• Что такое световая фаза фотосинтеза
  • Где происходит световая фаза
  • Фотохимическая суть процесса
  • Светособирающие комплексы
  • Основные компоненты цепи переноса электронов
  • Продукты световой стадии

Основой жизнедеятельности растений является фотосинтез. В процессе фотосинтеза в тканях растения из неорганических веществ образуются органические. Как и любая химическая реакция синтеза, фотосинтез проходит с поглощением энергии. Источником энергии световой фазы фотосинтеза является свет. В процессе эволюции растения научились для своей жизнедеятельности использовать данную энергию. О световой фазе фотосинтеза мы постарались изложить кратко и понятно.

Что такое световая фаза фотосинтеза


Фотосинтез – сложный процесс, состоящий из 2 фаз: световой и темновой. Реакции протекающие в световой фазе фотосинтеза могут проходить только при освещении. Для темновой фазы свет не важен, она может проходить в любое время.  Ниже представлена схема световой и темновой фазы фотосинтеза.

Конечные вещества фотосинтеза

В течение световой стадии, растение захватывает фотоны света с помощью специальных светособирающих комплексов. Энергия фотонов необходима для прохождения процесса распада воды на кислород и водород.

Этот процесс, который происходит в световую фазу фотосинтеза называется фотолизом воды. Далее происходит образование конечных продуктов световой фазы, которые необходимы для прохождения реакций темновой фазы. Световая энергия накапливается в виде АТФ – аденозинтрифосфата.

Водород после фотолиза воды соединяется с ферментом НАДФ (никотинамидадениндинуклеотидфосфат), образуя НАДФН, который является источником водорода для дальнейших химических реакций.

Кислород при фотолизе воды выделяется в атмосферу. Таким образом, результатом световой фазы фотосинтеза является: распад воды под воздействием световой энергии с образованием конечных продуктов АТФ и НАДФН, использующихся для синтеза органики и свободного кислорода.

Где происходит световая фаза


Все процессы происходящие в световой стадии и темновой  фазе фотосинтеза протекают в специальных клеточных структурах, называемых хлоропластами. Хлоропласт – зеленая пластида, внутри которой содержится хлорофилл. В растительной клетке содержится большое количество хлоропластов, необходимых для прохождения химических реакций фотосинтеза.

Различные фазы процесса проходят в разных частях хлоропласта. Эта пластида имеет сложную структуру, в ее состав входит большое количество тилакоидов. Тилакоиды – особые структуры внутри хлоропласта, отвечающие за преобразование световой энергии. Тилакоиды, расположенные рядом, образуют стопки – граны.

Световая фаза фотосинтеза происходит в гранах тилакоидов, на их мембранах и во внутритилакоидном пространстве. В этом особенность световой фазы фотосинтеза и этим она отличается от темновой, во время которой химические реакции протекают в строме хлоропласта – плотном веществе между тилакоидами.

Конечные вещества фотосинтеза

Фотохимическая суть процесса


Основным процессом световой фазы фотосинтеза является фотолиз воды, представленный следующим уравнением:

2H2O + Qсвета → 4H+ + 4e + O2

Молекулы хлорофилла имеют свойство возбуждаться, и терять электроны при попадании на них кванта света. Эти электроны оседают на внешней стороне мембран, заряжая их отрицательно.

Сами молекулы хлорофилла, потерявшие электрон, восстанавливаются, отбирая электроны у воды, находящейся внутри тилакоида. При фотолизе вода расщепляется на следующие компоненты:

  • Протоны водорода;
  • Электроны водорода;
  • Кислород.

Кислород является побочным продуктом фотосинтеза и не участвует в дальнейших процессах. Он выводится наружу из ткани растения и поступает в атмосферу. Протоны накапливаются в специальном протонном резервуаре, находящемся внутри тилакоида.

Протоны заряжают внутреннюю часть тилакоидной мембраны положительно. Таким образом, мембраны тилакоидов имеют отрицательный заряд с внешней стороны, а положительный – с внутренней. Эти заряды постепенно увеличиваются по мере накопления протонов и электронов.

Разность потенциалов между внешней и внутренней поверхностью мембраны должна достигать не менее 200mВ, чтобы начался процесс образования конечных продуктов световой стадии. Только в этом случае протоны начнут проходить сквозь каналы АТФ-синтазы, находящиеся в тилакоидных мембранах.

Для этого используется энергия протона, проходящего тилакоидную мембрану. Прошедший мембрану протон и электрон, находящийся на внешней ее стороне вступают в реакцию с находящейся в строме хлоропласта молекулой НАДФ с образованием НАДФН.

+ + 2е + НАДФ → НАДФН

Светособирающие комплексы

iv>

Только небольшая часть молекул хлорофилла поглощает энергию, отдавая электроны. Они находятся в реакционных центрах и называются молекулами-ловушками. Остальная же часть этого пигмента собрана в светособирающие комплексы, задачей которых является не поглощение, а передача энергии.

Для чего нужны светособирающие комплексы? Если бы каждая молекула хлорофилла улавливала свет, то такая работа была бы крайне неэффективной. Процесс возбуждения и потери электрона проходил бы очень редко, а структура передачи электронов была бы слишком сложной из-за очень большого количества молекул.

На самом деле существует очень мало молекул, поглощающих энергию и отдающих электроны. На каждую из них приходится до 300 молекул, собранных в светособирающие комплексы по антенному типу. Они расположены на нескольких уровнях.

Конечно, происходит передача не квантов света, а только энергии, полученной при поглощении света. Таким образом, хлорофилл может не только поглощать световую энергию, но и передавать ее.

Конечные вещества фотосинтеза


На самом нижнем уровне светособирающего комплекса находится 1 молекула-ловушка. Энергия поступает к ней со всего антенного комплекса. Передача энергии происходит с определенными потерями ее количества.

Но молекула-ловушка получает энергию в десятки или даже в сотни раз чаще, чем молекулы, расположенные на самом высоком уровне. Молекулы-ловушки входят в состав фотосистем, которые участвуют в транспорте электронов во время световой стадии фотосинтеза.

Основные компоненты цепи переноса электронов

В течение световой стадии происходит перенос электронов от тилакоидных фотосистем с помощью промежуточных веществ-переносчиков до образования конечных продуктов фазы. Электрон-транспортная цепь имеет сложную структуру и множество компонентов.

Основными компонентами цепи переноса электронов являются:

Фотосистема 1 способна поглощать свет с длиной волны 700 нм, фотосистема 2 – 680 нм. Фотосистемы работают параллельно. При поглощении света фотосистемы отдают электроны на вещества-переносчики или акцепторы. В электрон-транспортной цепи задействовано множество акцепторов, которые захватывают электроны и отдают их другому компоненту цепи.

Когда фотосистема 2 теряет электрон под воздействием света, он сначала попадает на акцептор феофитин. Далее в его транспорте принимает участие целый ряд акцепторов, последним из которых является пластоцианин. Далее электрон попадает в фотосистему 1, восполняя электрон, отданный этой фотосистемой под воздействием кванта света. 

>

Фотосистема 1 отдает электрон на акцептор ферредоксин. Отсюда он поступает в последний компонент цепи НАДФ-редуктазу. Здесь образуется в световую фазу фотосинтеза вещество НАДФН. Недостачу электронов фотосистема 1  восполняет за счет электронов, приходящих от фотосистемы 2.

Конечные вещества фотосинтеза

Особое значение в электрон-транспортной цепи имеет комплекс цитохромов b6-f. Электроны, проходя через этот комплекс, многократно взаимодействуют с акцептором пластохиноном. При этом комплекс цитохромов увеличивает количество, не только электронов, но также и протонов, что повышает эффективность световой стадии.

Продукты световой стадии

При прохождении этапа световой фазы фотосинтеза образуются следующие продукты, необходимые для синтеза органики в дальнейших темновых реакциях: АТФ и НАДФН. АТФ – источник биохимической энергии. Эта молекула синтезируется из АДФ при поглощении энергии движущегося протона.


Формулу синтеза АТФ во время световой фазы фотосинтеза можно представить в следующем формуле:

АДФ + ортофосфорная кислота + энергия → АТФ + Н2О

Синтезированный АТФ может участвовать во всех химических реакциях, для прохождения которых необходима энергия. При взаимодействии с водой происходит обратная реакция с выделением энергии.

АТФ вновь расщепляется на АДФ и ортофосфорную кислоту:

АТФ + H2O → АДФ + ортофосфорная кислота + энергия

Для образования органических веществ при фотосинтезе такая энергетическая составляющая крайне необходима, так как синтез органики требует поглощения большого количества энергии. НАДФН – восстановленный фермент, который является источником водорода. Он используется в химических процессах темновой фазы, где отдает водород и превращается в фермент НАДФ.

Источник: florist-club.com

Фотосинтез — процесс преобразования лучистой энергии Солнца в химическую с использованием последней в синтезе углеводов из углекислого газа. Это единственный путь улавливания солнечной энергии и использования ее для жизни на нашей планете.

Улавливание и преобразование солнечной энергии осуществляют многообразные фотосинтезирующие организмы (фотоавтотрофы). К ним относятся многоклеточные организмы (высшие зеленые растения и низшие их формы — зеленые, бурые и красные водоросли) и одноклеточные (эвгленовые, динофлагелляты и диатомовые водоросли). Большую группу фотосинтезирующих организмов составляют прокариоты — сине-зеленые водоросли, зеленые и пурпурные бактерии. Примерно половина работы по фотосинтезу на Земле осуществляется высшими зелеными растениями, а остальная половина — главным образом одноклеточными водорослями.


Первые представления о фотосинтезе были сформированы в 17 веке. В дальнейшем, по мере появления новых данных, эти представления многократно изменялись [показать].

В настоящее время принято считать, что процесс фотосинтеза складывается из двух стадий, в которых активное участие принимают фотосинтезирующие структуры [показать] и светочувствительные пигменты клетки.


Наземные растения поглощают необходимую для процесса фотосинтеза воду через корни, а водные растения получают ее путем диффузии из окружающей среды. Необходимая для фотосинтеза углекислота диффундирует в растение через мелкие отверстия на поверхности листьев — устьица. Поскольку углекислота расходуется в процессе фотосинтеза, ее концентрация в клетке обычно несколько ниже, чем в атмосфере. Освобождающийся в процессе фотосинтеза кислород диффундирует наружу из клетки, а затем и из растения — через устьица. Образующиеся при фотосинтезе сахара также диффундируют в те части растения, где их концентрация ниже.

Для осуществления фотосинтеза растениям необходимо очень много воздуха, так как он содержит всего 0,03% углекислоты. Следовательно, из 10 000 м3 воздуха можно получить 3 м3 углекислоты, из которой в процессе фотосинтеза образуется около 110 г глюкозы. Обычно растения лучше растут при более высоком содержании в воздухе углекислоты. Поэтому в некоторых теплицах содержание CO2 в воздухе доводят до 1-5%.

В реализации фотохимической функции фотосинтеза принимают участие солнечная энергия и различные пигменты: зеленые — хлорофиллы а и b, желтые — каротиноиды и красные или синие — фикобилины. Фотохимически активен среди этого комплекса пигментов только хлорофилл а. Остальные пигменты играют вспомогательную роль, являясь лишь собирателями световых квантов (своеобразные светособирающие линзы) и проводниками их к фотохимическому центру.

На основании способности хлорофилла эффективно поглощать солнечную энергию определенной длины волны в мембранах тилактоидов были выделены функциональные фотохимические центры или фотосистемы (рис. 3):


  • фотосистемa I (хлорофилл а) — содержит пигмент 700 (Р700) поглощающий свет с длиной волны около 700 нм, играет основную роль в образовании продуктов световой стадии фотосинтеза: АТФ и НАДФ · Н2
  • фотосистема II (хлорофилл b) — содержит пигмент 680 (Р680), поглощающий свет с длиной волны 680 нм, играет вспомогательную роль восполняя за счет фотолиза воды утраченные фотосистемой I электроны

На 300-400 молекул светособирающих пигментов в фотосистемах I и II приходится только одна молекула фотохимически активного пигмента — хлорофилла а.

Поглощенный растением световой квант

  • переводит пигмент Р700 из основного состояния в возбужденное — Р*700, в котором он легко теряет электрон с образованием положительной электронной дырки в виде Р700+ по схеме:

    Р700 —> Р*700 —> Р+700 + е

    После чего молекула пигмента, потерявшая электрон, может служить акцептором электрона (способна принять электрон) и переходить в восстановленную форму

  • вызывает разложение (фотоокисление) воды в фотохимическом центре Р680 фотосистемы II по схеме

    Н2О —> 2Н+ + 2е + 1/2O2

    Фотолиз воды называется реакцией Хилла. Электроны, образующиеся при разложении воды, первоначально акцептируются веществом, обозначаемым Q (иногда его называют цитохромом С550 пo максимуму поглощения, хотя оно не является цитохромом). Затем от вещества Q через цепь переносчиков, похожую по составу на митохондриальную, электроны поставляются в фотосистему I для заполнения электронной дырки, образовавшейся в результате поглощения системой световых квантов, и восстановления пигмента Р+700

Если такая молекула просто получит назад тот же электрон, то произойдет выделение световой энергии в виде тепла и флуоресценции (этим обусловлена флуоресценция чистого хлорофилла). Однако, в большинстве случаев, освободившийся отрицательно заряженный электрон акцептируется специальными железосерными белками (FеS-центр), а затем

  1. или транспортируется по одной из цепей переносчиков обратно к Р+700, заполняя электронную дырку
  2. или по другой цепи переносчиков через ферредоксин и флавопротеид к постоянному акцептору — НАДФ · Н2

В первом случае происходит замкнутый циклический транспорт электрона, а во втором — нециклический.

Оба процесса катализируются одной и той же цепью переносчиков электронов. Однако при циклическом фотофосфорилировании электроны возвращаются от хлорофилла а снова к хлорофиллу а, тогда как при нециклическом фотофосфорилировании электроны переходят от хлорофилла b к хлорофиллу а.

Циклическое (фотосинтетическое) фосфорилирование Нециклическое фосфорилирование

В результате циклического фосфорилирования происходит образование молекул АТФ. Процесс связан с возвращением через ряд последовательных этапов возбужденных электронов на Р700. Возвращение возбужденных электронов на Р700 приводит к высвобождению энергии (при переходе с высокого на низкий энергетический уровень), которая, при участии фосфорилирующей ферментной системы, аккумулируется в фосфатных связях АТФ, а не рассеивается в виде флуоресценции и тепла (рис.4.). Этот процесс называется фотосинтетическим фосфорилированием (в отличие от окислительного фосфорилирования, осуществляемого митохондриями);

Фотосинтетическое фосфорилирование — первичная реакция фотосинтеза — механизм образования химической энергии (синтеза АТФ из АДФ и неорганического фосфата) на мембране тилактоидов хлоропластов с использованием энергии солнечного света. Необходима для темновой реакции ассимиляции СО2

Конечные вещества фотосинтеза

В результате нециклического фосфорилирования происходит восстановление НАДФ+ с образование НАДФ · Н. Процесс связан с передачей электрона ферредоксину, его восстановлением и дальнейшим переходом его к НАДФ+ с последующим восстановление его до НАДФ · Н

В тилактоидах идут оба процесса, хотя второй более сложный. Он сопряжен (взаимосвязан) с работой фотосистемы II.

Таким образом, утраченные Р700 электроны восполняются за счет электронов воды, разлагаемой под действием света в фотосистеме II.

Электроны, необходимые для возвращения хлорофилла а+ в основное состояние, образуются, по-видимому, при возбуждении хлорофилла b. Эти высокоэнергетические электроны переходят к ферредоксину и затем через флавопротеин и цитохромы — к хлорофиллу а. На последнем этапе происходит фосфорилирование АДФ до АТФ (рис. 5).

Электроны, необходимые для возвращения хлорофилла в его основное состояние, поставляются, вероятно, ионами ОН, образующимися при диссоциации воды. Некоторая часть молекул воды диссоциирует на ионы Н+ и ОН. В результате потери электронов ионы ОН превращаются в радикалы (ОН), которые в дальнейшем дают молекулы воды и газообразного кислорода (рис. 6).

Этот аспект теории подтверждается результатами опытов с водой и CO2, меченными 180 [показать]. Нециклический поток электронов от Н2О к НАДФ · Н2, происходящий при взаимодействии двух фотосистем и связывающих их электронно-транспортных цепей, наблюдается вопреки значениям редокс-потенциалов: Е° для 1/2O22О = +0,81 В, а Е° для НАДФ/НАДФ · Н = -0,32 В. Энергия света обращает поток электронов «вспять». Существенно то, что при переносе от фотосистемы II к фотосистеме I часть энергии электронов аккумулируется в виде протонного потенциала на мембране тилактоидов, а затем в энергию АТФ.

Механизм образования протонного потенциала в цепи переноса электронов и его использование на образование АТФ в хлоропластах сходен с таковым в митохондриях. Однако в механизме фотофосфорилирования имеются некоторые особенности. Тилактоиды представляют собой как бы вывернутые наизнанку митохондрии, поэтому направление переноса электронов и протонов через мембрану противоположно направлению его в митохондриальной мембране (рис.6). Электроны движутся к внешней стороне, а протоны концентрируются внутри тилактоидного матрикса. Матрикс заряжается положительно, а внешняя мембрана тилактоида — отрицательно, т. е. направление протонного градиента противоположно направлению его в митохондриях.

Другой особенностью является значительно большая доля рН в протонном потенциале по сравнению с митохондриями. Тилактоидный матрикс сильно закисляется, поэтому Δ рН может достигать 0,1-0,2 В, в то время как Δ Ψ составляет около 0,1 В. Общее значение Δ μH+ > 0,25 В.

Н+-АТФ-синтетаза, обозначаемая в хлоропластах как комплекс «СF1+F0«, ориентирована тоже в противоположном направлении. Головка ее (F1) смотрит наружу, в сторону стромы хлоропласта. Протоны выталкиваются через СF0+F1 из матрикса наружу, и в активном центре F1 образуется АТФ за счет энергии протонного потенциала.

В отличие от митохондриальной цепи в тилактоидной имеется, по-видимому, только два участка сопряжения, поэтому на синтез одной молекулы АТФ требуется вместо двух три протона, т. е. соотношение 3 Н+/1 моль АТФ.

Итак, на первой стадии фотосинтеза, во время световых реакций, в строме хлоропласта образуются АТФ и НАДФ · Н — продукты, необходимые для осуществления темновых реакций.

Темновые реакции фотосинтеза — это процесс включения углекислоты в органические вещества с образованием углеводов (фотосинтез глюкозы из СО2). Реакции протекают в строме хлоропласта при участии продуктов световой стадии фотосинтеза — АТФ и НАДФ · Н2.

Ассимиляция диоксида углерода (фотохимическое карбоксилирование) представляет собой циклический процесс, который называется также пентозофосфатным фотосинтетическим циклом или циклом Кальвина (рис. 7). В нем можно выделить три основные фазы:

  • карбоксилирование (фиксация СО2 рибулозодифосфатом)
  • восстановление (образование триозофосфатов при восстановлении 3-фосфоглицерата)
  • регенерация рибулозодифосфата

Рибулозо-5-фосфат (сахар, содержащий 5 атомов углерода, с фосфатным остатком у углерода в положении 5) подвергается фосфорилированию за счет АТФ, что приводит к образованию рибулозодифосфата. Это последнее вещество карбоксилируется путем присоединения СО2, по-видимому, до промежуточного шестиуглеродного продукта, который, однако, немедленно расщепляется с присоединением молекулы воды, образуя две молекулы фосфоглицериновой кислоты. Затем фосфоглицериновая кислота восстанавливается в ходе ферментативной реакции, для осуществления которой необходимо присутствие АТФ и НАДФ · Н с образованием фосфоглицеринового альдегида (трехуглеродный сахар — триоза). В результате конденсации двух таких триоз образуется молекула гексозы, которая может включаться в молекулу крахмала и таким образом откладываться про запас.

Для завершения этой фазы цикла в процессе фотосинтеза поглощается 1 молекула С02 и используются 3 молекулы АТФ и 4 атома Н (присоединенных к 2 молекулам НАД · Н). Из гексозофосфата путем определенных реакций пентозофосфатного цикла (рис. 8) регенерирует рибулозофосфат, который снова может присоединить к себе другую молекулу углекислоты.

Ни одну из описанных реакций — карбоксилирование, восстановление или регенерацию — нельзя считать специфичной только для фотосинтезирующей клетки. Единственное обнаруженное у них отличие заключается в том, что для реакции восстановления, в течение которой фосфоглицериновая кислота превращается в фосфоглицериновый альдегид, необходим НАДФ · Н, а не НАД · Н, как обычно.

Фиксация СО2 рибулозодифосфатом катализируется ферментом рибулозодифосфаткарбоксилазой: Рибулозодифосфат + СО2 —> 3-Фосфоглицерат Далее 3-фосфоглицерат восстанавливается с помощью НАДФ · Н2 и АТФ до глицеральдегид-3-фосфата. Эта реакция катализируется ферментом — глицеральдегид-3-фосфат-дегидрогеназой. Глицеральдегид-3-фосфат легко изомеризуется в дигидроксиацетонфосфат. Оба триозофосфата используются в образовании фруктозобисфосфата (обратная реакция, катализируемая фруктозо-бисфосфат-альдолазой). Часть молекул образовавшегося фруктозобисфосфата участвует вместе с триозофосфатами в регенерации рибулозодифосфата (замыкают цикл), а другая часть используется для запасания углеводов в фотосинтезирующих клетках, как показано на схеме.

Подсчитано, что для синтеза одной молекулы глюкозы из СО2 в цикле Кальвина требуется 12 НАДФ · Н + Н+ и 18 АТФ (12 молекул АТФ расходуются на восстановление 3-фосфоглицерата, а 6 молекул — в реакциях регенерации рибулозодифосфата). Минимальное соотношение — 3 АТФ : 2 НАДФ · Н2.

Можно заметить общность принципов, лежащих в основе фотосинтетического и окислительного фосфорилирования, причем фотофосфорилирование представляет собой как бы обращенное окислительное фосфорилирование:

Конечные вещества фотосинтеза

Энергия света является движущей силой фосфорилирования и синтеза органических веществ (S-Н2) при фотосинтезе и, наоборот, энергия окисления органических веществ — при окислительном фосфорилировании. Поэтому именно растения обеспечивают жизнь животным и другим гетеротрофным организмам:

Конечные вещества фотосинтеза

Углеводы, образующиеся при фотосинтезе, служат для построения углеродных скелетов многочисленных органических веществ растений. Азоторганические вещества усваиваются фотосинтезирующими организмами путем восстановления неорганических нитратов или атмосферного азота, а сера — восстановлением сульфатов до сульфгидрильных групп аминокислот. Фотосинтез в конечном итоге обеспечивает построение не только обязательных для жизни белков, нуклеиновых кислот, углеводов, липидов, кофакторов, но и многочисленных продуктов вторичного синтеза, являющихся ценными лекарственными веществами (алкалоиды, флавоноиды, полифенолы, терпены, стероиды, органические кислоты и т.д.).

Бесхлорофильный фотосинтез

Бесхлорофильный фотосинтез обнаружен у солелюбивых бактерий, имеющих фиолетовый светочувствительный пигмент. Этим пигментом оказался белок бактериородопсин, содержащий, подобно зрительному пурпуру сетчатки — родопсину, производное витамина А — ретиналь. Бактериородопсин, встроенный в мембрану солелюбивных бактерий, образует на этой мембране в ответ на поглощение ретиналем света протонный потенциал, преобразующийся в АТФ. Таким образом, бактериородопсин является бесхлорофильным преобразователем энергии света.

Фотосинтез и внешняя среда

Фотосинтез возможен только при наличии света, воды и диоксида углерода. КПД фотосинтеза не более 20% у культурных видов растений, а обычно он не превышает 6-7%. В атмосфере примерно 0,03% (об.) СО2, при повышении его содержания до 0,1% интенсивность фотосинтеза и продуктивность растений возрастают, поэтому целесообразно подкармливать растения гидрокарбонатами. Однако содержание СО2 в воздухе выше 1,0% оказывает вредное действие на фотосинтез. За год только наземные растения усваивают 3% всего СО2 атмосферы Земли, т. е. около 20 млрд. т. В составе синтезируемых из СО2 углеводов аккумулируется до 4 · 1018 кДж энергии света. Это соответствует мощности электростанции в 40 млрд кВт. Побочный продукт фотосинтеза — кислород — жизненно необходим для высших организмов и аэробных микроорганизмов. Сохранить растительный покров — значит сохранить жизнь на Земле.

Эффективность фотосинтеза

Эффективность фотосинтеза с точки зрения производства биомассы можно оценить через долю общей солнечной радиации, попадающей на определенную площадь за определенное время, которая запасается в органических веществах урожая. Продуктивность системы можно оценить по количеству органического сухого вещества, получаемого с единицы площади за год, и выразить в единицах массы (кг) или энергии (мДж) продукции, полученной с гектара за год.

Выход биомассы зависит, таким образом, от площади коллектора солнечной энергии (листьев), функционирующих в течение года, и числа дней в году с такими условиями освещенности, когда возможен фотосинтез с максимальной скоростью, что определяет эффективность всего процесса. Результаты определения доли солнечной радиации (в %), доступной растениям (фотосинтетически активной радиации, ФАР), и знание основных фотохимических и биохимических процессов и их термодинамической, эффективности позволяют рассчитать вероятные предельные скорости образования органических веществ в пересчете на углеводы.

Растения используют свет с длиной волны от 400 до 700 нм, т. е. на долю фотосинтетически активной радиации приходится 50% всего солнечного света. Это соответствует интенсивности на поверхности Земли 800-1000 Вт/м2 за обычный солнечный день (в среднем). Усредненная максимальная эффективность превращения энергии при фотосинтезе на практике составляет 5-6%. Эти оценки получены на основе изучения процесса связывания СО2, а также сопутствующих физиологических и физических потерь. Одному молю связанного СО2 в форме углевода соответствует энергия 0,47 МДж, а энергия моля квантов красного света с длиной волны 680 нм (наиболее бедный энергией свет, используемый в фотосинтезе) составляет 0,176 МДж. Таким образом, минимальное число молей квантов красного света, необходимое для связывания 1 моля СО2, составляет 0,47:0,176 = 2,7. Однако, поскольку перенос четырех электронов от воды для фиксации одной молекулы СО2 требует не менее восьми квантов света, теоретическая эффективность связывания равна 2,7:8 = 33%. Эти расчеты сделаны для красного света; ясно, что для белого света эта величина будет соответственно ниже.

В наилучших полевых условиях эффективность фиксации в растениях достигает 3%, однако это возможно лишь в короткие периоды роста и, если пересчитать ее на весь год, то она будет где-то между 1 и 3%.

На практике в среднем за год эффективность фотосинтетического преобразования энергии в зонах с умеренным климатом составляет обычно 0,5-1,3%, а для субтропических культур — 0,5-2,5%. Выход продукта, который можно ожидать при определенном уровне интенсивности солнечного света и разной эффективности фотосинтеза, легко оценить из графиков, приведенных на рис. 9.

Значение фотосинтеза

  • Процесс фотосинтеза является основой питания всех живых существ, а также снабжает человечество топливом, волокнами и бесчисленными полезными химическими соединениями.
  • Из диоксида углерода и воды, связанных из воздуха в ходе фотосинтеза, образуется около 90-95% сухого веса урожая.
  • Человек использует около 7% продуктов фотосинтеза в пищу, в качестве корма для животных, в виде топлива и строительных материалов

Источник: bono-esse.ru

Световая фаза фотосинтеза

В световой фазе фотосинтеза происходит синтез АТФ и НАДФ·H2 за счет лучистой энергии. Это происходит на тилакоидах хлоропластов, где пигменты и ферменты образуют сложные комплексы для функционирования электрохимических цепей, по которым передаются электроны и отчасти протоны водорода.

Электроны в конечном итоге оказываются у кофермента НАДФ, который, заряжаясь отрицательно, притягивает к себе часть протонов и превращается в НАДФ·H2. Также накопление протонов по одну сторону тилакоидной мембраны и электронов по другую создает электрохимический градиент, потенциал которого используется ферментом АТФ-синтетазой для синтеза АТФ из АДФ и фосфорной кислоты.

Главными пигментами фотосинтеза являются различные хлорофиллы. Их молекулы улавливают излучение определенных, отчасти разных спектров света. При этом некоторые электроны молекул хлорофилла переходят на более высокий энергетический уровень. Это неустойчивое состояние, и по-идее электроны путем того же излучения должны отдать в пространство полученную из вне энергию и вернуться на прежний уровень. Однако в фотосинтезирующих клетках возбужденные электроны захватываются акцепторами и с постепенным уменьшением своей энергии передаются по цепи переносчиков.

На мембранах тилакоидов существуют два типа фотосистем, испускающих электроны при действия света. Фотосистемы представляют собой сложный комплекс большей частью хлорофильных пигментов с реакционным центром, от которого и отрываются электроны. В фотосистеме солнечный свет ловит множество молекул, но вся энергия собирается в реакционном центре.

Электроны фотосистемы I, пройдя по цепи переносчиков, восстанавливают НАДФ.

Энергия электронов, оторвавшихся от фотосистемы II, используется для синтеза АТФ. А сами электроны фотосистемы II заполняют электронные дырки фотосистемы I.

Дырки второй фотосистемы заполняются электронами, образующимися в результате фотолиза воды. Фотолиз также происходит при участии света и заключается в разложении H2O на протоны, электроны и кислород. Именно в результате фотолиза воды образуется свободный кислород. Протоны участвуют в создании электрохимического градиента и восстановлении НАДФ. Электроны получает хлорофилл фотосистемы II.

Примерное суммарное уравнение световой фазы фотосинтеза:

H2O + НАДФ + 2АДФ + 2Ф → ½O2 + НАДФ · H2 + 2АТФ

Циклический транспорт электронов

Выше описана так называемый нецикличная световая фаза фотосинтеза. Есть еще циклический транспорт электронов, когда восстановления НАДФ не происходит. При этом электроны от фотосистемы I уходят на цепь переносчиков, где идет синтез АТФ. То есть эта электрон-транспортная цепь получает электроны из фотосистемы I, а не II. Первая фотосистема как бы реализует цикл: в нее возвращаются ей же испускаемые электроны. По дороге они тратят часть своей энергии на синтез АТФ.

Фотофосфорилирование и окислительное фосфорилирование

Световую фазу фотосинтеза можно сравнить с этапом клеточного дыхания — окислительным фосфорилированием, которое протекает на кристах митохондрий. Там тоже происходит синтез АТФ за счет передачи электронов и протонов по цепи переносчиков. Однако в случае фотосинтеза энергия запасается в АТФ не для нужд клетки, а в основном для потребностей темновой фазы фотосинтеза. И если при дыхании первоначальным источником энергии служат органические вещества, то при фотосинтезе – солнечный свет. Синтез АТФ при фотосинтезе называется фотофосфорилированием, а не окислительным фосфорилированием.

Темновая фаза фотосинтеза

Впервые темновую фазу фотосинтеза подробно изучили Кальвин, Бенсон, Бэссем. Открытый ими цикл реакций в последствии был назван циклом Кальвина, или C3-фотосинтезом. У определенных групп растений наблюдается видоизмененный путь фотосинтеза – C4, также называемый циклом Хэтча-Слэка.

В темновых реакциях фотосинтеза происходит фиксация CO2. Темновая фаза протекает в строме хлоропласта.

Восстановление CO2 происходит за счет энергии АТФ и восстановительной силы НАДФ·H2, образующихся в световых реакциях. Без них фиксации углерода не происходит. Поэтому хотя темновая фаза напрямую не зависит от света, но обычно также протекает на свету.

Цикл Кальвина

Первая реакция темновой фазы – присоединение CO2 (карбоксилирование) к 1,5-рибулезобифосфату (рибулезо-1,5-дифосфат) – РиБФ. Последний представляет собой дважды фосфорилированную рибозу. Данную реакцию катализирует фермент рибулезо-1,5-дифосфаткарбоксилаза, также называемый рубиско.

В результате карбоксилирования образуется неустойчивое шестиуглеродное соединение, которое в результате гидролиза распадается на две трехуглеродные молекулы фосфоглицериновой кислоты (ФГК) – первый продукт фотосинтеза. ФГК также называют фосфоглицератом.

РиБФ + CO2 + H2O → 2ФГК

ФГК содержит три атома углерода, один из которых входит в состав кислотной карбоксильной группы (-COOH):

Из ФГК образуется трехуглеродный сахар (глицеральдегидфосфат) триозофосфат (ТФ), включающий уже альдегидную группу (-CHO):

ФГК (3-кислота) → ТФ (3-сахар)

На данную реакцию затрачивается энергия АТФ и восстановительная сила НАДФ · H2. ТФ — первый углевод фотосинтеза.

После этого большая часть триозофосфата затрачивается на регенерацию рибулозобифосфата (РиБФ), который снова используется для связывания CO2. Регенерация включает в себя ряд идущих с затратой АТФ реакций, в которых участвуют сахарофосфаты с количеством атомов углерода от 3 до 7.

В таком круговороте РиБФ и заключается цикл Кальвина.

Из цикла Кальвина выходит меньшая часть образовавшегося в нем ТФ. В перерасчете на 6 связанных молекул углекислого газа выход составляет 2 молекулы триозофосфата. Суммарная реакция цикла с входными и выходными продуктами:

6CO2 + 6H2O → 2ТФ

При этом в связывании участвую 6 молекул РиБФ и образуется 12 молекул ФГК, которые превращаются в 12 ТФ, из которых 10 молекул остаются в цикле и преобразуются в 6 молекул РиБФ. Поскольку ТФ — это трехуглеродный сахар, а РиБФ — пятиуглеродный, то в отношении атомов углерода имеем: 10 * 3 = 6 * 5. Количество атомов углерода, обеспечивающих цикл не изменяется, весь необходимый РиБФ регенерируется. А шесть вошедших в цикл молекул углекислоты затрачиваются на образование двух выходящих из цикла молекул триозофосфата.

На цикл Кальвина в расчете на 6 связанных молекул CO2 затрачивается 18 молекул АТФ и 12 молекул НАДФ · H2, которые были синтезированы в реакциях световой фазы фотосинтеза.

Расчет ведется на две выходящие из цикла молекулы триозофосфата, так как образующаяся в последствии молекула глюкозы, включает 6 атомов углерода.

Триозофосфат (ТФ) — конечный продукт цикла Кальвина, но его сложно назвать конечным продуктом фотосинтеза, так как он почти не накапливается, а, вступая в реакции с другими веществами, превращается в глюкозу, сахарозу, крахмал, жиры, жирные кислоты, аминокислоты. Кроме ТФ важную роль играет ФГК. Однако подобные реакции происходят не только у фотосинтезирующих организмов. В этом смысле темновая фаза фотосинтеза – это то же самое, что цикл Кальвина.

Из ФГК путем ступенчатого ферментативного катализа образуется шестиуглеродный сахар фруктозо-6-фосфат, который превращается в глюкозу. В растениях глюкоза может полимеризоваться в крахмал и целлюлозу. Синтез углеводов похож на процесс обратный гликолизу.

Фотодыхание

Кислород подавляет фотосинтез. Чем больше O2 в окружающей среде, тем менее эффективен процесс связывания CO2. Дело в том, что фермент рибулозобифосфат-карбоксилаза (рубиско) может реагировать не только с углекислым газом, но и кислородом. В этом случае темновые реакции несколько иные.

Содержащая пять атомов углерода молекула рибулозобифосфата реагирует уже не с CO2, а с O2. В результате чего образуются по одной молекуле фосфогликолата (C2) и фосфоглицериновой кислоты (C3), а не две ФГК как обычно.

Фосфогликолат — это фосфогликолевая кислота. От нее сразу отщепляется фосфатная группа, и она превращается в гликолевую кислоту (гликолат). Для его «утилизации» снова нужен кислород. Поэтому чем больше в атмосфере кислорода, тем больше он будет стимулировать фотодыхание и тем больше растению будет требоваться кислорода, чтобы избавиться от продуктов реакции.

Фотодыхание — это зависимое от света потребление кислорода и выделение углекислого газа. То есть обмен газов происходит как при дыхании, но протекает в хлоропластах и зависит от светового излучения. От света фотодыхание зависит лишь потому, что рибулозобифосфат образуется только при фотосинтезе.

При фотодыхании происходит возврат атомов углерода из гликолата в цикл Кальвина в виде фосфоглицериновой кислоты (фосфоглицерата).

2 Гликолат (С2) → 2 Глиоксилат (С2) →2 Глицин (C2) — CO2 → Серин (C3) →Гидроксипируват (C3) → Глицерат (C3) → ФГК (C3)

Как видно, возврат происходит не полный, так как один атом углерода теряется при превращении двух молекул глицина в одну молекулу аминокислоты серина, при этом выделяется углекислый газ.

Кислород необходим на стадиях превращения гликолата в глиоксилат и глицина в серин.

Превращения гликолата в глиоксилат, а затем в глицин происходят в пероксисомах, синтез серина в митохондриях. Серин снова поступает в пероксисомы, где из него сначала получается гидрооксипируват, а затем глицерат. Глицерат уже поступает в хлоропласты, где из него синтезируется ФГК.

Фотодыхание характерно в основном для растений с C3-типом фотосинтеза. Его можно считать вредным, так как энергия бесполезно тратится на превращения гликолата в ФГК. Видимо фотодыхание возникло из-за того, что древние растения были не готовы к большому количеству кислорода в атмосфере. Изначально их эволюция шла в атмосфере богатой углекислым газом, и именно он в основном захватывал реакционный центр фермента рубиско.

C4-фотосинтез, или цикл Хэтча-Слэка

Если при C3-фотосинтезе первым продуктом темновой фазы является фосфоглицериновая кислота, включающая три атома углерода, то при C4-пути первыми продуктами являются кислоты, содержащие четыре атома углерода: яблочная, щавелевоуксусная, аспарагиновая.

С4-фотосинтез наблюдается у многих тропических растений, например, сахарного тростника, кукурузы.

С4-растения эффективнее поглощают оксид углерода, у них почти не выражено фотодыхание.

Растения, в которых темновая фаза фотосинтеза протекает по C4-пути, имеют особое строение листа. В нем проводящие пучки окружены двойным слоем клеток. Внутренний слой — обкладка проводящего пучка. Наружный слой — клетки мезофилла. Хлоропласты клеток слоев отличаются друг от друга.

Для мезофильных хлоропласт характерны крупные граны, высокая активность фотосистем, отсутствие фермента РиБФ-карбоксилазы (рубиско) и крахмала. То есть хлоропласты этих клеток адаптированы преимущественно для световой фазы фотосинтеза.

В хлоропластах клеток проводящего пучка граны почти не развиты, зато высока концентрация РиБФ-карбоксилазы. Эти хлоропласты адаптированы для темновой фазы фотосинтеза.

Углекислый газ сначала попадает в клетки мезофилла, связывается с органическими кислотами, в таком виде транспортируется в клетки обкладки, освобождается и далее связывается также, как у C3-растений. То есть C4-путь дополняет, а не заменяет C3.

В мезофилле CO2 присоединяется к фосфоенолпирувату (ФЕП) с образованием оксалоацетата (кислота), включающего четыре атома углерода:

Реакция происходит при участии фермента ФЕП-карбоксилазы, обладающего более высоким сродством к CO2, чем рубиско. К тому же ФЕП-карбоксилаза не взаимодействует с кислородом, а значит не затрачивается на фотодыхание. Таким образом, преимущество C4-фотосинтеза заключается в более эффективной фиксации углекислоты, увеличению ее концентрации в клетках обкладки и следовательно более эффективной работе РиБФ-карбоксилазы, которая почти не расходуется на фотодыхание.

Оксалоацетат превращается в 4-х углеродную дикарбоновую кислоту (малат или аспартат), которая транспортируется в хлоропласты клеток обкладки проводящих пучков. Здесь кислота декарбоксилируется (отнятие CO2), окисляется (отнятие водорода) и превращается в пируват. Водород восстанавливает НАДФ. Пируват возвращается в мезофилл, где из него регенерируется ФЕП с затратой АТФ.

Оторванный CO2 в хлоропластах клеток обкладки уходит на обычный C3-путь темновой фазы фотосинтеза, т. е. в цикл Кальвина.

Фотосинтез по пути Хэтча-Слэка требует больше энергозатрат.

Считается, что C4-путь возник в эволюции позже C3 и во многом является приспособлением против фотодыхания.

Источник: biology.su