Каждое живое существо на планете нуждается в пище или энергии, чтобы выжить. Некоторые организмы питаются другими существами, тогда как другие могут производить свои собственные питательные элементы. Растения сами производят продукты питания, глюкозу, в процессе, который называется фотосинтезом.

Фотосинтез и дыхание взаимосвязаны. Результатом фотосинтеза является глюкоза, которая хранится как химическая энергия в растительных клетках. Эта накопленная химическая энергия получается в результате превращения неорганического углерода (углекислого газа) в органический углерод. Процесс дыхания высвобождает накопленную химическую энергию.

Помимо продуктов, которые они производят, растениям также необходим углерод, водород и кислород, чтобы выжить. Вода, поглощенная из почвы, обеспечивает водород и кислород. Во время фотосинтеза, углерод и вода используются для синтеза пищи. Растения также нуждаются в нитратах, чтобы производить аминокислоты (аминокислота — ингредиент для выработки белка). В дополнение к этому, они нуждаются в магнии для производства хлорофилла.

Заметка: Живые существа, которые зависят от других продуктов питания называются гетеротрофами. Травоядные, такие как коровы, а также растения, питающиеся насекомыми, являются примерами гетеротрофов. Живые существа, производящие собственную пищу, называются автотрофами. Зеленые растения и водоросли — примеры автотрофов.


В этой статье вы узнаете больше о том, как происходит фотосинтез у растений и об необходимы для этого процесса условиях.

Определение фотосинтеза

Фотосинтез — это химический процесс, посредством которого растения, некоторые бактерии и водоросли производят глюкозу и кислород из углекислого газа и воды, используя только свет в качестве источника энергии.

От чего может зависеть скорость фотосинтеза

Этот процесс чрезвычайно важен для жизни на Земле, поскольку благодаря ему выделяется кислород, от которого зависит вся жизнь.

Зачем растениям нужна глюкоза (пища)?

Подобно людям и другим живым существам, растения также нуждаются в питании для поддержания жизнедеятельности. Значение глюкозы для растений заключается в следующем:

  • Глюкоза, полученная в результате фотосинтеза, используется во время дыхания для высвобождения энергии, необходимой растению для других жизненно важных процессов.
  • Растительные клетки также превращают часть глюкозы в крахмал, который используют по мере необходимости. По этой причине мертвые растения используются в качестве биомассы, ведь в них хранится химическая энергия.
  • Глюкоза также необходима, чтобы производить другие химические вещества, такие как белки, жиры и растительные сахара, необходимые для обеспечения роста и других важных процессов.

Фазы фотосинтеза

Процесс фотосинтеза разделен на две фазы: световую и темновую.

От чего может зависеть скорость фотосинтезаСветовая фаза фотосинтеза

Как следует из названия, световые фазы нуждаются в солнечном свете. В светозависимых реакциях энергия солнечного света поглощается хлорофиллом и преобразуется в запасенную химическую энергию в виде молекулы электронного носителя НАДФН (никотинамидадениндинуклеотидфосфат) и молекулы энергии АТФ (аденозинтрифосфат). Световые фазы протекают в тилакоидных мембранах в пределах хлоропласта.

Темновая фаза фотосинтеза или цикл Кальвина

В темновой фазе или цикле Кальвина возбужденные электроны из световой фазы обеспечивают энергию для образования углеводов из молекул углекислого газа. Не зависящие от света фазы иногда называют циклом Кальвина из-за цикличности процесса.


Хотя темновые фазы не используют свет в качестве реагента (и, как результат, могут происходить днем или ночью), им необходимо, чтобы продукты светозависимых реакций функционировали. Независимые от света молекулы зависят от молекул энергоносителей — АТФ и НАДФН — для создания новых молекул углеводов. После передачи энергии молекулы энергоносители возвращаются к световым фазам для получения более энергичных электронов. Кроме того, несколько ферментов темновой фазы активируются с помощью света.

Схема фаз фотосинтеза

От чего может зависеть скорость фотосинтеза

Заметка: Это означает, что темновые фазы не будут продолжаться, если растения будут лишены света слишком долго, так как они используют продукты световых фаз.

Строение листьев растений

Мы не можем полностью изучить фотосинтез, не зная больше о строении листа. Лист адаптирован для того, чтобы играть жизненно важную роль в процессе фотосинтеза.

Внешнее строение листьев

От чего может зависеть скорость фотосинтеза

  • Площадь

Одной из самых главных особенностей растений является большая площадь поверхности листьев. Большинство зеленых растений имеют широкие, плоские и открытые листья, которые способны захватывать столько солнечной энергии (солнечного света), сколько необходимо для фотосинтеза.

  • Центральная жилка и черешок

Центральная жилка и черешок соединяются вместе и являются основанием листа. Черешок располагает лист таким образом, чтобы он получал как можно больше света.

  • Листовая пластинка

Простые листья имеют одну листовую пластину, а сложные — несколько. Листовая пластинка — одна из самых главных составляющих листа, которая непосредственно участвует в процессе фотосинтеза.

  • Жилы

Сеть жилок в листьях переносит воду от стеблей к листьям. Выделяемая глюкоза также направляется в другие части растения из листьев через жилки. Кроме того, эти части листа поддерживают и удерживают листовую пластину плоской для большего захвата солнечного света. Расположение жилок (жилкование) зависит от вида растения.

  • Основание листа

Основанием листа выступает самая нижняя его часть, которая сочленена со стеблем. Зачастую, у основания листа располагается парное количество прилистников.

  • Край листа

В зависимости от вида растения, край листа может иметь различную форму, включая: цельнокрайнюю, зубчатую, пильчатую, выемчатую, городчатую и т.п.

  • Верхушка листа

Как и край листа, верхушка бывает различной формы, включая: острую, округлую, туповатую, вытянутую, оттянутою и т.д.

Внутреннее строение листьев

Ниже представлена ​​близкая схема внутреннего строения тканей листьев:

От чего может зависеть скорость фотосинтеза

  • Кутикула

Кутикула выступает главным, защитным слоем на поверхности растения. Как правило, она толще на верхней части листа. Кутикула покрыта веществом, похожим на воск, благодаря которому защищает растение от воды.

  • Эпидермис

Эпидермис — слой клеток, который является покровной тканью листа. Его главная функция — защита внутренних тканей листа от обезвоживания, механических повреждений и инфекций. Он также регулирует процесс газообмена и транспирации.

  • Мезофилл

Мезофилл — это основная ткань растения. Здесь происходит процесс фотосинтеза. У большинства растений мезофилл разделен на два слоя: верхний — палисадный и нижний — губчатый.

  • Защитные клетки

Защитные клетки — специализированные клетки в эпидермисе листьев, которые используются для контроля газообмена. Они выполняют защитную функцию для устьица. Устьичные поры становятся большими, когда вода есть в свободном доступе, в противном случае, защитные клетки становятся вялыми.

  • Устьице

Фотосинтез зависит от проникновения углекислого газа (CO2) из воздуха через устьица в ткани мезофилла. Кислород (O2), полученный как побочный продукт фотосинтеза, выходит из растения через устьица. Когда устьица открытые, вода теряется в результате испарения и должна быть восполнена через поток транспирации, водой, поглощенной корнями. Растения вынуждены уравновешивать количество поглощенного СО2 из воздуха и потерю воды через устьичные поры.

Условия, необходимые для фотосинтеза

Ниже приведены условия, которые необходимы растениям для осуществления процесса фотосинтеза:

  • Углекислый газ. Бесцветный природный газ без запаха, обнаруженный в воздухе и имеет научное обозначение CO2. Он образуется при горении углерода и органических соединений, а также возникает в процессе дыхания.
  • Вода. Прозрачное жидкое химическое вещество без запаха и вкуса (в нормальных условиях).
  • Свет. Хотя искусственный свет также подходит для растений, естественный солнечный свет, как правило, создает лучшие условия для фотосинтеза, потому что в нем присутствует природное ультрафиолетовое излучение, которое оказывает положительное влияние на растения.
  • Хлорофилл. Это зеленый пигмент, найденный в листьях растений.
  • Питательные вещества и минералы. Химические вещества и органические соединения, которые корни растений поглощают из почвы.

Что образуется в результате фотосинтеза?

  • Глюкоза;
  • Кислород.

Заметка: Растения получают CO2 из воздуха через их листья, и воду из почвы через корни. Световая энергия исходит от Солнца. Полученный кислород выделяется в воздух из листьев. Получаемую глюкозу можно превратить в другие вещества, такие как крахмал, который используется как запас энергии.

От чего может зависеть скорость фотосинтеза

Если факторы, способствующие фотосинтезу, отсутствуют или присутствуют в недостаточном количестве, это может негативно повлиять на растение. Например, меньшее количество света создает благоприятные условия для насекомых, которые едят листья растения, а недостаток воды замедляет.

Где происходит фотосинтез?

Фотосинтез происходит внутри растительных клеток, в мелких пластидах, называемых хлоропластами. Хлоропласты (в основном встречающиеся в слое мезофилла) содержат зеленое вещество, называемое хлорофиллом. Ниже приведены другие части клетки, которые работают с хлоропластом, чтобы осуществить фотосинтез.

Строение растительной клетки

От чего может зависеть скорость фотосинтеза

Функции частей растительной клетки


  • Клеточная стенка: обеспечивает структурную и механическую поддержку, защищает клетки от патогенов, фиксирует и определяет форму клетки, контролирует скорость и направление роста, а также придает форму растениям.
  • Цитоплазма: обеспечивает платформу для большинства химических процессов, контролируемых ферментами.
  • Мембрана: действует как барьер, контролируя движение веществ в клетку и из нее.
  • Хлоропласты: как было описано выше, они содержат хлорофилл, зеленое вещество, которое поглощает световую энергию в процессе фотосинтеза.
  • Вакуоль: полость внутри клеточной цитоплазмы, которая накапливает воду.
  • Клеточное ядро: содержит генетическую марку (ДНК), которая контролирует деятельность клетки.

Хлорофилл поглощает световую энергию, необходимую для фотосинтеза. Важно отметить, что поглощаются не все цветовые длины волны света. Растения в основном поглощают красную и синюю волны — они не поглощают свет в зеленом диапазоне.

Углекислый газ в процессе фотосинтеза

Растения получают углекислый газ из воздуха через их листья. Углекислый газ просачивается через маленькое отверстие в нижней части листа — устьицу.

Нижняя часть листа имеет свободно расположенные клетки, чтобы углекислый газ достиг других клеток в листьях. Это также позволяет кислороду, образующемуся при фотосинтезе, легко покидать лист.


От чего может зависеть скорость фотосинтезаУглекислый газ присутствует в воздухе, которым мы дышим, в очень низких концентрациях и служит необходимым фактором темновой фазы фотосинтеза.

Свет в процессе фотосинтеза

Лист обычно имеет большую площадь поверхности, поэтому он может поглощать много света. Его верхняя поверхность защищена от потери воды, болезней и воздействия погоды восковым слоем (кутикулой). Верх листа находится там, где падает свет. Этот слой мезофилла называется палисадным. Он приспособлен для поглощения большого количества света, ведь в нем находится много хлоропластов.

От чего может зависеть скорость фотосинтеза

В световых фазах, процесс фотосинтеза увеличивается с большим количеством света. Больше молекул хлорофилла ионизируется, и больше генерируется АТФ и НАДФН, если световые фотоны сосредоточены на зеленом листе. Хотя свет чрезвычайно важен в световых фазах, необходимо отметить, что чрезмерное его количество может повредить хлорофилл, и уменьшить процесс фотосинтеза.

Световые фазы не слишком сильно зависят от температуры, воды или углекислого газа, хотя все они нужны для завершения процесса фотосинтеза.

Вода в процессе фотосинтеза


Растения получают воду, необходимую для фотосинтеза через свои корни. Они имеют корневые волоски, которые разрастаются в почве. Корни характеризуются большой площадью поверхности и тонкими стенками, что позволяет воде легко проходить сквозь них.

От чего может зависеть скорость фотосинтезаНа изображении представлены растения и их клетки с достаточным количеством воды (слева) и ее нехваткой (справа).

Заметка: Корневые клетки не содержат хлоропластов, поскольку они, как правило, находятся в темноте и не могут фотосинтезировать.

Если растение не впитывает достаточное количество воды, оно увядает. Без воды, растение будет не способно фотосинтезировать достаточно быстро, и может даже погибнуть.

Какое значение имеет вода для растений?

  • Обеспечивает растворенными минералами, которые поддерживают здоровье растений;
  • Является средой для транспортировки минеральных ресурсов;
  • Поддерживает устойчивость и прямостояние;
  • Охлаждает и насыщает влагой;
  • Дает возможность проводить различные химические реакции в растительных клетках.

Значение фотосинтеза в природе

Биохимический процесс фотосинтеза использует энергию солнечного света для преобразования воды и углекислого газа в кислород и глюкозу. Глюкоза используется в качестве строительных блоков в растениях для роста тканей. Таким образом, фотосинтез — это способ, благодаря которому формируются корни, стебли, листья, цветы и плоды. Без процесса фотосинтеза растения не смогут расти или размножаться.

  • Продуценты

Из-за фотосинтетической способности, растения известны как продуценты и служат основой почти каждой пищевой цепи на Земле. (Водоросли являются эквивалентом растений в водных экосистемах). Вся пища, которую мы едим, происходит от организмов, являющихся  фотосинтетиками. Мы питаемся этими растениями напрямую или едим животных, таких как коровы или свиньи, которые потребляют растительную пищу.

  • Основа пищевой цепи

Внутри водных систем, растения и водоросли также составляют основу пищевой цепи. Водоросли служат пищей для беспозвоночных, которые, в свою очередь, выступают источником питания для более крупных организмов. Без фотосинтеза в водной среде жизнь была бы невозможна.

  • Удаление углекислого газа

Фотосинтез превращает углекислый газ в кислород. Во время фотосинтеза углекислый газ из атмосферы поступает в растение, а затем выделяется в виде кислорода. В сегодняшнем мире, где уровни двуокиси углерода растут ужасающими темпами, любой процесс, который устраняет углекислый газ из атмосферы, является экологически важным.

  • Круговорот питательных веществ

Растения и другие фотосинтезирующие организмы играют жизненно важную роль в круговороте питательных веществ. Азот в воздухе фиксируется в растительных тканях и становится доступным для создания белков. Микроэлементы, находящиеся в почве, также могут быть включены в растительную ткань и стать доступными для травоядных животных, дальше по пищевой цепи.

  • Фотосинтетическая зависимость

Фотосинтез зависит от интенсивности и качества света. На экваторе, где солнечный свет обилен весь год и вода не является ограничивающим фактором, растения имеют высокие темпы роста, и могут стать довольно большими. И наоборот, фотосинтез в более глубоких частях океана встречается реже, поскольку свет не проникает в эти слои, и в результате эта экосистема оказывается более бесплодной.

Источник: natworld.info

В физиологии растений пользуются двумя понятиями: истинный и наблюдаемый фотосинтез. Это обусловлено следующими соображениями. Скорость или интенсивность фотосинтеза характеризуется количеством СО2, поглощенного единицей поверхности листа в единицу времени. Определение интенсивности фотосинтеза проводят газометрическим методом по изменению (уменьшению) количества СО2 в замкнутой камере с листом. Однако, вместе с фотосинтезом идет процесс дыхания, во время которого выделяется СО2. Поэтому получаемые результаты дают представление об интенсивности наблюдаемого фотосинтеза. Для получения величины истинного фотосинтеза необходимо сделать поправку на дыхание. Поэтому перед опытом определяют в темноте интенсивность дыхания, а потом уже интенсивность наблюдаемого фотосинтеза. Затем количество СО2, выделенного при дыхании, прибавляют к количеству СО2, поглощенного на свету. Внося эту поправку, считают, что интенсивность дыхания на свету и в темноте одинакова. Но эти поправки не могут дать оценку истинного фотосинтеза потому, что, во-первых, при затемнении листа исключается не только истинный фотосинтез, но и фотодыхание; во-вторых, так называемое темновое дыхание в действительности зависит от света (см. дальше).

Поэтому во всех экспериментальных работах по фотосинтетическому газообмену листа отдают преимущество данным по наблюдаемому фотосинтезу. Более точный метод изучения интенсивности фотосинтеза – метод меченных атомов (измеряют количество поглощенного 14СО2).

В том случае, когда пересчет количества поглощенного СО2 на единицу поверхности трудно провести (хвойные, семена, плоды, стебель), полученные данные относят к единице массы. Учитывая, что фотосинтетический коэффициент (отношение объема выделенного кислорода к объему поглощенного СО2 равен единице, скорость наблюдаемого фотосинтеза можно оценивать по количеству миллилитров кислорода, выделенной единицей площади листа за 1 час.

Для характеристики фотосинтеза пользуются и другими показателями: квантовый расход, квантовый выход фотосинтеза, ассимиляционное число.

Квантовый расход – это отношение количества поглощенных квантов к количеству ассимилированных молекул СО2. Обратная величина названа квантовым выходом.

Ассимиляционное число – это соотношение между количеством СО2 и количеством хлорофилла, который содержится в листе.

Скорость (интенсивность) фотосинтеза – один из важнейших факторов, влияющих на продуктивность с/х культур, а значит и на урожай. Поэтому выяснение факторов, от которых зависит фотосинтез, должно вести к усовершенствованию агротехнических мероприятий.

Теоретически скорость фотосинтеза, как и скорость любого многостадийного биохимического процесса, должна лимитироваться скоростью самой медленной реакции. Так, например, для темновых реакций фотосинтеза нужны НАДФН и АТФ, поэтому темновые реакции зависят от световых реакций. При слабой освещенности скорость образования этих веществ слишком мала, чтобы обеспечить максимальную скорость темновых реакций, поэтому свет будет лимитирующим фактором.

Принцип лимитирующих факторов можно сформулировать следующим образом: при одновременном влиянии нескольких факторов скорость химического процесса лимитируется тем фактором, который ближе всех к минимальному уровню (изменение именно этого фактора будет непосредственно влиять на данный процесс).

Этот принцип впервые был установлен Ф. Блекманом в 1915 г. С тех пор было неоднократно показано, что разные факторы, например концентрация СО2 и освещенность, могут взаимодействовать между собой и лимитировать процесс, хотя часто один из них все же главенствует. Освещенность, концентрация СО2 и температура – вот те главные внешние факторы, влияющие на скорость фотосинтеза. Однако большое значение имеет также водный режим, минеральное питание и др.

Свет.При оценке действия света на тот или иной процесс важно различать влияние его интенсивности, качества (спектрального состава) и времени экспозиции на свету.

При низкой освещенности скорость фотосинтеза пропорциональна интенсивности света. Постепенно лимитирующими становятся другие факторы, и увеличение скорости замедляется. В ясный летний день освещенность составляет примерно 100 000 лк, а для светового насыщения фотосинтеза хватает 10 000 лк. Поэтому свет обычно может быть важным лимитирующим фактором в условиях затенения. При очень большой интенсивности света иногда начинается обесцвечивание хлорофилла, и это замедляет фотосинтез; однако в природе, растения находящиеся в таких условиях, обычно тем или иным образом защищены от этого (толстая кутикула, опущенные листья и т. п.).

Зависимость интенсивности фотосинтеза от освещенности описывается кривой, которая получила название световой кривой фотосинтеза (рис. 2.26).

От чего может зависеть скорость фотосинтеза
Рис. 2.26. Зависимость интенсивности фотосинтеза от освещенности (световая кривая фотосинтеза): 1 – скорость выделения СО2 в темноте (скорость дыхания); 2 – компенсационная точка фотосинтеза; 3 – положение светового насыщения

При слабом освещении в процессе дыхания выделяется больше СО2, чем связывается его в процессе фотосинтеза, поэтому начало световой кривой с осью абсцисс – компенсационная точка фотосинтеза, которая показывает, что в этом случае при фотосинтезе используется ровно столько СО2, сколько его выделяется при дыхании. Иными словами, со временем наступает такой момент, когда фотосинтез и дыхание будут точно уравновешивать друг друга, так что видимый обмен кислорода и СО2 прекратиться. Световая точка компенсации – это такая интенсивность света, при которой суммарный газообмен равен нулю.

Световые кривые одинаковы не для всех растений. У растений, которые растут на открытых солнечных местах, поглощение СО2 увеличивается до тех пор, пока интенсивность света не будет равна полному солнечному освещению. У растений, которые растут на затененных местах (например, кислица), поглощение СО2 увеличивается только при малой интенсивности света.

Все растения по отношению к интенсивности света делят на световые и теневые, или светолюбивые и теневыносливые. Большинство с/х растений является светолюбивыми.

У теневыносливых растений, во-первых, световое насыщение происходит при более слабом освещении, во-вторых, в них компенсационная точка фотосинтеза наступает раньше, т. е. при меньшей освещенности (рис. 2.27).

От чего может зависеть скорость фотосинтеза От чего может зависеть скорость фотосинтеза

Последнее связано с тем, что теневыносливые растения отличаются малой интенсивностью дыхания. В условиях слабой освещенности интенсивность фотосинтеза выше у теневыносливых растений, а при сильном свете, наоборот, – у светолюбивых.

Интенсивность света влияет и на химический состав конечных продуктов фотосинтеза. Чем выше освещенность, тем больше образуется углеводов; при низкой освещенности – больше органических кислот.

Опыты в лабораторных условиях показали, что на качество продуктов фотосинтеза влияет и резкий переход «темнота – свет» и наоборот. Сначала после включения света высокой интенсивности преимущественно образуются неуглеводные продукты из-за недостатка НАДФН и АТФ, и только через некоторое время начинают образовываться углеводы. И наоборот, после выключения света листья не сразу теряют способность к фотосинтезу, потому что на протяжении нескольких минут в клетках остается запас АТФ и НАДФ.

После выключения света сначала тормозится синтез углеводов и только потом органических веществ и аминокислот. Основная причина этого явления обусловлена тем, что торможение превращения ФГК в ФГА (и через него в углеводы) происходит раньше, чем торможение ФГК в ФЕП (и через него в аланин, малат и аспарат).

На соотношение образующих продуктов фотосинтеза влияет и спектральный состав света. Под влиянием синего света в растениях увеличивается синтез малата, аспартата и других аминокислот и белков. Эта реакция на синий свет выявлена и в С3-растениях и в С4-растениях.

 
  От чего может зависеть скорость фотосинтеза От чего может зависеть скорость фотосинтеза

Спектральный состав света влияет и на интенсивность фотосинтеза (рис. 2.28).

Рис. 2.28. Спектр действия фотосинтеза листьев пшеницы

Спектр действия – это зависимость эффективности химического (биологического) действия света от длины его волны. Интенсивность фотосинтеза в разных участках спектра неодинакова. Максимальная интенсивность наблюдается при освещении растений теми лучами, которые максимально поглощаются хлорофиллами и другими пигментами. Интенсивность фотосинтеза наиболее высокая в красных лучах, потому что она пропорциональна не количеству энергии, а количеству квантов.

Из суммарного уравнения фотосинтеза:

6СО2 + 6Н2О → С6Н12О6 + 6О2

следует, что для образования 1 моля глюкозы нужно 686 ккал; это значит, что для ассимиляции 1 моля СО2 нужно 686 : 6 = 114 ккал. Запас энергии 1 кванта красного света (700 нм) равен 41 ккал/энштейн, а синего (400 нм) 65 ккал/энштейн. Минимальный квантовый расход при освещении красным светом равен 114 : 41 ≈ 3, а в действительности тратиться 8–10 квантов. Таким образом, эффективность использования красного света 114/41 · 8 = 34 %, а синего 114/65 ·8 = 22 %.

Концентрация СО2. Для темновых реакций нужна двуокись углерода, которая включается в органические соединения. В обычных полевых условиях именно СО2 является главным лимитирующим фактором. Концентрация СО2 в атмосфере составляет 0,045 %, но если повышать ее, то можно увеличить и скорость фотосинтеза. При кратковременном действии оптимальная концентрация СО2 составляет 0,5 %, однако при длительном воздействии возможно повреждение растений, поэтому оптимум концентрации в этом случае ниже – около 0,1 %. Уже сейчас некоторые тепличные культуры, например томаты, стали выращивать в атмосфере, обогащенной СО2.

В настоящее время большой интерес вызывает группа растений, которые намного эффективнее поглощают СО2 из атмосферы и поэтому дают более высокий урожай – так называемые С4-растения.

В искусственных условиях зависимость фотосинтеза от концентрации СО2 описывается в углекислотной кривой, которая напоминает световую кривую фотосинтеза (рис.2.29).

При концентрации СО2 0,01 % скорость фотосинтеза равна скорости дыхания (компенсационная точка). Углекислотное насыщение наступает при 0,2–0,3 % СО2, а у некоторых растениях даже при этих концентрациях наблюдается небольшое увеличение фотосинтеза.

От чего может зависеть скорость фотосинтеза
Рис. 2.29. Зависимость интенсивности фотосинтеза хвои сосны от концентрации СО2 в воздухе

В природных условиях зависимость фотосинтеза от концентрации СО2 описывается только линейной частью кривой. Отсюда следует, что обеспеченность растений СО2 в природных условиях является фактором, который лимитирует урожай. Поэтому целесообразно выращивать растения в закрытых помещениях с повышенным содержанием СО2.

Температураоказывает заметное влияние на процесс фотосинтеза, поскольку темновые, а отчасти и световые реакции фотосинтеза контролируются ферментами. Оптимальная температура для растений умеренного климата обычно составляет около 25 оС.

Поглощение и восстановление СО2 у всех растений с повышением температуры увеличиваются, пока не будет достигнут некоторый оптимальный уровень. У большинства растений умеренной зоны снижение интенсивности фотосинтеза начинается уже после 30 оС, у некоторых южных видов после 40 оС. При большой жаре (50–60 оС), когда начинается инактивация ферментов, а также нарушается согласованность разных реакций, фотосинтез быстро прекращается. По мере повышения температуры интенсивность дыхания повышается значительно быстрей, чем интенсивность естественного фотосинтеза. Это влияет на величину наблюдаемого фотосинтеза. Зависимость интенсивности наблюдаемого фотосинтеза от температуры описывается температурной кривой, в которой выделяют три основные точки: минимум, оптимум и максимум.

Минимум – та температура при которой фотосинтез начинается, оптимум – температура, при которой фотосинтез наиболее устойчивый и достигает наибольшей скорости, максимум – та температура, после достижения которой фотосинтез прекращается (рис. 2.30).

От чего может зависеть скорость фотосинтеза
Рис. 2.30. Зависимость интенсивности фотосинтеза от температуры листа: 1 – хлопчатник; 2 – подсолнечник; 3 – сорго

Влияние кислорода. Более полувека назад было отмечено на первый взгляд парадоксальное явление. Кислород воздуха, который является продуктом фотосинтеза, является одновременно и его ингибитором: выделение кислорода и поглощение СО2 падают по мере увеличения концентрации О2 в воздухе. Этот феномен назвали именем его открывателя – эффект Варбурга. Этот эффект присущ всем С3-растениям. И только в листьях С4-растений его не удалось выявить. Сейчас твердо установлено, что природа эффекта Варбурга связана с оксигеназными свойствами основного фермента цикла Кальвина – РДФ-карбоксилазы. При большой концентрации кислорода начинается фотодыхание. Установлено, что при снижении концентрации О2 до 2–3 % фосфогликолат не образуется, исчезает и эффект Варбурга. Таким образом, оба эти явления – проявление оксигеназных свойств РДФ-карбоксилазы и образование гликолата, а также уменьшение фотосинтеза в присутствии О2 тесно связаны один с другим.

Очень низкое содержание О2 или полное отсутствие, как и увеличение концентрации до 25–30 %, тормозит фотосинтез. Для большинства растений некоторое снижение природной концентрации (21 %) О2 активирует фотосинтез.

Влияние оводненности тканей. Как уже отмечалось, вода участвует в световой стадии фотосинтеза как донор водорода для восстановления СО2. Однако, роль лимитирующего фотосинтез фактора играет не минимальное количество воды (приблизительно 1 % поступившей), а та вода, которая входит в состав клеточных мембран и является средой для всех биохимических реакций, активирует ферменты темновой фазы. Кроме того, от количества воды в замыкающих клетках зависит степень открытия устьиц, а тургорное состояние всего растения определяет расположение листьев по отношению к солнечным лучам. Количество воды косвенно влияет на изменение скорости отложения крахмала в строме хлоропласта и даже на изменение структуры и расположение тилакоидов в строме.

Зависимость интенсивности фотосинтеза от оводненности тканей растений, как и зависимость от температуры, описывается переходной кривой, имеющей три основные точки: минимум, оптимум и максимум.

При обезвоживании меняется не только интенсивность фотосинтеза, но и качественный состав продуктов фотосинтеза: меньше синтезируется малата, сахарозы, органических кислот; больше – глюкозы, фруктозы аланина и других аминокислот.

К тому же установлено, что при нехватке воды в листьях накапливается АБК – ингибитор роста.

Концентрация хлорофилла, как правило, не бывает лимитирующим фактором, однако количество хлорофилла может уменьшаться при различных заболеваниях (мучнистая роса, ржавчина, вирусные болезни), недостатке минеральных веществ и с возрастом (при нормальном старении). Когда листья желтеют, говорят, что они становятся хлоротичными, а само явление называют хлорозом. Хлоротические пятна на листьях часто бывают симптомом заболевания или недостатка минеральных веществ.

Хлороз может быть вызван и недостатком света, так как свет нужен для конечной стадии биосинтеза хлорофилла.

Минеральные элементы.Для синтеза хлорофилла нужны и минеральные элементы: железо, магний и азот (два последних элемента входят в его структуру), потому они особенно важны для фотосинтеза. Важен также калий.

Для обычного функционирования фотосинтетического аппарата растение должно быть обеспечено необходимым количеством (оптимальным) минеральных элементов. Магний, кроме того, что входит в состав хлорофилла, участвует в действии сопрягающих белков при синтезе АТФ, влияет на активность реакций карбоксилирования и восстановление НАДФ+.

Железо в восстановленной форме необходимо для процессов биосинтеза хлорофилла и железосодержащих соединений хлоропластов (цитохромов, ферредоксина). Нехватка железа нарушает циклическое и нециклическое фотофосфорилирование, синтез пигментов, изменение структуры хлоропластов.

Марганец и хлор принимают участие в фотоокислении воды.

Медь входит в состав пластоцианина.

Недостаток азота оказывает влияние не только на формирование пигментных систем и структур хлоропластов, но и на количество и активность РДФ-карбоксилазы.

При недостатке фосфора нарушаются фотохимические и темновые реакции фотосинтеза.

Калий играет полифункциональную роль в ионной регуляции фотосинтеза, при его недостатке в хлоропластах разрушается структура гран, устьица слабо открываются на свету и недостаточно закрываются в темноте, ухудшается водный режим листа, т. е. нарушаются все процессы фотосинтеза.

Возраст растений.Только после создания фитотронов, где можно выращивать растения в контролируемых условиях, удалось получить надежные результаты. Выявлено, что во всех растениях только в самом начале жизненного цикла, когда формируется фотосинтетический аппарат, интенсивность фотосинтеза увеличивается, очень быстро достигает максимума, затем немного уменьшается и дальше меняется очень мало. Например, у злаков фотосинтез достигает максимальной интенсивности в фазу кущения. Это объясняется тем, что максимальная фотосинтетическая активность листа совпадает с окончанием периода его формирования. Затем начинается старение и уменьшение фотосинтеза.

Интенсивность фотосинтеза зависит в первую очередь от структуры хлоропластов. При старении хлоропластов разрушаются тилакоиды. Доказывают это с помощью реакции Хила. Она идет тем хуже, чем больший возраст хлоропластов. Таким образом, показано, что интенсивность определяется не количеством хлорофилла, а структурой хлоропласта.

В оптимальных условиях влажности и азотного питания снижение фотосинтеза с возрастом происходит медленнее, так как в этих условиях хлоропласты медленнее стареют.

Генетические факторы. Процессы фотосинтеза в определенной степени зависят от наследственности растительного организма. Интенсивность фотосинтеза различна у растений разных систематических групп и жизненных форм. У трав интенсивность фотосинтеза выше, чем у древесных растений (табл. 2.5).

Таблица 2.5

Источник: studopedia.org

Свет

Интенсивность света оказывает большое влияние на процесс фотосинтеза. С повышением интенсивности света ускоряется и фотосинтез, но прямой пропорциональной зависимости между интенсивностью света и фотосинтезом не наблюдается. Зависимость фотосинтеза от количества света будет у разных растений неодинакова.

Зависимость фотосинтеза от интенсивности света у светолюбивых и теневыносливых растений
Зависимость фотосинтеза от интенсивности света у светолюбивых и теневыносливых растений

По отношению к интенсивности света растения разделяют на 2 группы: светолюбивые и теневыносливые. Первые хорошо растут на открытых местах, при ярком свете, вторые — в тени.

Эти растения отличаются и по интенсивности фотосинтеза: у светолюбивых растений фотосинтез возрастает при увеличении освещения, у теневыносливых остается на одном уровне.

У теневыносливых растений максимальный фотосинтез протекает при меньшей освещенности по сравнению со светолюбивыми.

Светолюбивые и теневыносливые растения различаются как по анатомическому строению, так и по физиологическим признакам. Листья светолюбивых растений имеют более толстую листовую пластинку, хорошо развитый мезофилл, несколько слоев столбчатой паренхимы, более толстый слой кутикулы, больше устьиц и большее количество проводящих пучков, подробнее: (Процесс фотосинтеза в листьях растений). Клетки у них мелкие, хлоропласты тоже. Кроме того, они содержат меньше хлорофилла, чем теневыносливые растения.

У теневыносливых растений листовая пластинка тонкая, один слой столбчатой паренхимы, сеть жилок слабо развита, устьиц немного. Клетки этих растений крупные, хлоропласты тоже.
Данные по количеству хлорофилла у светолюбивых и теневыносливых растений приведены в таблице.

Содержание хлорофилла (в г /кг сырого веса) в зависимости от условий освещения

Растение Содержание хлорофилла
на свету при недостатке света
Лиственница 1,77 0,06
Сосна 2,24 0,47
Ель 3,89 1,28

Из данных таблицы видно, что у ели — теневыносливого растения— на свету содержание хлорофилла в 2 раза выше, чем у светолюбивой лиственницы.

При недостатке света разница в содержании хлорофилла у ели и лиственницы возрастает в 21 раз. Все особенности в строении листьев у светолюбивых растении имеют приспособительный характер.

Так, большое количество устьиц, хорошая проводящая система и повышенная транспирация не позволяют листьям перегреваться на ярком свету и способствуют быстрой подаче к ним воды.
Особенности строения листьев у теневыносливых растений вполне обеспечивают их нормальный рост при относительно слабом освещении.

Большое количество хлорофилла дает возможность теневыносливым растениям осуществлять процесс фотосинтеза при малой интенсивности света. Если же теневыносливые растения перенести на яркий свет, то они быстро погибают, так как высокое содержание хлорофилла приводит к большому поглощению света, в результате чего резко возрастает транспирация, однако из-за слабо развитой проводящей системы вода в листья поступает медленно.

Светолюбивые и теневыносливые растения отличаются и по положению компенсационной точки, т. е. той интенсивности света, при которой образование органического вещества при фотосинтезе равно его трате на дыхание.

Теневыносливые растения характеризуются низкой интенсивностью дыхания и повышенной интенсивностью фотосинтеза при слабой освещенности, поэтому точка компенсации у них расположена ниже.

Накопление органического вещества у этих растений идет при низкой интенсивности света, при которой у светолюбивых растений вследствие интенсивного дыхания еще не наступила точка компенсации. Светолюбие и тенелюбие растений изменяется в зависимости от места произрастания растений.

Изменение светолюбия растений в связи с географической широтой зависит не только от света, но и от температуры и водоснабжения.

Листья растения хорошо приспосабливаются к условиям освещения. Так, в кроне дерева всегда есть листья светового типа, расположенные на периферии, и листья теневого типа, находящиеся на ее затененной стороне.

Растения можно выращивать при искусственном освещении, используя электрический свет. Однако в этом случае они приобретают признаки этиоляции: электрический свет имеет недостаточное количество сине-фиолетовых лучей, влияющих на формообразовательные процессы.

Искусственное освещение
Искусственное освещение

В последнее время предложены различные лампы, которые дают свет, содержащий необходимое количество синих и фиолетовых лучей. Для нормального роста светолюбивых растений достаточно освещенности в 10— 15 тыс. люксов, которой можно достигнуть и при искусственном освещении.

Температура

Температура оказывает большое влияние на процесс фотосинтеза. При повышении температуры на 10° интенсивность фотосинтеза примерно удваивается. Усиление фотосинтеза, однако, происходит только до температуры 30—35°, дальнейшее повышение ее приводит к уменьшению фотосинтеза, и при 40—45° он прекращается.

Зависимость фотосинтеза от температуры
Зависимость фотосинтеза от температуры

У многих растений наиболее интенсивный фотосинтез наблюдается при 20—25° (рис. 31).
По представлению Ф. Блэкмана, форма кривой изменения интенсивности фотосинтеза с повышением температуры обусловлена тем, что наряду с прогрессивным ускорением химических реакций при повышении температуры возникают процессы, угнетающие фотосинтез (инактивация хлоропластов).

К числу внешних факторов, влияющих на интенсивность фотосинтеза, относится и содержание углекислого газа в атмосфере. В среднем в атмосфере содержится 0,03% углекислого газа по объему, и содержание его в атмосфере почти не изменяется: дефицит быстро выравнивается поступлением СО2 из почвы в результате жизнедеятельности микроорганизмов.

При увеличении количества углекислого газа в атмосфере фотосинтез возрастает, но прямой пропорциональности между содержанием углекислого газа и фотосинтезом не наблюдается.

Фотосинтез устойчиво увеличивается при повышении содержания углекислого газа до 0,06%, а при значительной интенсивности света и при 1,5—2,0%. В производственных условиях в теплицах и оранжереях в утренние часы, когда фотосинтез идет интенсивно, содержание углекислого газа быстро падает ниже нормы (0,03%) и растения голодают.

Поэтому в условиях закрытого грунта уже вошло в практику повышать содержание углекислоты до 1—2%. Однако повышение концентрации углекислого газа неэффективно при слабой интенсивности света, так как углекислый газ не успевает перерабатываться в листьях в органические соединения и действует токсически.

При повышении интенсивности света с одновременным увеличением количества углекислого газа возрастает и интенсивность фотосинтеза.

Содержание воды в растении

Громадное значение для протекания и интенсивности фотосинтеза имеет содержание воды в растении и условия его водоснабжения, поскольку из воды и углекислого газа синтезируются органические вещества и коллоиды цитоплазмы должны быть насыщены водой.

При недостатке воды закрываются устьица, в результате замедляется процесс проникновения углекислого газа в лист, а это, в свою очередь, приводит к уменьшению фотосинтеза.

Значение воды для фотосинтеза
Значение воды для фотосинтеза

При недостаточном водоснабжении подсыхают оболочки клеток мезофилла, граничащие с межклеточниками, что задерживает передвижение углекислого газа к хлоропластам. Вода необходима также и для нормальной работы ферментов, участвующих в процессе фотосинтеза, а в дальнейшем для переработки его продуктов.

Временное подвядание растений неблагоприятно влияет на интенсивность фотосинтеза; при этом оно сказывается тем дольше и сильнее, чем длительнее было обезвоживание.
При недостатке воды задерживается отток образовавшихся продуктов из листа в стебель и корень растения, что тоже тормозит процесс фотосинтеза, от температуры.

Избыточное увлажнение, в результате которого могут закрываться устьица, также отрицательно сказывается на интенсивности фотосинтеза: углекислый газ не может проникнуть внутрь листа.

Агротехнические приемы

Для усиления процесса фотосинтеза, а следовательно, получения высоких урожаев разработаны агротехнические приемы. Большое значение имеют густота стояния растений и направление рядков. При сильно загущенных посевах снижается освещенность отдельных растений, что может привести к уменьшению фотосинтеза.

Для светолюбивых растений необходимо применять широкорядные посевы, обеспечивающие хорошую освещенность растений. В этом случае усиление процесса фотосинтеза связано не только с лучшей освещенностью растений, но и с большей площадью их питания.

Ряды посевов
Ряды посевов

В целях лучшего использования света растениями важное значение имеет и направление рядков. В условиях северо-западной зоны лучше располагать рядки с севера на юг, а на юге — с запада на восток.

Для получения высоких урожаев растения нужно обеспечить и углекислым газом. Внесением в почву навоза, торфа и других органических веществ обогащают надземный слой воздуха углекислым газом, который выделяется из почвы при разложении микроорганизмами органических веществ.

Почвы, богатые перегноем, ежедневно выделяют до 100—250 кг СО2 на 1 га. Кроме того, внесение органических удобрений улучшает структуру почвы. В районах с развитой промышленностью углекислый газ, являющийся отходом производства, может быть также использован для обогащения воздуха над посевами. В этом случае его подают на близлежащие поля по трубам.

Дополнительное питание растений углекислым газом особенно необходимо при выращивании растений в условиях закрытого грунта — в теплицах и оранжереях, где часто в полуденные часы СО2 почти отсутствует.

Как влияют внешние факторы на процесс фотосинтеза
При выращивание в теплицах и оранжереях необходимо дополнительное питание растений углекислым газом

В этом случае обогащение воздуха СО2 увеличивает урожай в 2—2,5 раза.
При выращивании растений в условиях закрытого грунта приходится прибегать к дополнительному освещению, особенно в пасмурные дни и в зимнее время.

Свет мощных ламп накаливания может вызвать перегрев растений, поэтому между источником света и растениями ставят водные экраны для поглощения избытка тепловых — инфракрасных — лучей.

Поэтому для выращивания растений стали применять люминесцентные лампы — лампы холодного света. При полном отсутствии солнечного света интенсивность освещения должна быть 50—100 тыс. эрг на 1 кв. см в 1 секунду. Для досвечивания достаточно 50 эрг на 1 кв. см в 1 секунду.

Выращивание растений на искусственном освещении называется светокультурой. Для нормального роста растений в условиях светокультуры необходимо, кроме света, обеспечить их углекислым газом, минеральным питанием и правильно снабжать водой.

Светокультуры имеют большое значение для ранней выгонки зеленных культур, выращивания рассады, томатов, огурцов, редиса, а также для быстрого получения сеянцев древесных пород декоративного садоводства.

Используя светокультуры можно снабжать население свежими овощами в течение круглого года.

Источник: LibTime.ru

Источник: chem21.info