Леса считаются «зелеными легкими планеты» не напрасно. Благодаря постоянной работе растений, фотосинтезу, все живое на Земле имеет возможность дышать. Более того, без них простейшие организмы не смогли бы эволюционировать и сложно представить, какой облик имела бы планета. Что такое фотосинтез и как происходит данный процесс, рассмотрим в деталях.

Что такое фотосинтез?

Фотосинтез – биохимический процесс, во время которого с помощью особых пигментов растений и энергии света из неорганических веществ (углекислого газа, воды) возникают органические. Это один из наиболее важных процессов, за счет которого появилось и продолжает существовать большинство организмов на планете.

Фотосинтез протекает в клетках
Распределение фотосинтеза

Значение фотосинтеза для жизни на Земле

Без фотосинтеза вместо множества живых организмов на нашей планете существовали бы одни лишь бактерии. Именно энергия, полученная в результате данного химического процесса, позволила бактериям эволюционировать.


Любые природные процессы нуждаются в энергии. Она поступает от Солнца. Но правильную форму солнечный свет приобретает лишь после того, как преобразовывается растениями.

Растения используют лишь часть энергии, а остальную накапливают в себе. Ими питаются травоядные животные, которые являются пищей для хищников. В ходе образовавшейся цепочки каждое звено получает необходимые ценные вещества и энергию.

Растения, наподобие солнечных панелей, преобразовывают энергию света
Растения, наподобие солнечных панелей, преобразовывают энергию света

Кислород, вырабатываемый в ходе реакции, необходим для дыхания всем существам. Дыхание представляет процесс, противоположный фотосинтезу. При этом органические вещества окисляются, разрушаются. Полученная энергия используется организмами для выполнения различных жизненно необходимых задач.

В период существования планеты, когда растений было мало, кислород практически отсутствовал. Примитивные формы жизни получали минимум энергии другими способами. Ее было слишком мало для развития. Поэтому дыхание за счет кислорода открыло более широкие возможности.

Еще одна функция фотосинтеза – защита организмов от воздействия ультрафиолетового света. Речь идет об озоновом слое, находящемся в зоне стратосферы на высоте около 20-25 км. Образуется он за счет кислорода, который превращается в озон под действием солнечного света. Без этой защиты жизнь на Земле ограничивалась бы только подводными организмами.

Озоновый слой
Озоновый слой

Организмы выделяют во время дыхания углекислый газ. Он является обязательным элементом фотосинтеза. В противном случае углекислый газ просто накапливался бы в верхних слоях атмосферы, значительно усиливая парниковый эффект.

Это серьезная экологическая проблема, суть которой состоит в повышении температуры атмосферы с негативными последствиями. К ним относится изменение климата (глобальное потепление), таяние ледников, повышение уровня Мирового океана и др.

Функции фотосинтеза:

  • выделение кислорода;
  • образование энергии;
  • образование питательных веществ;
  • создание озонового слоя.

Определение и формула фотосинтеза

Термин «фотосинтез» произошел от сочетания двух слов: фото и синтез. В переводе с древнегреческого они означают «свет» и «соединение» соответственно. Таким образом, энергия света превращается в энергию связей органических веществ.


Упрощенная схема фотосинтеза
Упрощенная схема фотосинтеза

Схема:

Углекислый газ + вода + свет = углевод + кислород.

Научная формула фотосинтеза:

6СО2 + 6Н2О → С6Н12О6 + 6О2.

Фотосинтез происходит так, что непосредственный контакт воды и СО2 не наблюдается.

Значение фотосинтеза для растений

Растениям для роста и развития требуются органические вещества, энергия. Благодаря фотосинтезу они обеспечивают себя данными компонентами. Создание органических веществ – основная цель фотосинтеза для растений, а выделение кислорода считается побочной реакцией.


Образование органических веществ
Образование органических веществ

Как происходит фотосинтез?

Фотосинтез протекает непосредственно в зеленых частях растений – хлоропластах. Они входят в состав растительных клеток. Хлоропласты содержат вещество – хлорофилл. Это и есть тот основной фотосинтетический пигмент, благодаря нему происходит вся реакция. Кроме того, хлорофилл определяет зеленый цвет растительности.


Хлоропласты в клетках растения
Хлоропласты в клетках растения

Для этого пигмента характерна способность поглощать свет. А в клетках растения запускается настоящая биохимическая «лаборатория», в которой вода и СО2 превращаются в кислород, углеводы.

Вода поступает через корневую систему растения, а газ проникает непосредственно в листья. Свет выступает в качестве источника энергии. Когда частица света действует на молекулу хлорофилла, происходит ее активация. В молекуле воды H2O кислород (O) остается невостребованным. Таким образом, он становится побочным для растений, но таким важным для нас, продуктом реакции.

Фазы фотосинтеза


Фотосинтез делится на две стадии: световую и темновую. Протекают они одновременно, но в разных частях хлоропласта. Название каждой фазы говорит само за себя. Световая или светозависимая фаза происходит только при участии частиц света. Темновой или светонезависимой фазе наличие света не требуется.

Прежде чем рассматривать каждую фазу подробнее, стоит разобраться в строении хлоропласта, поскольку оно определяет суть и место протекания стадий. Хлоропласт является разновидностью пластид и внутри клетки расположен отдельно от остальных ее компонентов. Он имеет форму зернышка.

Строение хлоропласта
Строение хлоропласта

Составляющие части хлоропласта, участвующие в фотосинтезе:

  • 2 мембраны;
  • строма (внутренняя жидкость);
  • тилакоиды;
  • люмены (просветы внутри тилакоидов).

Световая фаза фотосинтеза

Протекает на тилакоидах, точнее, их мембранах. Когда на них попадает свет, выделяются и накапливаются негативно заряженные электроны. Таким образом, фотосинтетические пигменты лишаются всех электронов, после чего наступает очередь распада молекул воды:

H2O → Н+ + ОН-

При этом образованные протоны водорода имеют положительный заряд и копятся на внутренней мембране тилакоида. В итоге протоны с зарядом плюс и электроны с зарядом минус разделены лишь мембраной.

Происходит выработка кислорода, как побочного продукта:

4ОН → О2 + 2H2O

В определенный момент фазы электронов и протонов водорода становится слишком много. Тогда в работу вступает фермент – АТФ-синтаза. Его задача состоит в том, чтобы переместить протоны водорода из мембраны тилакоида в жидкую среду хлоропласта – строму.


Фазы фотосинтеза
Фазы фотосинтеза

На этом этапе водород попадает в распоряжение другого переносчика – НАДФ (сокращение от никотинамиддинуклеотидфосфат). Это также разновидность фермента, который ускоряет окислительные реакции в клетках. В данном случае его работа состоит в транспортировке протонов водорода в реакции углеводов.

На данной стадии происходит процесс фотофосфолирования, во время него вырабатывается огромное количество энергии. Ее источником является АТФ – аденозинтрифосфорная кислота.

Краткая схема:

  1. Попадание кванта света на хлорофилл.
  2. Выделение электронов.
  3. Выделение кислорода.
  4. Образование НАДФН-оксидазы.
  5. Образование энергии АТФ.
Вельвичия удивительная
Вельвичия удивительная

Темновая фаза фотосинтеза

Светонезависимая фаза происходит непосредственно в строме. Она представляет собой ряд ферментативных реакций. Углекислый газ, поглощенный на световой стадии, растворился в воде, а на этом этапе он восстанавливается до глюкозы. Также вырабатываются сложные органические вещества.

Реакции темновой фазы делятся на три основных типа и зависят от вида растений (точнее, их метаболизма), в клетках которых происходит фотосинтез:

  • С3-растения;
  • С4-растения;
  • САМ-растения.
Типы реакций темновой фазы
Типы реакций темновой фазы

К С3-растениям относится большая часть культур сельскохозяйственного назначения, которые растут в умеренном климате. В ходе фотосинтеза у них углекислый газ становится фосфоглицериновой кислотой.

К С4-растениям принадлежат субтропические и тропические виды, преимущественно сорняки. Для них характерна трансформация углекислого газа в оксалоацетат. САМ-растения – категория растений, которым не хватает влаги. Они отличаются особенным видом фотосинтеза – CАМ.

С3-фотосинтез

Наиболее распространенным является С3-фотосинтез, который также именуется циклом Кальвина – в честь американского ученого Мелвина Кальвина, который внес огромный вклад в изучение данных реакций и получил за это Нобелевскую премию.

Растения называются С3 из-за того, что во время реакций темновой фазы образуются 3-углеродные молекулы 3-фосфоглицериновой кислоты – 3-PGA. Непосредственное участие принимают различные ферменты.

Цикл Кальвина
Цикл Кальвина

Чтобы образовалась полноценная молекула глюкозы, должно пройти 6 циклов реакций светонезависимой фазы. Углевод – главный продукт фотосинтеза в цикле Кальвина, но помимо него вырабатываются жирные и аминокислоты, а также гликолипиды. У С3 растений фотосинтез проходит исключительно в клетках мезофилла.

Главный недостаток С3-фотосинтеза

Растения, относящиеся к группе С3, характеризуются одним существенным недостатком. Если в окружающей среде отмечается недостаточный уровень влаги, способность к фотосинтезу существенно снижается. Это происходит по причине фотодыхания.

Дело в том, что при невысокой концентрации углекислого газа в хлоропластах (меньше 50:1 000 000) вместо фиксации углерода происходит фиксация кислорода. Специальные ферменты существенно замедляются и расходуют солнечную энергию впустую.

Одновременно с этим замедляется рост и развитие растения, поскольку оно недополучает органические вещества. Также не происходит выброс кислорода в атмосферу.

Морской слизень Elysia chlorotica
Морской слизень Elysia chlorotica

С4-фотосинтез

В отличие от C3-синтеза, здесь реакции фиксации углекислого газа осуществляются в различных клетках растений. Эти виды растений способны справляться с проблемой фотодыхания, и делают они это при помощи двухэтапного цикла.

С одной стороны поддерживается высокий показатель углекислого газа, а с другой – контролируется низкий уровень кислорода в хлоропластах. Подобная тактика позволяет растениям С4 избежать фотодыхания и связанных с ним сложностей. Представителями растений данной группы являются сахарный тростник, кукуруза, просо и др.

По сравнению с растениями С3 они способны намного интенсивнее выполнять процессы фотосинтеза при условии высокой температуры и недостатка влаги. На первом этапе углекислый газ фиксируется в клетках мезофилла, где образуется 4-углеродная кислота. Затем кислота переходит в оболочку и распадается там на 3-углеродное соединение и углекислый газ.

С4-фотосинтез
С4-фотосинтез

На втором этапе полученный углекислый газ начинает работать в цикле Кальвина, где вырабатывается глицеральдегид-3-фосфат и углеводы, необходимые для энергетического обмена.

Благодаря двухэтапному фотосинтезу в растениях С4 образуется достаточное для цикла Кельвина количество углекислого газа. Поэтому ферменты работают в полную силу и не растрачивают энергию напрасно.

Но у и этой системы есть свои минусы. В частности расходуется больший объем энергии АТФ – она необходима для трансформации 4-углеродных кислот в 3-углеродные и в обратном направлении. Таким образом, С3-фотосинтез всегда продуктивнее, чем С4 при должном количестве воды и света.

Что влияет на скорость фотосинтеза?

Фотосинтез может протекать с различной скоростью. Этот процесс зависит от условий окружающей среды:

  • вода;
  • длина волны света;
  • углекислый газ;
  • температура.
График скорости фотосинтеза
График скорости фотосинтеза

Вода является основополагающим фактором, поэтому при ее недостатке реакции замедляются. Для фотосинтеза наиболее благоприятны волны красного и сине-фиолетового спектра. Также предпочтительнее высокая степень освещенности, но лишь до определенного значения – при его достижении связь между освещенностью и скоростью реакции исчезает.

Высокая концентрация углекислого газа обеспечивает быстрые фотосинтетические процессы и наоборот. Определенная температура важна для ферментов, которые ускоряют реакции. Идеальные условия для них – около 25-30℃.

Фотодыхание

Дышать необходимо всем живым существам, и растения не являются исключением. Однако этот процесс у них происходит немного иначе, чем у людей и животных, отчего носит название фотодыхания.

В целом, дыхание – физический процесс, во время которого живой организм и окружающая его среда обмениваются газами. Как и всему живому, растениям для дыхания нужен кислород. Но потребляют они его гораздо меньше, чем вырабатывают.

В ходе фотосинтеза, который происходит только при солнечном свете, растения создают для себя пищу. Во время фотодыхания, которое осуществляется круглосуточно, эти питательные вещества ими поглощаются с целью поддержки метаболизма внутри клеток.

Кислород (как и углекислый газ) проникает в клетки растений через особые отверстия – устьица. Они располагаются в нижней части листочков. На одном листе может располагаться около 1000 устьиц.

Устьица растения
Устьица растения

Газообмен растений в зависимости от освещенности

Процесс газообмена при разной освещенности представлен следующим образом:

  1. Яркий свет. Во время фотосинтеза используется углекислый газ. Растения выделяют больше кислорода, чем потребляют. Его излишки попадают в атмосферу. Углекислый газ потребляется быстрее, чем выделяется дыханием. Неиспользованные углеводы запасаются растением впрок.
  2. Тусклый свет. Газообмен с окружающей средой не происходит, поскольку растение потребляет весь кислород, который производит.
  3. Отсутствие света. Происходят только процессы дыхания. Углекислый газ выделяется, а кислород потребляется.
Газообмен в растениях
Газообмен в растениях

Хемосинтез

Некоторые живые организмы тоже способны к образованию моноуглеводов из воды и углекислого газа, при этом они не нуждаются в солнечном свете. К ним относятся бактерии, а процесс преобразования энергии называется хемосинтезом.

Хемосинтез являет собой процесс, во время которого синтезируется глюкоза, но вместо солнечной энергии используются химические вещества. Протекает он в зонах с достаточно высокой температурой, подходящей для работы ферментов, и отсутствием света. Это могут быть области вблизи гидротермальных источников, утечек метана на морских глубинах и др.

Хемосинтез
Хемосинтез

Источником энергии для бактерий выступают химические связи метана и сероводорода. В результате хемосинтеза возникает сера и ее соединения в качестве побочных продуктов реакции.

История открытия фотосинтеза

История открытия и изучения фотосинтеза берет начало в 1600 г., когда Ян Батист ван Гельмонт решил разобраться в актуальном на тот момент вопросе: чем питаются растения и откуда они черпают полезные вещества?

В то время считалось, что источником ценных элементов является почва. Ученый поместил в емкость с землей веточку ивы, но предварительно измерил их вес. На протяжении 5 лет он ухаживал за деревом, поливая его, после чего снова провел измерительные процедуры.

Выяснилось, что вес земли снизился на 56 г, однако деревце стало в 30 раз тяжелее. Это открытие опровергло мнение о том, что растения питаются почвой и породило новую теорию – водного питания.

Опыт Яна Батиста ван Гельмонта
Опыт Яна Батиста ван Гельмонта

В дальнейшем многие ученые пытались ее опровергнуть. Например, Ломоносов считал, что частично структурные компоненты попадают к растениям через листья. Он руководствовался растениями, которые успешно растут на засушливых территориях. Однако доказать эту версию не удалось.

Ближе всего к реальному положению вещей оказался Джозеф Пристли – ученый-химик и священник по совместительству. Однажды он обнаружил погибшую мышь в перевернутой вверх дном банке, и этот случай заставил его провести в 1770-х годах ряд опытов с грызунами, свечами и емкостями.

Пристли обнаружил, что свеча всегда быстро тухнет, если накрыть ее сверху банкой. Также не может выжить и живой организм. Ученый пришел к выводу, что существуют некие силы, которые делают воздух пригодным для жизни, и попытался связать это явление с растениями.

Он продолжил ставить опыты, но в этот раз попробовал поместить под стеклянную емкость горшочек с растущей мятой. К огромному удивлению, растение продолжало активно развиваться. Тогда Пристли поместил под одну банку растение и мышь, а под вторую – только животное. Результат очевиден – под первой емкостью грызун остался невредим.

Опыт Пристли
Опыт Пристли

Достижение химика стало мотивацией для других ученых всего мира повторить эксперимент. Но загвоздка была в том, что священник проводил опыты в дневное время. А, к примеру, аптекарь Карл Шееле – ночью, когда появлялось свободное время. В итоге, ученый обвинил Пристли в обмане, ведь его подопытные не переносили эксперимент с растением.

Между химиками разразилось настоящее научное противостояние, которое принесло существенную пользу и дало возможность сделать еще одно открытие – чтобы растения восстанавливали воздух, им нужен солнечный свет.

Конечно, фотосинтезом это явление тогда еще никто не называл, да и оставалось немало вопросов. Однако в 1782 ботаник Жан Сенебье смог доказать, что при наличии солнечного света растения способны расщеплять углекислый газ на клеточном уровне. А в 1864, наконец, появилось экспериментальное доказательство того, что растения поглощают углекислый газ и выделяют кислород. Это заслуга ученого из Германии – Юлиуса Сакса.

Источник: kipmu.ru

Фотосинтетические пигменты

Фотосинтетические пигменты – это вещества, поглощающие энергию света. Существуют три вида этих пигментов: хлорофиллы, каротиноиды и фикобилины.

Самыми важными для фотосинтеза являются хлорофиллы. Они находятся во всех зеленых частях растений: листьях, стебле. Именно они дают зеленую окраску растениям. Свое название они получили от двух греческих слов: «хлорос» – зеленый, «филлион» – лист.

Все зеленые пигменты хлорофиллы хранятся в специальных контейнерах внутри клетки, которые называются хлоропластами. В каждой клеточке листа содержится 20–50 хлоропластов и все они участвуют в процессе фотосинтеза.

Интересно, что хлоропласты имеются не только у растений. Некоторые бактерии и протисты имеют эти органоиды, что позволяет им также производить кислород.

Каротиноиды имеют оранжевую, красную, желтую окраску. Они дают красивый цвет листьям осенью. Яркие цвета моркови, лимона, яблок, арбуза не обходятся без каротиноидов.

Красные водоросли содержат фикобилины красного или синего цвета, которые помогают им поглощать солнечный свет, находясь глубоко на морском дне.

Опыт, который расширил понимание фотосинтеза

Интересный опыт провёл в 1771 году английский химик Джозеф Пристли. В два закрытых стеклянных сосуда он поместил по мыши с той разницей, что к одной из мышек он положил веточку мяты. Благодаря кислороду, выделяемому мятой, мышь жила длительное время, тогда как вторая мышь задыхалась и умирала. В дальнейших опытах Пристли понял, что эксперимент возможен только на свету. В темноте веточка мяты не помогала, и все мышки погибали.

Так он установил, что зелёные части растений способны выделять кислород, необходимый для дыхания.

Как проходит процесс фотосинтеза

Фотосинтез происходит в две фазы: световую и темновую. Обе фазы протекают в хлоропластах листа растения.

Во время световой фазы необходим солнечный свет. В этой стадии обязательно участвует вода и в конце формируются вещества с большим запасом энергии: АТФ (аденозинтрифосфат) и НАДФ (никотинамидадениндинуклеотидфосфат). Они нужны для темновой фазы. Кроме этого выделяется кислород как побочный продукт. Далее он уходит из клеток листа и начинается темновая фаза фотосинтеза.

Главные условия для темновой фазы – это отсутствие света, наличие воды, углекислого газа и АТФ с НАДФ из световой фазы. В конечном итоге образуется глюкоза и большое количество энергии.

Почему фотосинтез невероятно важен для всех живых организмов

Вся жизнь на планете Земля обязана фотосинтезу. Этот процесс – единственный поставщик кислорода для всех живых организмов. Из кислорода образовался и поддерживается до сих пор озоновый слой, который охраняет нас от опасного ультрафиолетового излучения.

Фотосинтез регулирует содержание углекислого газа в атмосфере и держит его на относительно постоянном уровне.

Глюкоза накапливается в растениях в виде крахмала. Он является запасным питательным веществом для растения.

Источник: anews.com

Где происходит фотосинтез у растений

Процесс фотосинтеза происходит внутри клеток растений. Растительная клетка имеет сложное строение и состоит из множества частей – органоидов (органелл). Фотосинтез происходит в следующих органоидах (органеллах) клетки:

Фотосинтез проходит в слое мезофилла. Это основная внутренняя ткань растения, в которой расположены растительные клетки, содержащие хлоропласты.  Хлоропласты – мельчайшие пластиды, содержащие специальное вещество – хлорофилл, которое отвечает за фотосинтез растений.

Хлорофилл поглощает световую энергию только в определенном диапазоне. Для успешного прохождения процесса фотосинтеза важны красная и синяя составляющая солнечного спектра. Зеленые волны не поглощаются, а отражаются, поэтому лист растения кажется окрашенным в зеленый цвет.

Помимо хлоропластов в составе клетки имеются другие важные для фотосинтеза части. Вакуоль накапливает воду, которая необходима для прохождения химических реакций фотосинтеза. Клеточная мембрана и стенки клетки обеспечивают необходимый для реакции газообмен.

Все эти вещества должны свободно проникать в ткань листа и проходить сквозь клеточные мембраны. И, наконец, важнейшей частью растительной клетки является ее ядро. В его состав входят генетические марки, которые обеспечивают правильное функционирование всей клеточной структуры.

Что такое фотосинтез и как он проходит

Фотосинтез – химический процесс создания в клетках растений органического вещества из неорганических под воздействием света. Условия необходимые для процесса протекания фотосинтеза — это наличие исходных веществ:

  • Углекислого газа — CO2;
  • Воды — H2O .

В результате фотосинтеза образуются следующие вещества:

  • Глюкоза — C6H12O6;
  • Кислород — O2.

Химическую формулу процесса фотосинтеза можно представить следующим образом:

6CO2 + 6H2O + Qсвета = C6H12O6 + 6O2

Углекислый газ в избытке содержится в атмосфере. Он поступает в клетки растения через многочисленные нижние отверстия листа – устьица. Вода необходима для жизнедеятельности растения и содержится в почве.

Из исходных неорганических веществ под воздействием солнечного света синтезируется первичный продукт фотосинтеза глюкоза, а остатки неиспользованного кислорода выделяются в атмосферу.

Зачем растениям нужна глюкоза? Это соединение играет в их жизни важнейшую роль. Вот лишь некоторые процессы, происходящие в тканях растения с участием этого органического вещества:

  • Дыхание – процесс расщепления глюкозы на воду и углекислый газ с высвобождением большого количества тепловой энергии;
  • Создание запасов органических веществ – создание из глюкозы более стойкого к внешним воздействиям вещества – крахмала, который может храниться в клетках растения длительное время и расходоваться при необходимости;
  • Синтез белков, жиров и углеводов – глюкоза является одним из исходных материалов для производства этих веществ, которые необходимы растению для его роста и обеспечения других важнейших процессов в его жизнедеятельности.

Таким образом, основной продукт фотосинтеза- глюкоза является незаменимым источником энергии для жизни растения и материалом для строительства его организма.

Этапы процесса в клетках растений

Фотосинтез в клетках растений осуществляется в 3 этапа:

  • Фотофизический или первичный этап;
  • Фотохимический или световой этап;
  • Ферментативный или темновой этап.

Сущность первичного этапа фотосинтеза заключается в накоплении в хлоропластах растительной клетки световой энергии и передаче ее в особый реакционный центр для обеспечения дальнейших фотохимических процессов.

В процессе фотосинтеза органоиды растения хлоропласты, а точнее молекулы хлорофилла поглощают кванты света и переходят в возбужденное состояние. Но они не остаются в этом состоянии и не хранят в себе световую энергию. Эта энергия передается в молекулы-ловушки, из которой они попадают в реакционный центр.

Около 200-400 молекул хлорофилла имеют энергетическую связь с одной молекулой-ловушкой. В накоплении и передаче световой энергии связи между молекулами играют решающую роль. Продолжением фотофизического является фотохимический этап фотосинтеза, в котором используется уже накопленная световая энергия. Этот этап называется световым, хотя название это неточное.

Фотосинтез протекает в клетках

На самом деле он может проходить и при отсутствии света, используя накопленную ранее световую энергию. Но в процессе фотосинтеза накопление световой энергии и использование ее в фотохимических реакциях происходит одновременно, поэтому фотофизический и фотохимический этап фотосинтеза принято считать его световой фазой.

Этот процесс проходит с использованием накопленной световой энергии и считается частью световой фазы фотосинтеза. 3 этап фотосинтеза – ферментативный. Он может проходить без участия света, так как исходные материалы для его проведения уже получены после прохождения световых этапов.

На 3 этапе из углекислого газа, поступившего в растительную клетку извне, с участием продуктов световой фазы в результате фотосинтеза продуцируется глюкоза. Кислород, полученный при расщеплении воды, выделяется в атмосферу.

Световая фаза

Световая фаза фотосинтеза начинается со сбора световой энергии в светособирающих комплексах молекул хлорофилла и передачи ее в реакционные центры этих комплексов. Молекулы хлорофилла расположены в клетках растений не хаотически.

Они соединяются друг с другом особыми энергетическими связями. Поглощая квант света, молекула хлорофилла получает частицу энергии, которую она передает по энергетическим связям к молекуле, называемой молекулой-ловушкой или реакционным центром.

Каждая молекула хлорофилла может получить фотон света достаточно редко. Но чтобы процессы в растительной клетке не прерывались, фотоны собираются с некоторого участка листа в один реакционный центр.

В него световая энергия будет поступать намного чаще, чем из отдельных молекул хлорофилла. И химические реакции здесь будут идти практически непрерывно. Получив световую энергию, реакционные центры проводят фотолиз воды, которая в достаточном количестве находится в тканях клетки.

Формула фотолиза воды может быть представлена следующим образом;

20 + Qсвета -> 4Н+ 4е— + 02

Вода под воздействием световой энергии распадается на следующие составляющие:

  • Протоны водорода (Н+);
  • Электроны водорода (е);
  • Кислород (О2).

Но это еще не конечные продукты световой фазы фотосинтеза. Протоны идут на восстановление НАДФ до НАДФН. НАДФ (никотинамидадениндинуклеотидфосфат) – соединение, присутствующее во всех растительных и животных клетках и принимающее участие в фотосинтетических процессах.

Это фермент, играющий роль катализатора. Он принимает на себя протоны водорода, превращаясь в НАДФН, а затем отдает их в процессе дальнейших химических реакций. Восстановленный НАДФН и является источником водорода, который используется на темновой стадии фотосинтеза для получения глюкозы из углекислого газа.

Она является источником энергии в различных химических реакциях. В них молекула АТФ переходит в АДФ (аденозиндифосфат), выделяя огромное количество энергии. АТФ – является один из конечных продуктов световой фазы фотосинтеза у растений – энергетическая составляющая, необходимая для прохождения химических реакций темновой фазы.

При фотолизе воды образуется кислород. Так как он не принимает участия в дальнейших химических процессах, растение выделяет его в окружающую среду. Итак, конечными продуктами световой фазы фотосинтеза являются:

  • НАДФН;
  • АТФ;
  • Молекулярный кислород.

Световую фазу фотосинтеза можно представить следующей формулой:

Н20 + Qсвета -> НАДФН + АТФ + 02

Темновая фаза

Темновая или ферментативная фаза – процесс получения органической глюкозы из углекислого газа. Для ее прохождения свет уже не требуется, если конечные продукты световой фазы имеются в наличии.

Путь С3 называют циклом Кальвина. Он присущ большинству растений на нашей планете. Это сложнейший процесс, проходящий в несколько этапов. Основными этапами цикла Кальвина являются:

  • Карбоксилирование;
  • Восстановление;
  • Регенерация.

В цикле Кальвина осуществляется множество химических реакций, в результате которых синтезируется конечный продукт процесса — органическое соединение глюкоза. Основным отличием этого пути фотосинтеза является первый этап карбоксилирования, когда углекислый газ под воздействием ферментов образует 3-углеродное соединение – фосфоглицериновую кислоту. Поэтому этот путь фотосинтеза назван С3.

Этот путь является модификацией цикла Кальвина и в биологии называется циклом Хэтча-Слэка. Здесь в конечном итоге также образуется глюкоза. Но в этом цикле проходят химические реакции, отличные от С3— пути и используются другие ферменты. Этапы прохождения цикла Хэтча-Слэка:

  • Акцептация;
  • Декарбоксилирование;
  • Цикл Кальвина.

После захвата углекислого газа на этапе акцептации синтезируются 4-углеродные соединения, поэтому этот путь фотосинтеза назван С4. Особенности прохождения С4 пути позволяют растениям накапливать органические кислоты, образующиеся на первых этапах цикла, экономить воду и проводить процесс фотосинтеза в самое жаркое время.

Для этих этапов необходим углекислый газ, но суккуленты не могут получить его днем, поскольку в жару их устьица закрыты и открываются только ночью. А цикл Кальвина у этих растений может проходить днем, когда устьица растений закрыты.

Значение фотосинтеза для растений

В отличие от животных, способных к движению и поиску пищи, растения ведут неподвижный образ жизни. Получить сложные органические соединения сахара, необходимые для строительства их тканей, им неоткуда. Небольшое количество органики растения получают из почвы, но эти соединения они не могут использовать для своей жизнедеятельности в чистом виде.

Но этого питания недостаточно для их полноценного развития. Да и такой процесс охоты связан с большими затратами энергии, которую необходимо откуда-то получать. Вот почему растения приспособились синтезировать органические вещества в своих клетках.

Поэтому в тканях этих живых существ в ходе эволюции сформировался процесс фотосинтеза. Он играет в жизни растений решающую роль. Без него они не могли бы получить необходимые для их жизни органические вещества.

Для растений процесс фотосинтеза решает следующие задачи:

  • Получение органики для строительства тканей организма и участия в химических процессах синтеза веществ метаболизма;
  • Накопление органических веществ и их хранение;
  • Использование накопленной органики для получения энергии путем расщепления.

Благодаря этому процессу растения стали основным источником органических веществ, составляющих основу любой пищевой цепи. Также поглощение углекислого газа и выделение кислорода в процессе фотосинтеза играет важную роль в решении многих экологических проблем.

Источник: florist-club.com