Фотосинтез является наиболее важных биологическим процессом для растений, поскольку именно за счет него растения получают необходимые для их роста, а затем и цветения, полезные вещества. В процессе фотосинтеза принимают участие самые разнообразные факторы, включая тепло и видимый свет, воду и углекислый газ, а также невидимые человеческим глазом инфракрасные и ультрафиолетовые лучи.Какое излучение обеспечивает фотосинтез

Процесс работы фотосинтеза

Интенсивность фотосинтеза в клетках растений напрямую зависит от количества поглощенного и усвоенного ими углекислого газа, в чем самое непосредственное участие принимает солнечный свет. Так, наиболее интенсивное усвоение CO2 наблюдается в красных лучах. После этого во время перемещения света в зеленый спектр процесс фотосинтеза постепенно ослабевает.

Однако, начиная с сине-фиолетовой части спектра электромагнитного излучения, наблюдается второй подъем интенсивности поглощения углекислого газа, пик которого приходится на УФ лучи с длиной волны (320-400 нанометров), то есть длинноволновый (УФ-А) ультрафиолет. Таким образом, необходимо сделать вывод, что фотосинтез наиболее интенсивно происходит под действием ультрафиолета.


Кроме того, и что доказано на практике, ультрафиолет обладает и другими полезными качествами для растений, а именно:

  • стимулирует деление клеток, но тормозит при этом их удлинение, что обеспечивает формирование прочного ствола;
  • активизирует обменные процессы в клетках растений;
  • стимулируют закаливание растений, делая их более устойчивыми к пониженным температурам.

При этом стоит отметить, что это касается, прежде всего, средневолнового ультрафиолетового излучения, длинна волн которого составляет 280-320 нанометров.Какое излучение обеспечивает фотосинтез

Именно поэтому, в сельскохозяйственных теплицах при взращивании различных культур в осенне-весенний период используют не только лампы обычного дневного света, но и источники УФ освещения.

Источник: ultrafiolet.guru

Бактериальный фотосинтез и общее уравнение фотосинтеза


Наряду с фотосинтезом высших растений и водорослей, сопровождаемым выделением O2, в природе осуществляется бактериальный фотосинтез, в котором окисляемым субстратом является не вода, а другие соединения, обладающие более выраженными восстановительными свойствами, например H2S, SO2. Кислород при бактериальном фотосинтезе не выделяется, например:

Какое излучение обеспечивает фотосинтез

Фотосинтезирующие бактерии способны использовать не только видимое, но и ближнее ИК излучение (до 1000 нм) в соответствии со спектрами поглощения преобладающих в них пигментов — бактериохлорофиллов. Бактериальный фотосинтез не имеет существенного значения в глобальном запасании солнечной энергии, но важен для понимания общих механизмов фотосинтеза Кроме того, локально бескислородный фотосинтез может вносить существенный вклад в суммарную продуктивность планктона. Так, в Черном море количество хлорофилла и бактериохлорофилла в столбе воды в ряде мест приблизительно одинаково.

Учитывая данные о фотосинтезе высших растений, водорослей и фотосинтезирующих бактерий, обобщенное уравнение фотосинтеза можно записать в виде:

Какое излучение обеспечивает фотосинтез

А — кислород в случае высших растений и водорослей, S либо другие элементы — в бактериальном фотосинтезе.

Молекулярны механизм фотосинтеза и структура фотосинтетического аппарата.


С использованием изотопных меток показано, что источником O2 в фотосинтезе является только вода:

Какое излучение обеспечивает фотосинтез

Фотосинтез пространственно и во времени разделяется на два сравнительно обособленных процесса: световую стадию окисления воды и темновую стадию восстановления CO2 (рис. 1). Обе эти стадии осуществляются у высших растений и водорослей в специализированных органеллах клетки — хлоропластах. Исключение — синезеленые водоросли (цианобактерии), у которых нет аппарата фотосинтеза, обособленного от цитоплазматических мембран.

Схема световой и темновой стадий фотосинтеза

Хлоропласт, представляющий собой замкнутую структуру, отделенную от остальной части клетки оболочкой, заключает в себе весь фотосинтетический аппарат. Световая стадия реализуется в мембранных структурах хлоропласта (так называемых тилакоидах), тогда как темновая стадия происходит в жидком содержимом хлоропласта (строме) при участии водорастворимых ферментов. У фотосинтезирующих бактерий хлоропласты отсутствуют, но световая стадия также осуществляется в мембранных образованиях — в так называемых хроматофорах.

Световая стадия фотосинтеза

Минимальная функциональная единица, еще способная осуществлять световую стадию фотосинтеза,- тилакоид.

iv>
представляет собой микроскопический плоский диск, образованный белковолипидными мембранами, в которых находятся пигменты. В эти мембраны встроены все компоненты, необходимые для окисления воды, восстановления кофермента никотинамиддинуклеотидфосфата (НАДФ) до НАДФН и синтеза АТФ из аденозиндифосфата. Световая стадия фотосинтеза инициируется поглощением кванта света пигментами, организованными в специальные светособирающие комплексы. Среди пигментов преобладает хлорофилл а. К вспомогательным пигментам относятся хлорофилл b, каротиноиды и др. Наличие светособирающей структуры из нескольких сотен или десятков молекул пигментов на каждый фотохимически активный (реакционный) центр на 2-3 порядка увеличивает сечение захвата излучения и обеспечивает возможность фотосинтеза при слабом освещении.

Часть вспомогательных пигментов, спектрально наиболее близких к фотохимически активному хлорофиллу, непосредственно окружает каждый из реакционных центров, образуя так называемые антенны.

Высокая эффективность переноса возбуждения от молекулы, поглотившей квант, к фотохимическому центру определяется спектральными свойствами и структурной организацией пигментов светособирающего комплекса и антенны, окружающей фотохимический центр. Эти пигменты обеспечивают передачу возбуждения за время менее 100 пс в пределах времени жизни синглетно возбужденного состояния хлорофилла.

В реакционном центре фотосинтеза, куда почти со 100%-ной вероятностью переносится возбуждение, происходит первичная реакция между фотохимически активной молекулой хлорофилла а (у бактерий — бактериохлорофилла) и первичным акцептором электрона (ПА).


льнейшие реакции в тилакоидных мембранах происходят между молекулами в их основных состояниях и не требуют возбуждения светом. Эти реакции организованы в электронтранспортную цепь — последовательность фиксированных в мембране переносчиков электрона. В электронтранспортной цепи высших растений и водорослей содержится два фотохимических центра (фотосистемы), действующих последовательно (рис. 2), в бактериальной электронтранспортной цепи — один (рис. 3).

Рис. 2. Схема электронтранспортной цепи фотосинтеза растений и синезеленых водорослей

В фотосистеме II высших растений и водорослей синглетно возбужденный хлорофилл а в центре Р680 (число 680 обозначает, что максимум спектральных изменений системы при возбуждении светом находится вблизи 680 нм) отдает электрон через промежуточный акцептор к феофитину (ФЕО, безмагниевый аналог хлорофилла), образуя катион-радикал Какое излучение обеспечивает фотосинтез. Анион-радикал восстановленного феофитина служит далее донором электрона для связанного пластохинона (ПХ*; отличается от убихинонов заместителями в хиноидном кольце), координированного с ионом Fe3+ (в бактериях имеется аналогичный Fе3+-убихинонный комплекс). Далее электрон переносится по цепи, включающей свободный пластохинон (ПХ), присутствующий в избытке по отношению к остальным компонентам цепи, затем цитохромы (Ц) b6 и f, образующие комплекс с железо-серным центром, через медьсодержащий белок пластоцианин (ПЦ; мол. м. 10400) к реакционному центру фотосистемы I.

Центры

>
Какое излучение обеспечивает фотосинтез быстро восстанавливаются, принимая электрон через ряд промежуточных переносчиков от воды. Образование O2 требует последовательного четырехкратного возбуждения реакционного центра фотосистемы П и катализируется мембранным комплексом, содержащим Mn.

Хлорофилл a в фотосистеме I, имеющий максимум поглощения вблизи 700 нм (центр Р700), является первичным фотовозбуждаемым донором электрона, который он отдает первичному акцептору (ПА; его природа однозначно не установлена), а затем, через ряд промежуточных переносчиков (Ai) — растворимому белку ферредоксину (ФД), восстанавливающему с помощью фермента ферредоксин-НАДФ-редуктазы (ФНР) НАДФ до НАДФН. Катион-радикал окисленного пигмента Какое излучение обеспечивает фотосинтез восстанавливается пластоцианином.

В зрелых хлоропластах имеются граны (стопки тилакоидов), в мембранах которых присутствуют все компоненты злектронтранспортной цепи, и так называемые агранальные тилакоиды, не содержащие фотосистемы II.

Благодаря асимметрическому расположению компонентов электронтранспортной цепи относительно плоскости мембраны при разделении зарядов между хлорофиллом в каждом из двух фотосинтетических центров и акцептором электрона на тилакоидной мембране создается разность электрических потенциалов (плюс — на внутренней, минус — на внешней ее стороне).


ренос электрона пластохиноном сопровождается транспортом протонов, которые захватываются снаружи тилакоида при восстановлении пластохинона и освобождаются внутрь тилакоида при окислении пластогидрохинона. Перенос электронов сопряжен с синтезом АТФ из аденозиндифосфата (АДФ) и неорганического фосфата. Предполагают, что обратный транспорт протонов из тилакоидов в строму через белковый сопрягающий фактор (Н+-АТФ-синтетазу) сопровождается образованием АТФ.

Фотосистема I может действовать автономно без контакта с системой II. В этом случае циклический перенос электрона (на схеме показан пунктиром) сопровождается синтезом АТФ, а не НАДФН. Образующиеся в световой стадии коферменты НАДФН и АТФ используются в темновой стадии фотосинтез, в ходе которой снова образуется НАДФ и АДФ.

Электронтранспортные цепи фотосинтезирующих бактерий в основных своих чертах аналогичны отдельным фрагментам таковых в хлорогпастах высших растений. На рис. 3 показана электронтранспортная цепь пурпурных бактерий.

Рис. 3. Схема электронтранспортной цепи пурпурных бактерий

Темновая стадия фотосинтеза

Все фотосинтезирующие организмы, выделяющие O2, а также некоторые фотосинтезирующие бактерии сначала восстанавливают CO2 до фосфатов Сахаров в так называемом Калвина. У фотосинтезирующих бактерий встречаются, по-видимому, и другие механизмы. Большинство ферментов цикла Калвина находится в растворимом состоянии в строме хлоропластов.


Рис. 4. Упрощенная схема цикла Калвина

Упрощенная схема цикла показана на рис. 4. Первая стадия — карбоксилирование рибулозо-1,5-дифосфата и гидролиз продукта с ооразованием двух молекул 3-фосфоглицериновой кислоты. Эта С3-кислота фосфорилируется АТФ с образованием 3-фосфоглицероилфосфата, который затем восстанавливается НАДФН до глицеральдегид-3-фосфата. Полученный триозофосфат затем вступает в ряд реакций изомеризации, конденсации и перегруппировок, дающих 3 молекулы рибулозо-5-фосфата. Последний фосфорилируется при участии АТФ с образованием рибулозо-1,5-дифосфата и, таким образом, цикл замыкается. Одна из 6 образующихся молекул глицеральдегид-3-фосфата превращается в глюкозо-6-фосфат и используется затем для синтеза крахмала либо выделяется из хлоропласта в цитоплазму. Глицеральдегид-3-фосфат может также превращаться в 3-глицерофосфат и затем в липиды. Триозофосфаты, поступающие из хлоропласта, превращаются в основном в сахарозу, которая переносится из листа в другие части растения.

В одном полном обороте цикла Калвина расходуется 9 молекул АТФ и 6 молекул НАДФН для образования одной молекулы 3-фосфоглицериновой кислоты.


ергетическая эффективность цикла (отношение энергии фотонов, необходимых для фотосинтеза АТФ и НАДФН, к ΔG0 образования углевода из CO2) с учетом действующих в строме хлоропласта концентраций субстратов составляет 83%. В самом цикле Калвина нет фотохимических стадий, но световые стадии могут косвенно влиять на него (в том числе и на реакции, не требующие АТФ или НАДФН) через изменения концентраций ионов Mg2+ и H+, а также уровня восстановленности ферредоксина.

Некоторые высшие растения, приспособившиеся к высокой интенсивности света и к теплому климату (например, сахарный тростник, кукуруза), способны предварительно фиксировать CO2 в дополнительном С4-цикле. При этом CO2 сначала включается в обмен четырехуглеродных дикарбоновых кислот, которые затем декарбоксилируются там, где локализован цикл Калвина. С4-цикл характерен для растений с особым анатомическим строением листа и разделением функций между двумя типами клеток: мезофильных, где сосредоточено карбоксилирование фосфоенолпировиноградной кислоты, и клеток обкладки сосудистого пучка, где функционирует цикл Калвина. Образующаяся в С4-цикле щавелевоуксусная кислота восстанавливается НАДФН до яблочной, которая перемещается в клетки сосудистой обкладки и здесь подвергается окислительному декарбоксилированию, образуя пировиноградную кислоту, CO2 и НАДФН. Два последних используются в цикле Калвина, а пировиноградная кислота возвращается в С4-цикл (рис. 5). Физиологический смысл С4-цикла состоит в запасании CO2 и повышении, таким образом, общей эффективности процесса.


Рис. 5. С4-цикл фиксации CO2

Для кактусов, молочая и других засухоустойчивых растений характерно частичное разделение фиксации CO2 и фотосинтеза во времени (CAM-обмен, или обмен по типу толстянковых; CAM сокр. от англ. Crassulaceae acid metabolism). Днем устьица (каналы, через которые осуществляется газообмен с атмосферой) закрываются, чтобы уменьшить испарение воды. При этом поступление CO2 также затруднено. Ночью устьица открываются, происходит фиксация CO2 в виде фосфоенол-пировиноградной кислоты с образованием С4-кислот, которые днем декарбоксилируются, а освобождаемый при этом CO2 включается в цикл Калвина (рис. 6).

Рис. 6. CAM-тип углеродного обмена

Фотосинтез галобактерий

Единственный известный в природе нехлорофилльный способ запасания энергии света осуществляют бактерии Halobacterium halobium. Ha ярком свету при пониженной концентрации O2 они образуют в своих мембранах пурпурный белок бактериородопсин. В результате индуцированной светом цис-транс-изомеризации ретиналя (хромофора этого пигмента) происходит поглощение H+ и синтез АТФ. Последний используется для частичного обеспечения энергетических потребностей клетки.

Фотосинтез: историческая справка

Ок. 1770 Дж.Пристли обнаружил, что растения выделяют O2. В 1779 Я.Ингенхауз установил, что для этого необходим свет и что O2 выделяют только зеленые части растений. Ж.Сенебье в 1782 показал, что для питания растений требуется CO2; в начале 19 в. H.Соссюр, исходя из закона сохранения массы, подтвердил, что большая часть массы растений создается из CO2 и воды. В 1817 П.Пельтье и Ж.Каванту выделили зеленый пигмент хлорофилл. Позже К.А.Тимирязев показал близость спектра действия фотосинтеза и спектра поглощения хлорофилла. Ю.Сакс в середине 19 в., по-видимому, первым осознал, что этот продукт накапливается в хлоропластах, а Т.В.Энгельман доказал, что именно там же выделяется и O2.

В работах Ф.Блэкмана (1905), P.Эмерсона и У.Арнолда (1932), а также P.Хилла (1936-41) показано наличие световой и темновой стадий фотосинтеза и экспериментально реализована световая стадия в отсутствие CO2 с использованием искусственных акцепторов электрона. Тем самым были получены подтверждения представлений об образовании O2 путем окисления воды. Окончательно это было доказано масс-спектрометрическим методом (С.Рубен, M.Камен, а также А.П.Виноградов и Р.В.Тейс, 1941).

В 1935-41 К.Ван Ниль обобщил данные по фотосинтезу высших растений и бактерий и предложил общее уравнение, охватывающее все типы фотосинтеза X.Гаффрон и К.Воль, а также Л.Дёйсенс в 1936-52 на основе количественных измерений выхода продуктов фотосинтеза поглощенного света и содержания хлорофилла сформулировали представление о «фотосинтетической единице» — ансамбле молекул пигмента, осуществляющих светосбор и обслуживающих фотохимический центр.

В 40-50-х гг. M.Калвин, используя изотоп 14C, выявил механизм фиксации CO2. Д.Арнон (1954) открыл фотофосфорилирование (инициируемый светом синтез АТФ из АДФ и H3PO4) и сформулировал концепцию электронного транспорта в мембранах хлоропластов. P.Эмерсон и Ч.M.Льюис (1942-43) обнаружили резкое снижение эффективности фотосинтеза при Какое излучение обеспечивает фотосинтез 700 нм (красное падение, или первый эффект Эмерсона), а в 1957 Эмерсон наблюдал неаддитивное усиление фотосинтеза при добавлении света низкой интенсивности с Какое излучение обеспечивает фотосинтез 650 нм к дальнему красному свету (эффект усиления, или второй эффект Эмерсона). На этом основании в 60-х гг. сформулировано представление о последовательно действующих фотосистемах в электронтранспортной цепи фотосинтеза с максимумами в спектрах действия вблизи 680 и 700 нм.

Основные закономерности образования O2 при окислении воды в фотосинтезе установлены в работах Б.Кока и П.Жолио (1969-70). Близится к завершению выяснение молекулярной организации мембранного комплекса, катализирующего этот процесс. В 80-х гг. методом рентгеновского структурного анализа детально изучена структура отдельных компонентов фотосинтетического аппарата, включая реакционные центры и светособирающие комплексы (И.Дайзенхофер, X.Михель, P.Хубер).

Лит.: Клейтон Р., Фотосинтез. Физические механизмы и химические модели, пер. с англ., M., 1984; «Ж. Всес. хим. об-ва им. Д.И.Менделеева», 1986, т. 31, № 6; Фотосинтез, под ред. Говинджи, пер. с англ., т. 1-2, M., 1987; Итоги науки и техники, сер. Биофизика, т. 20-22, M., 1987.

© М.Г.Гольдфельд.


Источник: www.chemport.ru

Суммарная реакция фотосинтеза

СО22О = (СН2О) + О2.

Химию фотосинтеза описывают следующими уравнениями:

Какое излучение обеспечивает фотосинтез

Фотосинтез – 2 группы реакций:

  • световая стадия (зависят от освещенности)

  • темновая стадия (зависит от температуры).

Обе группы реакций протекают одновременно

Фотосинтез происходит в хлоропластах зеленых растений.

Фотосинтез начинается с улавливания и поглощения света пигментом хлорофиллом, содержащимся в хлоропластах клеток зеленых растений.

Этого оказывается достаточно, чтобы сместить спектр поглощения молекулы. Какое излучение обеспечивает фотосинтез

Молекула хлорофилла поглощает фотоны в фиолетовой и синей, а затем в красной части спектра, и не взаимодействует с фотонами в зеленой и желтой части спектра.

Поэтому хлорофилл и растения выглядят зелеными – они попросту никак не могут воспользоваться зелеными лучами и оставляют их гулять по белу свету (делая его тем самым зеленее).

Какое излучение обеспечивает фотосинтез

Пигменты фотосинтеза располагаются на внутренней стороне мембраны тилакоидов.

Пигменты организованы в фотосистемы (антенные поля по улавливанию света) – содержащие по 250–400 молекул разных пигментов.

Фотосистема состоит из:

  • реакционного центра фотосистемы (молекула хлорофилла а),

  • антенных молекул

Все пигменты в фотосистеме способны передавать друг другу энергию возбужденного состояния. Энергия фотона, поглощенная той или иной молекулой пигмента, переносится на соседнюю молекулу, пока не достигнет реакционного центра. Когда резонансная система реакционного центра переходит в возбужденное состояние, она передает два возбужденных электрона молекуле-акцептору и тем самым окисляется и приобретает положительный заряд.

У растений:

  • фотосистема 1 (максимум поглощения света на длине волны 700 нм — Р700)

  • фотосистема 2 (максимум поглощения света на длине волны 680 нм — Р680

Различия в оптимумах поглощения обусловлены небольшими различиями в структуре пигментов.

Две системы работают сопряженно, как конвейер, состоящий из двух частей и называющийся нециклическим фотофосфорилированием.

Суммарное уравнение для нециклического фотофосфорилирования:

Какое излучение обеспечивает фотосинтез

Ф — условное обозначение остатка фосфорной кислоты

Какое излучение обеспечивает фотосинтез

Цикл начинается с фотосистемы 2.

1) антенные молекулы улавливают фотон и передают возбуждение молекуле активного центра Р680;

2) возбужденная молекула Р680 отдает два электрона кофактору Q при этом она окисляется и приобретает положительный заряд;

Кофактор (cofactor). Кофермент или любое другое вещество, необходимое для выполнения ферментом его функции

Коферменты (коэнзимы) [от лат. co (cum) — вместе и ферменты], органические соединения небелковой природы, участвующие в ферментативной реакции в качестве акцепторов отдельных атомов или атомных групп, отщепляемых ферментом от молекулы субстрата, т.е. для осуществления каталитического действия ферментов. Эти веществава, в отличие от белкового компонента фермента (апофермента), имеют сравнительно небольшую молекулярную массу и, как правило, термостабильны. Иногда под Коферментами подразумевают любые низкомолекулярные вещества, участие которых необходимо для проявления каталитического действия фермента, в т. ч. и ионы, напр. К+, Mg2+ и Мn2+ . Располагаются оферменты. в активном центре фермента и вместе с субстратом и функциональными группами активного центра образуют активированный комплекс.

Для проявления каталитической активности большинству ферментов необходимо наличие кофермента. Исключение составляют гидролитические ферменты (например, протеазы, липазы, рибонуклеаза), выполняющие свою функцию в отсутствие кофермента.

Молекула восстанавливается Р680 (под действием ферментов),. При этом вода диссоциирует на протоны и молекулярный кислород, т.е. вода является донором электронов, который обеспечивает восполнение электронов в Р680.

ФОТОЛИЗ ВОДЫ — расщепление молекулы воды, в частности в процессе фотосинтеза. Вследствие фотолиза воды образуется кислород, выделяющийся зелеными растениями на свету.

Источник: StudFiles.net

Определение фотосинтеза

Фотосинтез — это химический процесс, посредством которого растения, некоторые бактерии и водоросли производят глюкозу и кислород из углекислого газа и воды, используя только свет в качестве источника энергии.

Этот процесс чрезвычайно важен для жизни на Земле, поскольку благодаря ему выделяется кислород, от которого зависит вся жизнь.

Зачем растениям нужна глюкоза (пища)?

Подобно людям и другим живым существам, растения также нуждаются в питании для поддержания жизнедеятельности. Значение глюкозы для растений заключается в следующем:

  • Глюкоза, полученная в результате фотосинтеза, используется во время дыхания для высвобождения энергии, необходимой растению для других жизненно важных процессов.
  • Растительные клетки также превращают часть глюкозы в крахмал, который используют по мере необходимости. По этой причине мертвые растения используются в качестве биомассы, ведь в них хранится химическая энергия.
  • Глюкоза также необходима, чтобы производить другие химические вещества, такие как белки, жиры и растительные сахара, необходимые для обеспечения роста и других важных процессов.

Фазы фотосинтеза

Процесс фотосинтеза разделен на две фазы: световую и темновую.

Какое излучение обеспечивает фотосинтез» data-layzr=»https://natworld.info/wp-content/uploads/2017/05/фазы-фотосинтеза.jpg» alt=»» width=»700″ height=»350″ data-layzr-srcset=»https://natworld.info/wp-content/uploads/2017/05/фазы-фотосинтеза.jpg 700w, https://natworld.info/wp-content/uploads/2017/05/фазы-фотосинтеза-300×150.jpg 300w, https://natworld.info/wp-content/uploads/2017/05/фазы-фотосинтеза-500×250.jpg 500w» sizes=»(max-width: 700px) 100vw, 700px» />

Световая фаза фотосинтеза

Как следует из названия, световые фазы нуждаются в солнечном свете. В светозависимых реакциях энергия солнечного света поглощается хлорофиллом и преобразуется в запасенную химическую энергию в виде молекулы электронного носителя НАДФН (никотинамидадениндинуклеотидфосфат) и молекулы энергии АТФ (аденозинтрифосфат). Световые фазы протекают в тилакоидных мембранах в пределах хлоропласта.

Темновая фаза фотосинтеза или цикл Кальвина

В темновой фазе или цикле Кальвина возбужденные электроны из световой фазы обеспечивают энергию для образования углеводов из молекул углекислого газа. Не зависящие от света фазы иногда называют циклом Кальвина из-за цикличности процесса.

Хотя темновые фазы не используют свет в качестве реагента (и, как результат, могут происходить днем или ночью), им необходимо, чтобы продукты светозависимых реакций функционировали. Независимые от света молекулы зависят от молекул энергоносителей — АТФ и НАДФН — для создания новых молекул углеводов. После передачи энергии молекулы энергоносители возвращаются к световым фазам для получения более энергичных электронов. Кроме того, несколько ферментов темновой фазы активируются с помощью света.

Схема фаз фотосинтеза

Заметка: Это означает, что темновые фазы не будут продолжаться, если растения будут лишены света слишком долго, так как они используют продукты световых фаз.

Строение листьев растений

Мы не можем полностью изучить фотосинтез, не зная больше о строении листа. Лист адаптирован для того, чтобы играть жизненно важную роль в процессе фотосинтеза.

Внешнее строение листьев

  • Площадь

Одной из самых главных особенностей растений является большая площадь поверхности листьев. Большинство зеленых растений имеют широкие, плоские и открытые листья, которые способны захватывать столько солнечной энергии (солнечного света), сколько необходимо для фотосинтеза.

  • Центральная жилка и черешок

Центральная жилка и черешок соединяются вместе и являются основанием листа. Черешок располагает лист таким образом, чтобы он получал как можно больше света.

  • Листовая пластинка

Простые листья имеют одну листовую пластину, а сложные — несколько. Листовая пластинка — одна из самых главных составляющих листа, которая непосредственно участвует в процессе фотосинтеза.

  • Жилы

Сеть жилок в листьях переносит воду от стеблей к листьям. Выделяемая глюкоза также направляется в другие части растения из листьев через жилки. Кроме того, эти части листа поддерживают и удерживают листовую пластину плоской для большего захвата солнечного света. Расположение жилок (жилкование) зависит от вида растения.

  • Основание листа

Основанием листа выступает самая нижняя его часть, которая сочленена со стеблем. Зачастую, у основания листа располагается парное количество прилистников.

  • Край листа

В зависимости от вида растения, край листа может иметь различную форму, включая: цельнокрайнюю, зубчатую, пильчатую, выемчатую, городчатую и т.п.

  • Верхушка листа

Как и край листа, верхушка бывает различной формы, включая: острую, округлую, туповатую, вытянутую, оттянутою и т.д.

Внутреннее строение листьев

Ниже представлена ​​близкая схема внутреннего строения тканей листьев:

  • Кутикула

Кутикула выступает главным, защитным слоем на поверхности растения. Как правило, она толще на верхней части листа. Кутикула покрыта веществом, похожим на воск, благодаря которому защищает растение от воды.

  • Эпидермис

Эпидермис — слой клеток, который является покровной тканью листа. Его главная функция — защита внутренних тканей листа от обезвоживания, механических повреждений и инфекций. Он также регулирует процесс газообмена и транспирации.

  • Мезофилл

Мезофилл — это основная ткань растения. Здесь происходит процесс фотосинтеза. У большинства растений мезофилл разделен на два слоя: верхний — палисадный и нижний — губчатый.

  • Защитные клетки

Защитные клетки — специализированные клетки в эпидермисе листьев, которые используются для контроля газообмена. Они выполняют защитную функцию для устьица. Устьичные поры становятся большими, когда вода есть в свободном доступе, в противном случае, защитные клетки становятся вялыми.

  • Устьице

Фотосинтез зависит от проникновения углекислого газа (CO2) из воздуха через устьица в ткани мезофилла. Кислород (O2), полученный как побочный продукт фотосинтеза, выходит из растения через устьица. Когда устьица открытые, вода теряется в результате испарения и должна быть восполнена через поток транспирации, водой, поглощенной корнями. Растения вынуждены уравновешивать количество поглощенного СО2 из воздуха и потерю воды через устьичные поры.

Условия, необходимые для фотосинтеза

Ниже приведены условия, которые необходимы растениям для осуществления процесса фотосинтеза:

  • Углекислый газ. Бесцветный природный газ без запаха, обнаруженный в воздухе и имеет научное обозначение CO2. Он образуется при горении углерода и органических соединений, а также возникает в процессе дыхания.
  • Вода. Прозрачное жидкое химическое вещество без запаха и вкуса (в нормальных условиях).
  • Свет. Хотя искусственный свет также подходит для растений, естественный солнечный свет, как правило, создает лучшие условия для фотосинтеза, потому что в нем присутствует природное ультрафиолетовое излучение, которое оказывает положительное влияние на растения.
  • Хлорофилл. Это зеленый пигмент, найденный в листьях растений.
  • Питательные вещества и минералы. Химические вещества и органические соединения, которые корни растений поглощают из почвы.

Что образуется в результате фотосинтеза?

  • Глюкоза;
  • Кислород.

Заметка: Растения получают CO2 из воздуха через их листья, и воду из почвы через корни. Световая энергия исходит от Солнца. Полученный кислород выделяется в воздух из листьев. Получаемую глюкозу можно превратить в другие вещества, такие как крахмал, который используется как запас энергии.

Если факторы, способствующие фотосинтезу, отсутствуют или присутствуют в недостаточном количестве, это может негативно повлиять на растение. Например, меньшее количество света создает благоприятные условия для насекомых, которые едят листья растения, а недостаток воды замедляет.

Где происходит фотосинтез?

Фотосинтез происходит внутри растительных клеток, в мелких пластидах, называемых хлоропластами. Хлоропласты (в основном встречающиеся в слое мезофилла) содержат зеленое вещество, называемое хлорофиллом. Ниже приведены другие части клетки, которые работают с хлоропластом, чтобы осуществить фотосинтез.

Строение растительной клетки

Функции частей растительной клетки

  • Клеточная стенка: обеспечивает структурную и механическую поддержку, защищает клетки от патогенов, фиксирует и определяет форму клетки, контролирует скорость и направление роста, а также придает форму растениям.
  • Цитоплазма: обеспечивает платформу для большинства химических процессов, контролируемых ферментами.
  • Мембрана: действует как барьер, контролируя движение веществ в клетку и из нее.
  • Хлоропласты: как было описано выше, они содержат хлорофилл, зеленое вещество, которое поглощает световую энергию в процессе фотосинтеза.
  • Вакуоль: полость внутри клеточной цитоплазмы, которая накапливает воду.
  • Клеточное ядро: содержит генетическую марку (ДНК), которая контролирует деятельность клетки.

Хлорофилл поглощает световую энергию, необходимую для фотосинтеза. Важно отметить, что поглощаются не все цветовые длины волны света. Растения в основном поглощают красную и синюю волны — они не поглощают свет в зеленом диапазоне.

Углекислый газ в процессе фотосинтеза

Растения получают углекислый газ из воздуха через их листья. Углекислый газ просачивается через маленькое отверстие в нижней части листа — устьицу.

Нижняя часть листа имеет свободно расположенные клетки, чтобы углекислый газ достиг других клеток в листьях. Это также позволяет кислороду, образующемуся при фотосинтезе, легко покидать лист.

Углекислый газ присутствует в воздухе, которым мы дышим, в очень низких концентрациях и служит необходимым фактором темновой фазы фотосинтеза.

Свет в процессе фотосинтеза

Лист обычно имеет большую площадь поверхности, поэтому он может поглощать много света. Его верхняя поверхность защищена от потери воды, болезней и воздействия погоды восковым слоем (кутикулой). Верх листа находится там, где падает свет. Этот слой мезофилла называется палисадным. Он приспособлен для поглощения большого количества света, ведь в нем находится много хлоропластов.

В световых фазах, процесс фотосинтеза увеличивается с большим количеством света. Больше молекул хлорофилла ионизируется, и больше генерируется АТФ и НАДФН, если световые фотоны сосредоточены на зеленом листе. Хотя свет чрезвычайно важен в световых фазах, необходимо отметить, что чрезмерное его количество может повредить хлорофилл, и уменьшить процесс фотосинтеза.

Световые фазы не слишком сильно зависят от температуры, воды или углекислого газа, хотя все они нужны для завершения процесса фотосинтеза.

Вода в процессе фотосинтеза

Растения получают воду, необходимую для фотосинтеза через свои корни. Они имеют корневые волоски, которые разрастаются в почве. Корни характеризуются большой площадью поверхности и тонкими стенками, что позволяет воде легко проходить сквозь них.

На изображении представлены растения и их клетки с достаточным количеством воды (слева) и ее нехваткой (справа).

Заметка: Корневые клетки не содержат хлоропластов, поскольку они, как правило, находятся в темноте и не могут фотосинтезировать.

Если растение не впитывает достаточное количество воды, оно увядает. Без воды, растение будет не способно фотосинтезировать достаточно быстро, и может даже погибнуть.

Какое значение имеет вода для растений?

  • Обеспечивает растворенными минералами, которые поддерживают здоровье растений;
  • Является средой для транспортировки минеральных ресурсов;
  • Поддерживает устойчивость и прямостояние;
  • Охлаждает и насыщает влагой;
  • Дает возможность проводить различные химические реакции в растительных клетках.

Значение фотосинтеза в природе

Биохимический процесс фотосинтеза использует энергию солнечного света для преобразования воды и углекислого газа в кислород и глюкозу. Глюкоза используется в качестве строительных блоков в растениях для роста тканей. Таким образом, фотосинтез — это способ, благодаря которому формируются корни, стебли, листья, цветы и плоды. Без процесса фотосинтеза растения не смогут расти или размножаться.

  • Продуценты

Из-за фотосинтетической способности, растения известны как продуценты и служат основой почти каждой пищевой цепи на Земле. (Водоросли являются эквивалентом растений в водных экосистемах). Вся пища, которую мы едим, происходит от организмов, являющихся  фотосинтетиками. Мы питаемся этими растениями напрямую или едим животных, таких как коровы или свиньи, которые потребляют растительную пищу.

  • Основа пищевой цепи

Внутри водных систем, растения и водоросли также составляют основу пищевой цепи. Водоросли служат пищей для беспозвоночных, которые, в свою очередь, выступают источником питания для более крупных организмов. Без фотосинтеза в водной среде жизнь была бы невозможна.

  • Удаление углекислого газа

Фотосинтез превращает углекислый газ в кислород. Во время фотосинтеза углекислый газ из атмосферы поступает в растение, а затем выделяется в виде кислорода. В сегодняшнем мире, где уровни двуокиси углерода растут ужасающими темпами, любой процесс, который устраняет углекислый газ из атмосферы, является экологически важным.

  • Круговорот питательных веществ

Растения и другие фотосинтезирующие организмы играют жизненно важную роль в круговороте питательных веществ. Азот в воздухе фиксируется в растительных тканях и становится доступным для создания белков. Микроэлементы, находящиеся в почве, также могут быть включены в растительную ткань и стать доступными для травоядных животных, дальше по пищевой цепи.

  • Фотосинтетическая зависимость

Фотосинтез зависит от интенсивности и качества света. На экваторе, где солнечный свет обилен весь год и вода не является ограничивающим фактором, растения имеют высокие темпы роста, и могут стать довольно большими. И наоборот, фотосинтез в более глубоких частях океана встречается реже, поскольку свет не проникает в эти слои, и в результате эта экосистема оказывается более бесплодной.

Понравилась статья? Поделись с друзьями:

Источник: NatWorld.info