Типы питания

По типу питания живые организмы делятся на автотрофы, гетеротрофы и миксотрофы. Автотрофы (греч. αὐτός — сам + τροφ — пища) — организмы, которые самостоятельно способны синтезировать органические вещества из неорганических. Гетеротрофы (греч. ἕτερος — иной + τροφή — пища) — организмы, использующие для питания готовые органические вещества.

Наконец, миксотрофы (греч. μῖξις — смешение + τροφή — пища) — организмы, которые могут использовать как гетеротрофный, так и автотрофный способ питания. К примеру, эвглена зеленая на свету начинает фотосинтезировать, а в темноте питается гетеротрофно.

Фотосинтез

Фотосинтез (греч. φῶς — свет и σύνθεσις — синтез) — сложный химический процесс преобразования энергии квантов света в энергию химических связей. В результате фотосинтеза происходит синтез органических веществ из неорганических.


Этот процесс уникален и происходит только в растительных клетках, а также у некоторых бактерий. Фотосинтез осуществляется при участии хлорофилла (греч. χλωρός — зелёный и φύλλον — лист) — зеленого пигмента, окрашивающего органы растений в зеленый цвет. Существуют и другие вспомогательные пигменты, которые вместе с хлорофиллом выполняют светособирающую или светозащитную функции.

Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится ион Mg.

В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: «Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического»

Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой) и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют более глубокому (и правильному!) пониманию фотосинтеза.


Светозависимая фаза (световая)

Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты, белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.

Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон, переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов, тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):

H2O —> H+ + OH

Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).

4OH —> 2H2O + O2

Образовавшиеся при фотолизе воды протоны (H+) скапливаются с внутренней стороны мембраны тилакоидов, а электроны — с внешней. В результате по обе стороны мембраны накапливаются противоположные заряды.

При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы. В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:


Протоны, попав на поверхность мембраны тилакоидов, соединяются с электронами и образуют атомарный водород, который используется для восстановления молекулы-переносчика НАДФ (никотинамиддинуклеотидфосфат). Благодаря этому окисленная форма — НАФД+ превращается в восстановленную — НАДФ∗H2.

Предлагаю создать квинтэссенцию из полученных нами знаний. Итак, в результате светозависимой фазы фотосинтеза образуются:

  • Свободный кислород O2 — в результате фотолиза воды
  • АТФ — универсальный источник энергии
  • НАДФ∗H2 — форма запасания атомов водорода

Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2 в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой фазе фотосинтеза.

Светонезависимая (темновая) фаза

Светонезависимая фаза происходит в строме (матриксе) хлоропласта постоянно: и днем, и ночью — вне зависимости от освещения.

При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6. В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.

iv>

Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована в крахмал, служащий для запасания питательных веществ у растений.

Значение фотосинтеза

Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.

В разделе эволюции мы уже обсуждали, что изначально в составе атмосферы Земли не было кислорода: миллиарды лет назад его начали вырабатывать первые фотосинтезирующие бактерии — сине-зеленые водоросли (цианобактерии). Постепенно кислород накапливался, и со временем на Земле стало возможно аэробное (кислородное) дыхание. Возник озоновый слой, защищающий все живое на нашей планете от губительного ультрафиолета.

Говоря о роли фотосинтеза, выделим следующие функции, объединяющиеся в так называемую космическую роль растений. Итак, растения за счет фотосинтеза:

  • Синтезируют органические вещества, являющиеся пищей для всего живого на планете
  • Преобразуют энергию света в энергию химических связей, создают органическую массу
  • Растения поддерживают определенный процент содержания O2 в атмосфере, очищают ее от избытка CO2
  • Способствуют образованию защитного озонового экрана, поглощающего губительное для жизни ультрафиолетовое излучение

Хемосинтез (греч. chemeia – химия + synthesis — синтез)

Хемосинтез — автотрофный тип питания, который характерен для некоторых микроорганизмов, способных создавать органические вещества из неорганических. Это осуществляется за счет энергии, получаемой при окислении других неорганических соединений (железо- , азото-, серосодержащих веществ).

Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится к аэробам, для жизни им необходим кислород.

При окислении неорганических веществ выделяется энергия, которую организмы запасают в виде энергии химических связей. Так нитрифицирующие бактерии последовательно окисляют аммиак до нитрита, а затем — нитрата. Нитраты могут быть усвоены растениями и служат удобрением.

Помимо нитрифицирующих бактерий, встречаются:

  • Серобактерии — окисляют H2S —> S 0 —> (S+4O3)2- —> (S+6O4)2-
  • Железобактерии — окисляют Fe+2 —>Fe+3
  • Водородные бактерии — окисляют H2 —> H+12O
  • Карбоксидобактерии — окисляют CO до CO2
>
Значение хемосинтеза

Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.

Нитрифицирующие бактерии обеспечивают переработку (нейтрализацию) ядовитого вещества — аммиака. Они также обогащают почву нитратами, которые очень важны для нормального роста и развития растений (это происходит за счет клубеньковых бактерий на корнях бобовых растений).

Источник: studarium.ru

Для нормального роста и развития растениям необходима вода, минеральные и органические вещества. К органическим веществам относят: белки, липиды, углеводы, нуклеиновые кислоты и некоторые биологически активные вещества.

А к неорганическим относят воду, минеральные вещества.

Воду и минеральные вещества растение получает из почвы.

А органические вещества зелёные растения способны создавать из неорганических, используя световую энергию. Этот процесс называется фотосинтезом (от греческих слов «фотос» — «свет», «синтез» — «соединение»).

Фотосинтез — это синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света. В результате у растений выделяется кислород и образуются органические вещества для развития. 

Способность к фотосинтезу ― это важнейшее свойство зелёных растений.

Что же происходит при фотосинтезе в зелёном листе? Весь лист пронизан жилками.


Какое вещество образуется в процессе фотосинтеза

По ним вода притекает к клеткам.

В листе находится множество пор, известных под названием устьиц.

Через устьица вместе с воздухом в листья поступает углекислый газ.

Зелёную окраску листу придаёт удивительное вещество ― зелёный пигмент хлорофилл.

При его участии осуществляется процесс фотосинтеза.

Хлорофилл находится в хлоропластах — фотосинтезирующих органоидах зелёных растений.  

Каким же образом растения получают необходимые им органические вещества?

Издавна люди думали, что растения получают питательные вещества только из почвы.

Более 300 лет назад голландский учёный Ван Гельмонт решил проверить так ли это.  Он взвесил молодое дерево ивы и посадил его в почву, которая тоже была взвешена. Растение он поливал только дождевой водой, прошло 5 лет. Дерево выросло. Ван Гельмонт снова взвесил и дерево, и почву.


Прирост дерева составил 63 кг. А почва потеряла только 56 грамм. Значит, решил Ван Гельмонт, растения питаются не только веществами почвы, но и водой.

Спустя 100 лет Михаил Ломоносов, не раз видевший деревья, растущие на бесплодном песке, высказал другую мысль. Растения поглощают питательные вещества из воздуха.

И только теперь мы знаем, что оба учёных были правы. Растения питаются и водой с растворенными в ней минеральными веществами, и углекислым газом из воздуха.

Поставим опыт, показывающий образование органических веществ на свету.  

Возьмём какое-нибудь комнатное растение, например примулу, поместим его на трое суток в тёмный шкаф, чтобы произошёл отток питательных веществ из листьев.

Вырежем на конверте из чёрной бумаги какую-либо фигуру или слово, например «свет».

Через трое суток вынем растение из шкафа и поместим в этот конверт один из листьев. Затем поставим растение на солнечный свет или под электрическую лампочку. Через 8-10 часов лист срежем. Снимем бумагу.

Опустим лист в кипящую воду, а затем на несколько минут в горячий спирт, в котором хлорофилл хорошо растворяется. Когда спирт окрасится в зелёный цвет, а лист обесцветится, промоем его водой, расправим на тарелке и обольём слабым раствором йода. На обесцвеченном листе появятся синие буквы. Известно, что крахмал синеет от йода. Буквы появятся в той части листа, на которую падал свет. Значит, в освещённой части листа образовался


крахмал.

Исследования показали, что в листьях первоначально образуется сахар (глюкоза), который затем превращается в крахмал и другие органические вещества. Нерастворимый в воде крахмал под действием особых веществ снова превращается в сахар. Раствор сахара оттекает из листьев в другие органы растения, где вновь может превратиться в крахмал и другие органические вещества.

Во всех ли клетках листа образуется крахмал?

Чтобы ответить на этот вопрос, поставим опыт с комнатным растением геранью окаймлённой.

Своё название это растение получило из-за белых, лишённых хлорофилла участков на листовой пластинке (белая каёмка по краю листа).

Поставим растение на яркий солнечный или электрический свет. Через несколько часов срежем один из листьев.

Опустим лист в кипящую воду, а затем на несколько минут в горячий спирт, в котором хлорофилл хорошо растворяется. Спирт окрасится в зелёный цвет, а лист обесцветится. Затем промоем лист в воде и на 2-3 минуты положим в слабый раствор йода. В растворе йода лист окрасился в синий цвет не весь.

Какое вещество образуется в процессе фотосинтеза

Белая полоса по краю листа не окрасилась. Потому как в клетках зелёной части листа имеются хлоропласты, содержащие хлорофилл. В них образуется сахар, а затем крахмал. В пластидах клеток белой полоски листа герани окаймлённой нет хлорофилла. Поэтому здесь крахмал не обнаруживается.


Итак, органические вещества образуются только в клетках с хлоропластами, и для их образования необходим свет.

Из каких веществ образуются органические вещества?

Проведём опыт, доказывающий необходимость углекислого газа в образовании органических веществ.

Выставим на свет на куске стекла под стеклянным колпаком веточку зелёного растения.

Края колпака смажем вазелином, для того чтобы воздух, содержащий углекислый газ, не смог проникнуть под колпак.

Какое вещество образуется в процессе фотосинтеза

Рядом с растением под колпак поставим стакан с раствором едкой щёлочи. Вскоре под колпаком углекислый газ будет поглощён едкой щёлочью. Через двое суток снимем колпак с растения, срежем один лист и проверим, образовался ли в его клетках крахмал. При обработке раствором йода лист не посинеет. Значит, крахмала в листе нет. Следовательно, крахмал образуется в листьях только при наличии в воздухе углекислого газа.

Таким образом, для образования сахара нужны углекислый газ, поступающий через устьица, и вода, которую поглощают корни из почвы.

Также мы сказали, что в процессе фотосинтеза не только образуются органические вещества, но и выделяется кислород.

О том, что растения в процессе своей жизнедеятельности выделяют кислород, люди узнали уже давно. В 1772 году химик Джозеф Пристли провёл цикл экспериментов с газами.

В одном из своих экспериментов Пристли зажёг свечу и поместил её под перевёрнутый сосуд. Через некоторое время свеча погасла, так как под сосудом закончился кислород.

Далее он провёл аналогичный эксперимент с мышкой. Мышь умерла вскоре после того, как погасла свеча.

Пристли провёл ещё один опыт. Он поместил под перевёрнутый сосуд зелёное растение с мышью, предоставив им доступ к свету. Свеча горела долгое время. А мышь оставалась жива.

Значит, подумал Пристли, благодаря растению под герметично перевёрнутым сосудом остаётся кислород.

Результаты опытов не только определили характерные особенности жизнедеятельности растений, но и продемонстрировали тесную взаимосвязь между растениями и животными.

Проведём ещё один опыт, который доказывает выделение кислорода зелёным растением на свету.

Возьмём две большие стеклянные банки и опустим в них стаканы с водой, в которые поставлены веточки с зелёными листьями какого-нибудь растения или небольшие комнатные растения в цветочном горшке. Наполним банки углекислым газом и плотно закроем, чтобы не проникал воздух. Первую банку выставим на яркий свет, вторую оставим в темноте, например поставим в тёмный шкаф. Через сутки откроем банки и опустим в них горящие лучинки.

Какое вещество образуется в процессе фотосинтеза

В первой банке лучинка не гаснет, а продолжает ярко гореть. Значит, в этой банке появился какой-то газ, поддерживающий горение. Поддерживает горение только кислород.

Зелёные листья растения поглотили значительную часть углекислого газа и выделили некоторое количество кислорода.

Опущенная во вторую банку горящая лучинка потухнет. Значит, в этой ёмкости нет кислорода, поддерживающего горение. Следовательно, зелёные растения выделяют кислород только на свету.

Важно заметить, что выделение кислорода всегда наблюдается при образовании органических веществ в листьях.

Источник: videouroki.net

Определение фотосинтеза

Фотосинтез — это химический процесс, посредством которого растения, некоторые бактерии и водоросли производят глюкозу и кислород из углекислого газа и воды, используя только свет в качестве источника энергии.

Этот процесс чрезвычайно важен для жизни на Земле, поскольку благодаря ему выделяется кислород, от которого зависит вся жизнь.

Зачем растениям нужна глюкоза (пища)?

Подобно людям и другим живым существам, растения также нуждаются в питании для поддержания жизнедеятельности. Значение глюкозы для растений заключается в следующем:

  • Глюкоза, полученная в результате фотосинтеза, используется во время дыхания для высвобождения энергии, необходимой растению для других жизненно важных процессов.
  • Растительные клетки также превращают часть глюкозы в крахмал, который используют по мере необходимости. По этой причине мертвые растения используются в качестве биомассы, ведь в них хранится химическая энергия.
  • Глюкоза также необходима, чтобы производить другие химические вещества, такие как белки, жиры и растительные сахара, необходимые для обеспечения роста и других важных процессов.

Фазы фотосинтеза

Процесс фотосинтеза разделен на две фазы: световую и темновую.

Какое вещество образуется в процессе фотосинтеза

Световая фаза фотосинтеза

Как следует из названия, световые фазы нуждаются в солнечном свете. В светозависимых реакциях энергия солнечного света поглощается хлорофиллом и преобразуется в запасенную химическую энергию в виде молекулы электронного носителя НАДФН (никотинамидадениндинуклеотидфосфат) и молекулы энергии АТФ (аденозинтрифосфат). Световые фазы протекают в тилакоидных мембранах в пределах хлоропласта.

Темновая фаза фотосинтеза или цикл Кальвина

В темновой фазе или цикле Кальвина возбужденные электроны из световой фазы обеспечивают энергию для образования углеводов из молекул углекислого газа. Не зависящие от света фазы иногда называют циклом Кальвина из-за цикличности процесса.

Хотя темновые фазы не используют свет в качестве реагента (и, как результат, могут происходить днем или ночью), им необходимо, чтобы продукты светозависимых реакций функционировали. Независимые от света молекулы зависят от молекул энергоносителей — АТФ и НАДФН — для создания новых молекул углеводов. После передачи энергии молекулы энергоносители возвращаются к световым фазам для получения более энергичных электронов. Кроме того, несколько ферментов темновой фазы активируются с помощью света.

Схема фаз фотосинтеза

Заметка: Это означает, что темновые фазы не будут продолжаться, если растения будут лишены света слишком долго, так как они используют продукты световых фаз.

Строение листьев растений

Мы не можем полностью изучить фотосинтез, не зная больше о строении листа. Лист адаптирован для того, чтобы играть жизненно важную роль в процессе фотосинтеза.

Внешнее строение листьев

  • Площадь

Одной из самых главных особенностей растений является большая площадь поверхности листьев. Большинство зеленых растений имеют широкие, плоские и открытые листья, которые способны захватывать столько солнечной энергии (солнечного света), сколько необходимо для фотосинтеза.

  • Центральная жилка и черешок

Центральная жилка и черешок соединяются вместе и являются основанием листа. Черешок располагает лист таким образом, чтобы он получал как можно больше света.

  • Листовая пластинка

Простые листья имеют одну листовую пластину, а сложные — несколько. Листовая пластинка — одна из самых главных составляющих листа, которая непосредственно участвует в процессе фотосинтеза.

  • Жилы

Сеть жилок в листьях переносит воду от стеблей к листьям. Выделяемая глюкоза также направляется в другие части растения из листьев через жилки. Кроме того, эти части листа поддерживают и удерживают листовую пластину плоской для большего захвата солнечного света. Расположение жилок (жилкование) зависит от вида растения.

  • Основание листа

Основанием листа выступает самая нижняя его часть, которая сочленена со стеблем. Зачастую, у основания листа располагается парное количество прилистников.

  • Край листа

В зависимости от вида растения, край листа может иметь различную форму, включая: цельнокрайнюю, зубчатую, пильчатую, выемчатую, городчатую и т.п.

  • Верхушка листа

Как и край листа, верхушка бывает различной формы, включая: острую, округлую, туповатую, вытянутую, оттянутою и т.д.

Внутреннее строение листьев

Ниже представлена ​​близкая схема внутреннего строения тканей листьев:

  • Кутикула

Кутикула выступает главным, защитным слоем на поверхности растения. Как правило, она толще на верхней части листа. Кутикула покрыта веществом, похожим на воск, благодаря которому защищает растение от воды.

  • Эпидермис

Эпидермис — слой клеток, который является покровной тканью листа. Его главная функция — защита внутренних тканей листа от обезвоживания, механических повреждений и инфекций. Он также регулирует процесс газообмена и транспирации.

  • Мезофилл

Мезофилл — это основная ткань растения. Здесь происходит процесс фотосинтеза. У большинства растений мезофилл разделен на два слоя: верхний — палисадный и нижний — губчатый.

  • Защитные клетки

Защитные клетки — специализированные клетки в эпидермисе листьев, которые используются для контроля газообмена. Они выполняют защитную функцию для устьица. Устьичные поры становятся большими, когда вода есть в свободном доступе, в противном случае, защитные клетки становятся вялыми.

  • Устьице

Фотосинтез зависит от проникновения углекислого газа (CO2) из воздуха через устьица в ткани мезофилла. Кислород (O2), полученный как побочный продукт фотосинтеза, выходит из растения через устьица. Когда устьица открытые, вода теряется в результате испарения и должна быть восполнена через поток транспирации, водой, поглощенной корнями. Растения вынуждены уравновешивать количество поглощенного СО2 из воздуха и потерю воды через устьичные поры.

Условия, необходимые для фотосинтеза

Ниже приведены условия, которые необходимы растениям для осуществления процесса фотосинтеза:

  • Углекислый газ. Бесцветный природный газ без запаха, обнаруженный в воздухе и имеет научное обозначение CO2. Он образуется при горении углерода и органических соединений, а также возникает в процессе дыхания.
  • Вода. Прозрачное жидкое химическое вещество без запаха и вкуса (в нормальных условиях).
  • Свет. Хотя искусственный свет также подходит для растений, естественный солнечный свет, как правило, создает лучшие условия для фотосинтеза, потому что в нем присутствует природное ультрафиолетовое излучение, которое оказывает положительное влияние на растения.
  • Хлорофилл. Это зеленый пигмент, найденный в листьях растений.
  • Питательные вещества и минералы. Химические вещества и органические соединения, которые корни растений поглощают из почвы.

Что образуется в результате фотосинтеза?

  • Глюкоза;
  • Кислород.

Заметка: Растения получают CO2 из воздуха через их листья, и воду из почвы через корни. Световая энергия исходит от Солнца. Полученный кислород выделяется в воздух из листьев. Получаемую глюкозу можно превратить в другие вещества, такие как крахмал, который используется как запас энергии.

Если факторы, способствующие фотосинтезу, отсутствуют или присутствуют в недостаточном количестве, это может негативно повлиять на растение. Например, меньшее количество света создает благоприятные условия для насекомых, которые едят листья растения, а недостаток воды замедляет.

Где происходит фотосинтез?

Фотосинтез происходит внутри растительных клеток, в мелких пластидах, называемых хлоропластами. Хлоропласты (в основном встречающиеся в слое мезофилла) содержат зеленое вещество, называемое хлорофиллом. Ниже приведены другие части клетки, которые работают с хлоропластом, чтобы осуществить фотосинтез.

Строение растительной клетки

Функции частей растительной клетки

  • Клеточная стенка: обеспечивает структурную и механическую поддержку, защищает клетки от патогенов, фиксирует и определяет форму клетки, контролирует скорость и направление роста, а также придает форму растениям.
  • Цитоплазма: обеспечивает платформу для большинства химических процессов, контролируемых ферментами.
  • Мембрана: действует как барьер, контролируя движение веществ в клетку и из нее.
  • Хлоропласты: как было описано выше, они содержат хлорофилл, зеленое вещество, которое поглощает световую энергию в процессе фотосинтеза.
  • Вакуоль: полость внутри клеточной цитоплазмы, которая накапливает воду.
  • Клеточное ядро: содержит генетическую марку (ДНК), которая контролирует деятельность клетки.

Хлорофилл поглощает световую энергию, необходимую для фотосинтеза. Важно отметить, что поглощаются не все цветовые длины волны света. Растения в основном поглощают красную и синюю волны — они не поглощают свет в зеленом диапазоне.

Углекислый газ в процессе фотосинтеза

Растения получают углекислый газ из воздуха через их листья. Углекислый газ просачивается через маленькое отверстие в нижней части листа — устьицу.

Нижняя часть листа имеет свободно расположенные клетки, чтобы углекислый газ достиг других клеток в листьях. Это также позволяет кислороду, образующемуся при фотосинтезе, легко покидать лист.

Углекислый газ присутствует в воздухе, которым мы дышим, в очень низких концентрациях и служит необходимым фактором темновой фазы фотосинтеза.

Свет в процессе фотосинтеза

Лист обычно имеет большую площадь поверхности, поэтому он может поглощать много света. Его верхняя поверхность защищена от потери воды, болезней и воздействия погоды восковым слоем (кутикулой). Верх листа находится там, где падает свет. Этот слой мезофилла называется палисадным. Он приспособлен для поглощения большого количества света, ведь в нем находится много хлоропластов.

В световых фазах, процесс фотосинтеза увеличивается с большим количеством света. Больше молекул хлорофилла ионизируется, и больше генерируется АТФ и НАДФН, если световые фотоны сосредоточены на зеленом листе. Хотя свет чрезвычайно важен в световых фазах, необходимо отметить, что чрезмерное его количество может повредить хлорофилл, и уменьшить процесс фотосинтеза.

Световые фазы не слишком сильно зависят от температуры, воды или углекислого газа, хотя все они нужны для завершения процесса фотосинтеза.

Вода в процессе фотосинтеза

Растения получают воду, необходимую для фотосинтеза через свои корни. Они имеют корневые волоски, которые разрастаются в почве. Корни характеризуются большой площадью поверхности и тонкими стенками, что позволяет воде легко проходить сквозь них.

На изображении представлены растения и их клетки с достаточным количеством воды (слева) и ее нехваткой (справа).

Заметка: Корневые клетки не содержат хлоропластов, поскольку они, как правило, находятся в темноте и не могут фотосинтезировать.

Если растение не впитывает достаточное количество воды, оно увядает. Без воды, растение будет не способно фотосинтезировать достаточно быстро, и может даже погибнуть.

Какое значение имеет вода для растений?

  • Обеспечивает растворенными минералами, которые поддерживают здоровье растений;
  • Является средой для транспортировки минеральных ресурсов;
  • Поддерживает устойчивость и прямостояние;
  • Охлаждает и насыщает влагой;
  • Дает возможность проводить различные химические реакции в растительных клетках.

Значение фотосинтеза в природе

Биохимический процесс фотосинтеза использует энергию солнечного света для преобразования воды и углекислого газа в кислород и глюкозу. Глюкоза используется в качестве строительных блоков в растениях для роста тканей. Таким образом, фотосинтез — это способ, благодаря которому формируются корни, стебли, листья, цветы и плоды. Без процесса фотосинтеза растения не смогут расти или размножаться.

  • Продуценты

Из-за фотосинтетической способности, растения известны как продуценты и служат основой почти каждой пищевой цепи на Земле. (Водоросли являются эквивалентом растений в водных экосистемах). Вся пища, которую мы едим, происходит от организмов, являющихся  фотосинтетиками. Мы питаемся этими растениями напрямую или едим животных, таких как коровы или свиньи, которые потребляют растительную пищу.

  • Основа пищевой цепи

Внутри водных систем, растения и водоросли также составляют основу пищевой цепи. Водоросли служат пищей для беспозвоночных, которые, в свою очередь, выступают источником питания для более крупных организмов. Без фотосинтеза в водной среде жизнь была бы невозможна.

  • Удаление углекислого газа

Фотосинтез превращает углекислый газ в кислород. Во время фотосинтеза углекислый газ из атмосферы поступает в растение, а затем выделяется в виде кислорода. В сегодняшнем мире, где уровни двуокиси углерода растут ужасающими темпами, любой процесс, который устраняет углекислый газ из атмосферы, является экологически важным.

  • Круговорот питательных веществ

Растения и другие фотосинтезирующие организмы играют жизненно важную роль в круговороте питательных веществ. Азот в воздухе фиксируется в растительных тканях и становится доступным для создания белков. Микроэлементы, находящиеся в почве, также могут быть включены в растительную ткань и стать доступными для травоядных животных, дальше по пищевой цепи.

  • Фотосинтетическая зависимость

Фотосинтез зависит от интенсивности и качества света. На экваторе, где солнечный свет обилен весь год и вода не является ограничивающим фактором, растения имеют высокие темпы роста, и могут стать довольно большими. И наоборот, фотосинтез в более глубоких частях океана встречается реже, поскольку свет не проникает в эти слои, и в результате эта экосистема оказывается более бесплодной.

Источник: NatWorld.info

В растениях (преимущественно в их листьях) на свету протекает фотосинтез. Это процесс, при котором из углекислого газа и воды образуется органическое вещество глюкоза (один из видов сахаров). Далее глюкоза в клетках превращается в более сложное вещество крахмал. И глюкоза, и крахмал являются углеводами.

В процессе фотосинтеза образуется не только органическое вещество, но также, в качестве побочного продукта, выделяется кислород.

Углекислый газ и вода — это неорганические вещества, а глюкоза и крахмал — органические. Поэтому часто говорят, что фотосинтез — это процесс образования органических веществ из неорганических на свету. Только растения, некоторые одноклеточные эукариоты и некоторые бактерии способны к фотосинтезу. В клетках животных и грибов такого процесса нет, поэтому они вынуждены поглощать из окружающей среды органические вещества. В связи с этим растения называют автотрофами, а животных и грибов — гетеротрофами.

Процесс фотосинтеза у растений протекает в хлоропластах, в которых содержится зеленый пигмент хлорофилл.

Итак, для протекания фотосинтеза необходимы:

  • хлорофилл,

  • свет,

  • вода,

  • углекислый газ.

В процессе фотосинтеза образуются:

  • органические вещества,

  • кислород.

Растения приспособлены к улавливанию света. У многих травянистых растений листья собраны в так называемую прикорневую розетку, когда листья не затеняют друг друга. Для деревьев характерна листовая мозаика, при которой листья растут так, чтобы как можно меньше затенять друг друга. У растений листовые пластинки могут поворачиваться к свету за счет изгибов черешков листьев. При всем этом существуют тенелюбивые растения, которые могут расти только в тени.

Вода для фотосинтеза поступает в листья из корней по стеблю. Поэтому важно, чтобы растение получало достаточное количество влаги. При недостатке воды и некоторых минеральных веществ процесс фотосинтеза тормозится.

Углекислый газ для фотосинтеза берется непосредственно из воздуха листьями. Кислород, который вырабатывается растением в процессе фотосинтеза, наоборот, выделяется в воздух. Газообмену способствуют межклетники (промежутки между клетками).

Образовавшиеся в процессе фотосинтеза органические вещества отчасти используются в самих листьях, но в основном оттекают во все другие органы и превращаются в другие органические вещества, используются при энергетическом обмене, превращаются в запасные питательные вещества.

Источник: biology.su