Фотосинтез

Фотосинтез — синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:

6СО2 + 6Н2О + Qсвета → С6Н12О6 + 6О2.

У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d), главным является хлорофилл a. В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.


Фотосинтез

Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы. У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы.

Световая фаза

Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:

Н2О + Qсвета → Н+ + ОН.


Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы •ОН:

ОН → •ОН + е.

Радикалы •ОН объединяются, образуя воду и свободный кислород:

4НО• → 2Н2О + О2.

Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н+ заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ+ (никотинамидадениндинуклеотидфосфат) до НАДФ·Н2:

+ + 2е + НАДФ → НАДФ·Н2.

Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н2; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

1 — строма хлоропласта; 2 — тилакоид граны.

Темновая фаза


Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н2, образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

6СО2 + 24Н+ + АТФ → С6Н12О6 + 6Н2О.

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С3— и С4-фотосинтез.

С3-фотосинтез

iv>

С3-фотосинтез

Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С3) соединения. С3-фотосинтез был открыт раньше С4-фотосинтеза (М. Кальвин). Именно С3-фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С3-фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

Фотодыхание

Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:

О2 + РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать.


поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО2. В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО2. Фотодыхание приводит к понижению урожайности С3-растений на 30–40% (С3-растения — растения, для которых характерен С3-фотосинтез).

С4-фотосинтез

С4-фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С4-растениями. В 1966 году австралийские ученые Хэтч и Слэк показали, что у С4-растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С4-растениях стали называть путем Хэтча-Слэка.

Для С4-растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой. В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО2 и, самое главное, не взаимодействует с О2. В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.

>

Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО2 и НАДФ·Н2.

Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С3-фотосинтезе.

С4-фотосинтез   Строение С4-растений

Строение С4-растений:
1 — наружный слой — клетки мезофилла; 2 — внут­ренний слой — клетки обкладки; 3 — «Кранц-анатомия»; 4, 5 — хлоро­пласты; 4 — много­числен­ные граны, крахмала мало; 5 — немного­числен­ные граны, крахмала много.

С4-фотосинтез:
1 — клетка мезофилла; 2 — клетка обкладки проводящего пучка.

   

Значение фотосинтеза

Благодаря фотосинтезу, ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ. Из кислорода образуется озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации.

При фотосинтезе зеленый лист использует лишь около 1% падающей на него солнечной энергии, продуктивность составляет около 1 г органического вещества на 1 м2 поверхности в час.

Хемосинтез

Синтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом. К хемосинтезирующим организмам относятся некоторые виды бактерий.

Нитрифицирующие бактерии окисляют аммиак до азотистой, а затем до азотной кислоты (NH3 → HNO2 → HNO3).

Железобактерии превращают закисное железо в окисное (Fe2+ → Fe3+).


Серобактерии окисляют сероводород до серы или серной кислоты (H2S + ½O2 → S + H2O, H2S + 2O2 → H2SO4).

В результате реакций окисления неорганических веществ выделяется энергия, которая запасается бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза органических веществ, который проходит аналогично реакциям темновой фазы фотосинтеза.

Хемосинтезирующие бактерии способствуют накоплению в почве минеральных веществ, улучшают плодородие почвы, способствуют очистке сточных вод и др.

 

Источник: licey.net

Фотосинтез — это…

Термин имеет древнегреческие корни: «фото» — свет и «синтез» — это соединение.

Фотосинтез – это сложная химическая реакция, в ходе которой энергия солнечного света (реже – инфракрасного излучения) преобразуется в энергию химическую при активном участии фотосинтетических пигментов (у растений – хлорофилла, у бактерий – бактериохлорофилла и бактериородопсина).

Более кратко и понятно фотосинтез можно охарактеризовать как процесс, на протяжении которого происходит образование органического вещества из неорганических субстанций.

Важнейшими результатами фотосинтеза у растений являются:

  1. поглощение из воздуха углекислого газа (СО2);
  2. выделение в атмосферу кислорода (О2) – его источником служит вода (H2O), от которой отрываются атомы водорода;
  3. производство собственных питательных элементов (прежде всего глюкозы), хранящихся в растительных клетках.

Где происходят световые реакции фотосинтеза

У фотосинтезирующих бактерий фотосинтез проистекает несколько по-другому: там генератором кислорода является не вода, а сероводород (H2S). Однако суть явления от этого не меняется: в его основе лежит процесс, характеризующийся перенесением электронов от молекул-поставщиков (доноров) к принимающим структурам (акцепторам).

Зайдя в лес, мы сразу же ощущаем, как легко там дышится.

Причина тому – богатое содержание в воздухе кислорода, выделяемого в атмосферу зелёной растительностью (деревьями, кустарниками, травами, мхами и т.д.) в результате фотосинтеза.

В шахте или пещере нет ни растений, ни света, поэтому там мы задыхаемся, рискуя потерять сознание. На этом элементарном примере легко понять, какую огромную роль играет фотосинтез для обеспечения жизни на нашей планете. Поговорим об этом подробнее.

История изучения


Первая попытка проникнуть в тайны фотосинтеза была предпринята в XVIII веке, когда было обнаружено, что растения на свету выделяют кислород (О2), необходимый для дыхания и горения.

Дальнейшие опыты показали, что кроме выделения кислорода растения поглощают из воздуха углекислый газ, синтезируя при этом органическое вещество при участии воды и света.

В XIX веке удалось выделить хлорофиллы, а позже разделить и изучить пигменты по отдельности благодаря экспериментам по освещению листьев растений фотонами света с разной длиной волны. Выяснилось, что интенсивность фотосинтеза взаимосвязана со спектром поглощения хлорофилла.

В ХХ веке была раскрыта окислительно-восстановительная сущность фотосинтеза и механизм его отдельных стадий. Наконец, американский биохимик М.Кальвин, используя меченые изотопы углерода, подробно описал процесс усвоения растениями углекислого газа, за что был удостоен Нобелевской премии.

Фотосинтез в биологии

Фотосинтез в биологии – это выделение кислорода и органических веществ из неорганических субстанций под действием световой энергии.

Он присущ всем организмам, использующим свет для получения питательных веществ из неорганических соединений (в научном мире их называют фотоавтотрофами).

Растения-фотоавтотрпы впитывают из воздуха углекислый газ, а из почвы – воду, образуя глюкозу, которая в дальнейшем преобразуется в крахмал. Последний служит для растения питательной средой и источником энергии.

Формула фотосинтеза для зелёных растений в упрощённом виде выглядит следующим образом:

Важно ещё раз отметить, что молекулы кислорода отщепляются именно из воды, а не из двуокиси углерода.

Реакция фотосинтеза протекает на клеточном уровне в хлоропластах, содержащих главный пигмент – хлорофилл, который поглощает и трансформирует солнечную энергию. Он же придаёт растениям (в том числе водорослям) зелёную окраску.

Хлоропласты содержатся как в листьях, так и в стеблях растений (большей частью всё-таки в листьях). Их структура очень сложная и состоит из следующих основных элементов:

  1. наружная мембрана;
  2. внутренняя мембрана (оболочка);
  3. строма (жидкостная среда, куда погружены мембраны);
  4. тилакоиды, сгруппированные в граны (мембранные модули, где протекает световая фаза фотосинтеза);
  5. зерно крахмала;
  6. рибосома (часть цитоплазмы клетки, участвующая в биосинтезе белка);
  7. пластидная ДНК;
  8. жировая капля (пластоглобула).

Где происходят световые реакции фотосинтеза

Даже такие примитивные растения как мхи, практически не имеющие корней и сосудистой ткани, мало приспособленные к жизни на суще, содержат хлоропласты и хлорофилл в своих клетках, что позволяет им полноценно участвовать в фотосинтезе.

Световая и темновая фазы фотосинтеза

В фотосинтезе различают две фазы: световую и темновую.

Световая фаза связана с солнечным излучением, обеспечивающим протекание химических реакций. Следующая за ней темновая фаза – светонезависимая (о чём говорит само название).

Световая фаза

На данной стадии в тилакоидах хлоропластов происходит образование высокоэнергетических продуктов: АТФ (аденозинтрифосфорная кислота) и НАДФ (фермент, который используется в качестве восстановителя).

Главный пигмент фотосинтеза – хлорофилл. Его молекулы улавливают световое излучение, а входящие в состав молекул электроны «запрыгивают» на другой (более высокий) энергетический уровень, захватываются принимающей средой (акцептором) и передаются по электрохимическим цепям к мембранам тилакоидов.

Там же накапливаются и протоны водорода, что приводит к созданию электрохимического градиента (потенциала), необходимого для синтеза АТФ и образования ферментов.

На тилакоидных мембранах образуются две разновидности фотосистем, которые испускают электроны под действием света. Электроны первой системы участвуют в восстановлении НАДФ, электроны второй – в синтезе АТФ.

Именно во второй системе происходит фотолиз воды – расщепление водной молекулы с выделением кислорода и образованием протонов водорода.

Таким образом, световая фаза охватывает три важнейших процесса:

  1. синтез АТФ;
  2. образование НАДФ;
  3. выделение кислорода.

Кислород выбрасывается в атмосферу, а АТФ и НАДФ перемещаются в строму хлоропласта, где принимают участие в реакциях темновой фазы.

Темновая фаза

В темновой фазе, протекающей в строме хлоропласта, происходит восстановление углекислого газа до глюкозы. При этом используется энергия АТФ и восстановительная сила НАДФ, то есть ресурсы, накопленные в период прохождения световой фазы.

Последовательность реакций, итогом которых является выделение глюкозы, получила название «цикл Кальвина» (в честь вышеупомянутого американского биохимика). Он выражается следующей формулой:

На самом деле кроме глюкозы образуются и другие органические соединения, такие как жирные кислоты, аминокислоты, нуклеотиды, гликолипиды. Протоны водорода, полученные в результате фотолиза воды и связанные в молекулах НАДФ, участвуют в синтезе углеводов.

Поскольку для реакций темновой фазы световая энергия не требуется, они могут протекать как на свету, так и в темноте.

Заключение

Роль зелёных растений на Земле метко охарактеризовал великий русский учёный К. Тимирязев (он назвал эту роль космической):

«Все органические вещества … произошли от веществ, выработанных листом. Вне листа … в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического».

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Источник: KtoNaNovenkogo.ru

Световая фаза фотосинтеза:

  • фотоны света ударяют в молекулы хлорофилла, которые находятся в фотосистеме 2
  • хлорофилл переходит в возбужденное состояние и создается энергия резонанса, которая передается соседним молекулам хлорофилла
  • далее эта энергия достигает рекреационного центра Р680 и выбивает электрон с молекулы хлорофилла, а другой фотон точно таким же путем выбивает еще одни электрон
  • рядом с хлорофиллом Р680   располагается пластохинон— переносчик электронов, он захватывает сразу два электрона, которые высвободились из хлорофилла Р680, а также захватывает и два протона из стромы хлоропласта
  • далее пластохинон переносит электронык цитохром-b6f-комплексу
  • в этот момент два протона высвобождаются в пространство между двумя мембранами хлоропласта (люмен)
  • в цитохром-b6f-комплексе также идет захват протонов и дальнейшее их высвобождение
  • далее электроны захватываются пластоцианином
  • с пластоцианина электроны уходят в фотосистему 1
  • два недостающих электрона фотосистемы 2 возмещаются благодаря фотолизу воды, при котором высвобождаются протоны для создания протонного градиента, как в процессе окислительного фосфорилирования в митохондриях
  • фотолиз воды- процесс распада воды под действием солнечного света, он происходит на внутренней поверхности мембраны тилакоида
  • при фотолизе двух молекул воды образуется одна молекула кислорода

2 Н2О — 4е = 4 Н+2

Отданные водой электроны идут на восстановление израсходованных хлорофиллом электронов при образовании АТФ из АДФ. Таким образом получается восстановленный хлорофилл. Образованный в этой реакции кислород выделяется в атмосферу.

  • проходя по электрон- транспортной цепи, энергия возбужденных электронов используется для перекачивания протонов из стромы хлоропласта во внутритилакоидное пространство, что создает протонный градиент
  • протонный градиент сообщает энергию АТФ-синтазе для фосфорилирования АДФ в АТФ
  • в фотосистеме 1 также происходит возбуждение хлорофилла P700 фотонами света, как и в фотосистеме 2 (они поглощают свет только длиной волны 680 и 700 нм)
  • возбужденные электроны уходят на ферредоксин
  • ферредоксин переносит электроны на ферредоксин-НАДФ-редуктазу
  • после этого переноса электронов синтезируется НАДФ⋅2Н

Следует отметить, что фотоны света попадают на фотосистемы 1 и фотосистемы 2 одновременно.

Образовавшиеся НАДФ⋅2Н и АТФ поступают в строму хлоропласта, где активно используются для темновой фазы фотосинтеза.

Схема движения электронов:

Источник: ladle.ru

Фо­то­син­тез про­ис­хо­дит в две фазы, а имен­но в све­то­вую фазу и тем­но­вую фазу.

Во время све­то­вой фазы про­ис­хо­дит об­ра­зо­ва­ние энер­гии, ко­то­рая затем рас­хо­ду­ет­ся на тем­но­вые ре­ак­ции. Про­цесс све­то­вой фазы фо­то­син­те­за вклю­ча­ет в себя нецик­ли­че­ское фо­то­фос­фо­ри­ли­ро­ва­ние и фо­то­лиз воды. В ка­че­стве по­боч­но­го про­дук­та ре­ак­ции в ре­зуль­та­те фо­то­ли­за воды вы­де­ля­ет­ся кис­ло­род. Ре­ак­ция про­ис­хо­дит на мем­бра­нах ти­ла­ко­и­дов.

Квант крас­но­го света, по­гло­щен­ный хло­ро­фил­лом П680 (фо­то­си­сте­ма ІІ), пе­ре­во­дит элек­трон в воз­буж­ден­ное со­сто­я­ние (рис. 6). Воз­буж­ден­ный све­том элек­трон при­об­ре­та­ет боль­шой запас энер­гии, вслед­ствие чего пе­ре­ме­ща­ет­ся на более вы­со­кий энер­ге­ти­че­ский уро­вень. Такой элек­трон за­хва­ты­ва­ет­ся ак­цеп­то­ром элек­тро­нов Х, пе­ре­ме­ща­ясь с одной сту­пе­ни на дру­гую, то есть от од­но­го ак­цеп­то­ра к дру­го­му, он те­ря­ет энер­гию, ко­то­рая ис­поль­зу­ет­ся для син­те­за АТФ.

Где происходят световые реакции фотосинтеза

Рис. 6. Схема про­цес­сов све­то­вой фазы фо­то­син­те­за

Место вы­шед­ших элек­тро­нов мо­ле­ку­лы хло­ро­фил­ла П680, за­ни­ма­ют элек­тро­ны воды, так как вода под дей­стви­ем света под­вер­га­ет­ся фо­то­ли­зу, где в ка­че­стве по­боч­но­го про­дук­та об­ра­зу­ет­ся кис­ло­род. Фо­то­лиз про­ис­хо­дит в по­ло­сти ти­ла­ко­и­да (рис. 7).

Где происходят световые реакции фотосинтеза

Рис. 7. Фо­то­лиз воды

В фо­то­си­сте­ме І воз­буж­ден­ные элек­тро­ны под дей­стви­ем фо­то­на света также пе­ре­хо­дят на более вы­со­кий уро­вень и за­хва­ты­ва­ют­ся ак­цеп­то­ром Y. В конце кон­цов, элек­тро­ны до­хо­дят от Y до пе­ре­нос­чи­ка – НАДФ, и, вза­и­мо­дей­ствуя с иона­ми во­до­ро­да, вы­де­лен­ны­ми при фо­то­ли­зе воды, об­ра­зу­ют вос­ста­нов­лен­ный НАДФН. НАДФ рас­шиф­ро­вы­ва­ет­ся как – ни­ко­ти­на­ми­да­де­нин­ди­нук­лео­ти­дфос­фат.

Где происходят световые реакции фотосинтеза

Рис. 8. Вза­и­мо­дей­ствие фо­то­си­сте­мы I и фо­то­си­сте­мы II

Место вы­шед­ших элек­тро­нов в мо­ле­ку­ле П700 за­ни­ма­ют элек­тро­ны, по­лу­чен­ные от фо­то­си­сте­мы II П680 (рис. 8). Таким об­ра­зом, на свету элек­тро­ны пе­ре­ме­ща­ют­ся от воды к фо­то­си­сте­мам II и I, и затем к НАДФ. Такой од­но­на­прав­лен­ный поток элек­тро­нов носит на­зва­ние нецик­ли­че­ско­го по­то­ка элек­тро­нов, а об­ра­зо­ва­ние АТФ, ко­то­рое при этом про­ис­хо­дит, носит на­зва­ние нецик­ли­че­ско­го фо­то­фос­фо­ри­ли­ро­ва­ния. Таким об­ра­зом, в све­то­вой фазе об­ра­зу­ют­ся АТФ и вос­ста­нов­лен­ный НАДФ, бо­га­тые энер­ги­ей, и в ка­че­стве по­боч­но­го про­дук­та ре­ак­ции вы­де­ля­ет­ся кис­ло­род.

Тем­но­вая фаза фо­то­син­те­за. Если све­то­вая фаза про­те­ка­ет толь­ко на свету, то тем­но­вая фаза не за­ви­сит от света. Тем­но­вая фаза про­те­ка­ет в стро­ме хло­ро­пла­стов, куда пе­ре­но­сят­ся бо­га­тые энер­ги­ей со­еди­не­ния, а имен­но АТФ и вос­ста­нов­лен­ный НАДФ, кроме этого, туда же по­сту­па­ет уг­ле­кис­лый газ в ка­че­стве ис­точ­ни­ка уг­ле­во­дов, ко­то­рый бе­рет­ся из воз­ду­ха и по­сту­па­ет в рас­те­ния через устьи­ца. В ре­ак­ци­ях тем­но­вой фазы уг­ле­кис­лый газ вос­ста­нав­ли­ва­ет­ся до глю­ко­зы с по­мо­щью энер­гии, за­па­сен­ной мо­ле­ку­ла­ми АТФ и НАДФ.

Пре­вра­ще­ние уг­ле­кис­ло­го газа в глю­ко­зу в ходе тем­но­вой фазы фо­то­син­те­за по­лу­чи­ло на­зва­ние цикла Каль­ви­на – по имени его пер­во­от­кры­ва­те­ля.

Пер­вая ста­дия фо­то­син­те­за – све­то­вая – про­ис­хо­дит на мем­бра­нах хло­ро­пла­ста в ти­ла­ко­и­дах.

Вто­рая ста­дия фо­то­син­те­за – тем­но­вая – про­те­ка­ет внут­ри хло­ро­пла­ста, в стро­ме.

Сум­мар­ное урав­не­ние фо­то­син­те­за вы­гля­дит сле­ду­ю­щим об­ра­зом. При вза­и­мо­дей­ствии 6 мо­ле­кул уг­ле­кис­ло­го газа и 6 мо­ле­кул воды об­ра­зу­ет­ся одна мо­ле­ку­ла глю­ко­зы и вы­де­ля­ет­ся шесть мо­ле­кул кис­ло­ро­да. Этот про­цесс про­те­ка­ет на свету в хло­ро­пла­стах у выс­ших рас­те­ний.

Где происходят световые реакции фотосинтеза

Таким об­ра­зом, фо­то­син­тез – про­цесс пре­вра­ще­ния ве­ще­ства и энер­гии.

Источник: www.sites.google.com