные растения ежегодно образуют столько листьев, что ими можно было бы покрыть земной шар в несколько слоёв. Объясните, почему у растений образуется так много листьев.

Процесс образования органических веществ идет в листьях зеленых астений на солнечном свету. Поэтому, чтобы прокормить растение листьев должно быть очень много.

Вопрос 4. Рассмотрите рисунок «Образование органических веществ в процессе фотосинтеза». Подпишите на нем названия веществ, поступающих в лист и выводящихся из него.

Углекислый газ

Кислород

Ответьте на вопросы:

1) Каковы необходимые условия осуществления фотосинтеза?

Для фотосинтеза необходим солнечный свет, углекислый газ и хлоропласты.

2) Какие органические вещества образуются в процессе фотосинтеза и каково их значение для растения?

В хлоропластах под воздействием света в процессе фотосинтеза у растений образуется крахмал. Это вещество является углеводом и служит источником энергии для растений.

Вопрос 5*. Прочитайте в учебнике описание опыта по изучению влияния света на образование органических веществ в зеленых растениях и рассмотрите рисунок 61. Как вы думаете, почему в листьях зеленых растений нельзя обнаружить крахмал, после того как их выдерживают в темноте в течение 2-3 дней? Куда он исчезает?


Для преобразования крахмала в листьях необходим солнечный свет. Крахмал образуется в процессе фотосинтеза. Этот процесс произойдет с использованием энергии света. Без света нет процесса фотосинтеза, без процесса нет в листьях крахмала.

Работаем в лаборатории

Вопрос 6. Рассмотрите рисунок, на котором изображен опыт.

Ответьте на вопросы:

1) Почему свеча в первом и третьем случаях гаснет?

В первом и третьем сосудах семена и корнеплоды в процессе дыхания истратили весь кислород и выделили углекислый газ. Свеча погасла.

2) Почему свеча во втором случае горит?

Во втором сосуде растение не только дышит, но и при помощи фотосинтеза выделяет кислород, поэтому свеча горит.

Источник: resheba.me

Фотосинтез – один из самых значимых биологических процессов

фотосинтез растений

Говоря научным языком, фотосинтез (от др.-греч. φῶς — свет и σύνθεσις — соединение, связывание) — это процесс, при котором из углекислого газа и воды на свету образуются органические вещества. Заглавная роль в этом процессе принадлежит фотосинтетическим сегментам.

Если говорить образно, то лист растения можно сравнить лабораторией, окна которой выходят на солнечную сторону. Именно в ней происходит образование органических веществ. Этот процесс является основой существования всего живого на Земле.


Многие резонно зададут вопрос: чем дышат люди, живущие в городе, где не то что дерева, и травинки днем с огнем не сыщешь. Ответ очень прост. Дело в том, что на долю наземных растений приходится всего 20% выделяемого растениями кислорода. Главенствующую роль в выработке кислорода в атмосферу играют морские водоросли. На их долю приходится 80% от вырабатываемого кислорода. Говоря языком цифр, и растения, и водоросли ежегодно выделяют в атмосферу 145 млрд. тонн (!) кислорода! Недаром мировой океан называют «легкими планеты».

Общая формула фотосинтеза выглядит следующим образом:

Вода + Углекислый газ + Свет → Углеводы + Кислород

Для чего нужен фотосинтез растениям?

Фотосинтез необходим растениям для

Как мы уяснили, фотосинтез – это необходимое условие существования человека на Земле. Однако это не единственная причина, по которой фотосинтезирующие организмы производят активную выработку кислорода в атмосферу. Дело в том, что и водоросли, и растения ежегодно образуют более 100 млрд. органических веществ (!), которые составляют основу их жизнедеятельности. Вспоминая эксперимент Яна Ван-Гельмонта мы понимаем, что фотосинтез – это основа питания растений. Научно доказано, что 95% урожая определяют органические вещества, полученные растением в процессе фотосинтеза, и 5% – те минеральные удобрения, которые садовод вносит в почву.


Современные дачники основное внимание уделяют почвенному питанию растений, забывая о его воздушном питании. Неизвестно, какой урожай могли бы получить садоводы, если бы они внимательно относились к процессу фотосинтеза.

Однако ни растения, ни водоросли не могли бы так активно производить кислород и углеводы, не будь у них удивительного зеленого пигмента – хлорофилла.

Тайна зеленого пигмента

где происходит фотоситез

Главное отличие клеток растения от клеток иных живых организмов – это наличие хлорофилла. К слову сказать, именно он является виновником того, что листья растений окрашены именно в зеленый цвет. Это сложное органическое соединение обладает одним удивительным свойством: оно способно поглощать солнечный свет! Благодаря хлорофиллу становится возможны и процесс фотосинтеза.

Две стадии фотосинтеза

Говоря простым языком, фотосинтез представляет собой процесс, при котором поглощенные растением вода и углекислый газ на свету при помощи хлорофилла образуют сахар и кислород. Таким образом, неорганические вещества удивительным образом превращаются в органические. Полученный в результате преобразования сахар является источником энергии растений.

Световая и темновая фазы фотосинтеза

Фотосинтез имеет две стадии: световую и темновую.

Световая фаза фотосинтеза

Осуществляется на мембранах тилакойдов.

Тилакойд – это структуры, ограниченные мембраной. Они располагаются в строме хлоропласта.

Порядок событий световой стадии фотосинтеза:

  1. На молекулу хлорофилла попадает свет, который затем поглощается зеленым пигментом и приводит его в возбужденное состояние. Входящий в состав молекулы электрон переходит на более высокий уровень, участвует в процессе синтеза.
  2. Происходит расщепление воды, в ходе которого протоны под воздействием электронов превращаются в атомы водорода. Впоследствии они расходуются на синтез углеводов.
  3. На завершающем этапе световой стадии происходит синтез АТФ (Аденозинтрифосфат). Это органическое вещество, которое играет роль универсального аккумулятора энергии в биологических системах.

Темновая фаза фотосинтеза

Местом протекания темновой фазы являются строму хлоропластов. Именно в ходе темновой фазы происходит выделение кислорода и синтез глюкозы. Многие подумают, что такое название эта фаза получила потому что процесс, происходящие в рамках этого этапа осуществляются исключительно в ночное время. На самом деле, это не совсем верно. Синтез глюкозы происходит круглосуточно. Дело в том, что именно на данном этапе световая энергия больше не расходуется, а значит, она попросту не нужна.

Значение фотосинтеза для растений

значение фотосинтеза для растений

Мы уже определили тот факт, что фотоинтез нужен растениям ничем не меньше, чем нам. О масштабах фотосинтеза очень просто говорить языком цифр. Ученые рассчитали, что только растения суши запасают столько солнечной энергии, сколько могли бы израсходовать 100 мегаполисов в течение 100 лет!

Дыхание растений – это процесс, противоположный фотосинтезу. Смысл дыхания растений заключается в освобождении энергии в процессе фотосинтеза и направление ее на нужды растений. Говоря простым языком, урожай – это разница между фотосинтезом и дыханием. Чем больше фотосинтез и ниже дыхание, тем больше урожай, и наоборот!

Фотосинтез – это удивительный процесс, который делает возможной жизнь на Земле!

Источник: xn—-8sbiecm6bhdx8i.xn--p1ai

Что такое фотосинтез?

Растения получают все необходимое для роста и развития из окружающей среды. Этим они отличаются от других живых организмов. Для того, чтобы они хорошо развивались, нужны плодородная почва, естественный или искусственный полив и хорошая освещенность. В темноте ничего расти не будет. 

Почва является источником воды и питательных органических соединений, микроэлементов. Но деревья, цветы, травы нуждаются также в солнечной энергии. Именно под воздействием солнечных лучей происходят определенные реакции, в результате которых углекислый газ, поглощаемый из воздуха, превращается в кислород. Такой процесс называется фотосинтезом. Химическая реакция, протекающая под воздействием солнечного света, приводит также к образованию глюкозы и воды. Эти вещества жизненно необходимы для того, чтобы растение развивалось. 

На языке химиков реакция выглядит так: 6CO2 + 12H2O + свет = С6Н12О6 + 6O2 + 6Н2О. Упрощенный вид уравнения: углекислый газ + вода + свет = глюкоза + кислород + вода.

Дословно «фотосинтез» переводится как «вместе со светом». Это слово состоит из двух простых слов  «фото» и «синтез». Солнце является очень мощным источником энергии. Люди используют его для выработки электричества, утепления домов, нагревания воды. Растениям тоже нужна энергия солнца для поддержания жизни. Глюкоза, образующаяся в процессе фотосинтеза — это простой сахар, являющийся одним из самых важных питательных веществ. Растения используют его для роста и развития, а избыток откладывается в листьях, семенах, плодах. Не все количество глюкозы остается в зеленых частях растений и плодах в неизменном виде. Простые сахара имеют свойство превращаться в более сложные, к числу которых можно отнести крахмал. Такие запасы растения расходуют в периоды нехватки питательных веществ. Именно ими обусловлена питательная ценность трав, плодов, цветов, листьев для животных и людей, употребляющих растительную пищу.

Как растения поглощают свет

Процесс фотосинтеза достаточно сложный, но его можно описать кратко, чтобы он стал понятным даже для детей школьного возраста. Один из самых распространенных вопросов касается механизма поглощения света. Каким образом световая энергия попадает в растения? Процесс фотосинтеза протекает в листьях. В листьях всех растений есть зеленые клетки — хлоропласты. Они содержат вещество под названием хлорофилл. Хлорофилл — пигмент, который придает листьям зеленый цвет и отвечает за поглощение световой энергии. Многие люди не задумывались о том, почему листья большинства растений широкие и плоские. Оказывается, природой предусмотрено это не случайно. Широкая поверхность позволяет поглотить большее количество солнечных лучей. По этой же причине солнечные батареи делают широкими и плоскими. 

Верхняя часть листьев защищена восковым слоем (кутикулой) от потери воды и неблагоприятного воздействия погоды, вредителей. Его называют палисадным. Если внимательно посмотреть на лист, можно увидеть, что его верхняя сторона более яркая и гладкая. Насыщенный цвет получается за счет того, что в этой части хлоропластов больше. Избыток света может снизить способность растения производить кислород и глюкозу. Под воздействием яркого солнца хлорофилл повреждается и это замедляет фотосинтез. Замедление происходит и с приходом осени, когда света становится меньше, а листья начинают желтеть по причине разрушения в них хлоропластов. 

Нельзя недооценивать роль воды в протекании фотосинтеза и в поддержании жизни растений. Вода нужна для:

  • обеспечения растений растворенными в ней минералами;
  • поддержания тонуса;
  • охлаждения ;
  • возможности протекания химических и физических реакций.

Воду деревья, кустарники, цветы поглощают из почвы корнями, а далее влага поднимается по стеблю, переходит в листья по прожилкам, которые видны даже невооруженным глазом. 

Углекислый газ проникает через маленькие отверстия в нижней части листа — устьица. В нижней части листа клетки расположены таким образом, чтобы углекислый газ мог проникать более глубоко. Это также позволяет кислороду, образующемуся при фотосинтезе, легко покидать лист. Как и все живые организмы, растения наделены способностью дышать. При этом, в отличие от животных и людей, они поглощают углекислый газ и выделяют кислород, а не наоборот. Там, где много растений, воздух очень чистый, свежий. Именно поэтому так важно заботиться о деревьях, кустарниках, разбивать скверы и парки в крупных городах. 

Световая и темновая фазы фотосинтеза

Процесс фотосинтеза сложный и состоит из двух фаз — световой и темновой. Световая фаза возможна только в присутствии солнечных лучей. Под воздействием света молекулы хлорофилла ионизируются, в результате чего образуется энергия, которая служит катализатором химической реакции. Порядок событий, происходящих в этой фазе, выглядит так:

  • на молекулу хлорофилла попадает свет, который поглощается зеленым пигментом и переводит его в возбужденное состояние;
  • происходит расщепление воды;
  • синтезируется АТФ, которая является аккумулятором энергии.

Темновая фаза фотосинтеза протекает без участия световой энергии. На данном этапе образуется глюкоза и кислород. При этом важно понимать, что образование глюкозы и кислорода происходит круглосуточно, а не только в ночное время. Темновой фаза называется потому, что для ее протекания присутствие света больше не нужно. Катализатором выступает АТФ, которая была синтезирована ранее. 

Значение фотосинтеза в природе

Фотосинтез — один из самых значимых природных процессов. Он необходим не только для поддержания жизни растений, но и для всего живого на планете. Фотосинтез нужен для: 

  • обеспечения животных и людей питанием;
  • удаления углекислого газа и насыщения воздуха кислородом;
  • поддержания круговорота питательных веществ. 

Все растения зависимы от скорости протекания фотосинтеза. Солнечную энергию можно рассматривать в качестве фактора, который провоцирует или сдерживает рост. Например, в южных районах и областях солнца много и растения могут вырастать достаточно высокими. Если рассматривать то, как процесс протекает в водных экосистемах, на поверхности морей, океанов нет недостатка в солнечных лучах и в этих слоях наблюдается обильный рост водорослей. В более глубоких слоях воды существует дефицит солнечной энергии, что сказывается на темпах роста водной флоры. 

Процесс фотосинтеза способствует формированию озонового слоя в атмосфере. Это очень важно, так как он помогает защитить все живое на планете от губительного воздействия ультрафиолетовых лучей. 

Источник: www.kakprosto.ru