Каждое живое существо на планете нуждается в пище или энергии, чтобы выжить. Некоторые организмы питаются другими существами, тогда как другие могут производить свои собственные питательные элементы. Растения сами производят продукты питания, глюкозу, в процессе, который называется фотосинтезом.

Фотосинтез и дыхание взаимосвязаны. Результатом фотосинтеза является глюкоза, которая хранится как химическая энергия в растительных клетках. Эта накопленная химическая энергия получается в результате превращения неорганического углерода (углекислого газа) в органический углерод. Процесс дыхания высвобождает накопленную химическую энергию.

Помимо продуктов, которые они производят, растениям также необходим углерод, водород и кислород, чтобы выжить. Вода, поглощенная из почвы, обеспечивает водород и кислород. Во время фотосинтеза, углерод и вода используются для синтеза пищи. Растения также нуждаются в нитратах, чтобы производить аминокислоты (аминокислота — ингредиент для выработки белка). В дополнение к этому, они нуждаются в магнии для производства хлорофилла.

Заметка: Живые существа, которые зависят от других продуктов питания называются гетеротрофами. Травоядные, такие как коровы, а также растения, питающиеся насекомыми, являются примерами гетеротрофов. Живые существа, производящие собственную пищу, называются автотрофами. Зеленые растения и водоросли — примеры автотрофов.


В этой статье вы узнаете больше о том, как происходит фотосинтез у растений и об необходимы для этого процесса условиях.

Определение фотосинтеза

Фотосинтез — это химический процесс, посредством которого растения, некоторые бактерии и водоросли производят глюкозу и кислород из углекислого газа и воды, используя только свет в качестве источника энергии.

Первичный продукт фотосинтеза

Этот процесс чрезвычайно важен для жизни на Земле, поскольку благодаря ему выделяется кислород, от которого зависит вся жизнь.

Зачем растениям нужна глюкоза (пища)?

Подобно людям и другим живым существам, растения также нуждаются в питании для поддержания жизнедеятельности. Значение глюкозы для растений заключается в следующем:

  • Глюкоза, полученная в результате фотосинтеза, используется во время дыхания для высвобождения энергии, необходимой растению для других жизненно важных процессов.
  • Растительные клетки также превращают часть глюкозы в крахмал, который используют по мере необходимости. По этой причине мертвые растения используются в качестве биомассы, ведь в них хранится химическая энергия.
  • Глюкоза также необходима, чтобы производить другие химические вещества, такие как белки, жиры и растительные сахара, необходимые для обеспечения роста и других важных процессов.

Фазы фотосинтеза

Процесс фотосинтеза разделен на две фазы: световую и темновую.

Первичный продукт фотосинтезаСветовая фаза фотосинтеза

Как следует из названия, световые фазы нуждаются в солнечном свете. В светозависимых реакциях энергия солнечного света поглощается хлорофиллом и преобразуется в запасенную химическую энергию в виде молекулы электронного носителя НАДФН (никотинамидадениндинуклеотидфосфат) и молекулы энергии АТФ (аденозинтрифосфат). Световые фазы протекают в тилакоидных мембранах в пределах хлоропласта.

Темновая фаза фотосинтеза или цикл Кальвина

В темновой фазе или цикле Кальвина возбужденные электроны из световой фазы обеспечивают энергию для образования углеводов из молекул углекислого газа. Не зависящие от света фазы иногда называют циклом Кальвина из-за цикличности процесса.

Хотя темновые фазы не используют свет в качестве реагента (и, как результат, могут происходить днем или ночью), им необходимо, чтобы продукты светозависимых реакций функционировали. Независимые от света молекулы зависят от молекул энергоносителей — АТФ и НАДФН — для создания новых молекул углеводов. После передачи энергии молекулы энергоносители возвращаются к световым фазам для получения более энергичных электронов. Кроме того, несколько ферментов темновой фазы активируются с помощью света.


Схема фаз фотосинтеза

Первичный продукт фотосинтеза

Заметка: Это означает, что темновые фазы не будут продолжаться, если растения будут лишены света слишком долго, так как они используют продукты световых фаз.

Строение листьев растений

Мы не можем полностью изучить фотосинтез, не зная больше о строении листа. Лист адаптирован для того, чтобы играть жизненно важную роль в процессе фотосинтеза.

Внешнее строение листьев

Первичный продукт фотосинтеза

  • Площадь

Одной из самых главных особенностей растений является большая площадь поверхности листьев. Большинство зеленых растений имеют широкие, плоские и открытые листья, которые способны захватывать столько солнечной энергии (солнечного света), сколько необходимо для фотосинтеза.

  • Центральная жилка и черешок
iv>

Центральная жилка и черешок соединяются вместе и являются основанием листа. Черешок располагает лист таким образом, чтобы он получал как можно больше света.

  • Листовая пластинка

Простые листья имеют одну листовую пластину, а сложные — несколько. Листовая пластинка — одна из самых главных составляющих листа, которая непосредственно участвует в процессе фотосинтеза.

  • Жилы

Сеть жилок в листьях переносит воду от стеблей к листьям. Выделяемая глюкоза также направляется в другие части растения из листьев через жилки. Кроме того, эти части листа поддерживают и удерживают листовую пластину плоской для большего захвата солнечного света. Расположение жилок (жилкование) зависит от вида растения.

  • Основание листа

Основанием листа выступает самая нижняя его часть, которая сочленена со стеблем. Зачастую, у основания листа располагается парное количество прилистников.

  • Край листа

В зависимости от вида растения, край листа может иметь различную форму, включая: цельнокрайнюю, зубчатую, пильчатую, выемчатую, городчатую и т.п.

  • Верхушка листа

Как и край листа, верхушка бывает различной формы, включая: острую, округлую, туповатую, вытянутую, оттянутою и т.д.

Внутреннее строение листьев

Ниже представлена ​​близкая схема внутреннего строения тканей листьев:

Первичный продукт фотосинтеза

  • Кутикула

Кутикула выступает главным, защитным слоем на поверхности растения. Как правило, она толще на верхней части листа. Кутикула покрыта веществом, похожим на воск, благодаря которому защищает растение от воды.

  • Эпидермис

Эпидермис — слой клеток, который является покровной тканью листа. Его главная функция — защита внутренних тканей листа от обезвоживания, механических повреждений и инфекций. Он также регулирует процесс газообмена и транспирации.

  • Мезофилл

Мезофилл — это основная ткань растения. Здесь происходит процесс фотосинтеза. У большинства растений мезофилл разделен на два слоя: верхний — палисадный и нижний — губчатый.

  • Защитные клетки

Защитные клетки — специализированные клетки в эпидермисе листьев, которые используются для контроля газообмена. Они выполняют защитную функцию для устьица. Устьичные поры становятся большими, когда вода есть в свободном доступе, в противном случае, защитные клетки становятся вялыми.

  • Устьице
>

Фотосинтез зависит от проникновения углекислого газа (CO2) из воздуха через устьица в ткани мезофилла. Кислород (O2), полученный как побочный продукт фотосинтеза, выходит из растения через устьица. Когда устьица открытые, вода теряется в результате испарения и должна быть восполнена через поток транспирации, водой, поглощенной корнями. Растения вынуждены уравновешивать количество поглощенного СО2 из воздуха и потерю воды через устьичные поры.

Условия, необходимые для фотосинтеза

Ниже приведены условия, которые необходимы растениям для осуществления процесса фотосинтеза:

  • Углекислый газ. Бесцветный природный газ без запаха, обнаруженный в воздухе и имеет научное обозначение CO2. Он образуется при горении углерода и органических соединений, а также возникает в процессе дыхания.
  • Вода. Прозрачное жидкое химическое вещество без запаха и вкуса (в нормальных условиях).
  • Свет. Хотя искусственный свет также подходит для растений, естественный солнечный свет, как правило, создает лучшие условия для фотосинтеза, потому что в нем присутствует природное ультрафиолетовое излучение, которое оказывает положительное влияние на растения.
  • Хлорофилл. Это зеленый пигмент, найденный в листьях растений.
  • Питательные вещества и минералы. Химические вещества и органические соединения, которые корни растений поглощают из почвы.

Что образуется в результате фотосинтеза?

  • Глюкоза;
  • Кислород.

Заметка: Растения получают CO2 из воздуха через их листья, и воду из почвы через корни. Световая энергия исходит от Солнца. Полученный кислород выделяется в воздух из листьев. Получаемую глюкозу можно превратить в другие вещества, такие как крахмал, который используется как запас энергии.

Первичный продукт фотосинтеза

Если факторы, способствующие фотосинтезу, отсутствуют или присутствуют в недостаточном количестве, это может негативно повлиять на растение. Например, меньшее количество света создает благоприятные условия для насекомых, которые едят листья растения, а недостаток воды замедляет.

Где происходит фотосинтез?

Фотосинтез происходит внутри растительных клеток, в мелких пластидах, называемых хлоропластами. Хлоропласты (в основном встречающиеся в слое мезофилла) содержат зеленое вещество, называемое хлорофиллом. Ниже приведены другие части клетки, которые работают с хлоропластом, чтобы осуществить фотосинтез.

Строение растительной клетки

Первичный продукт фотосинтеза

Функции частей растительной клетки


  • Клеточная стенка: обеспечивает структурную и механическую поддержку, защищает клетки от патогенов, фиксирует и определяет форму клетки, контролирует скорость и направление роста, а также придает форму растениям.
  • Цитоплазма: обеспечивает платформу для большинства химических процессов, контролируемых ферментами.
  • Мембрана: действует как барьер, контролируя движение веществ в клетку и из нее.
  • Хлоропласты: как было описано выше, они содержат хлорофилл, зеленое вещество, которое поглощает световую энергию в процессе фотосинтеза.
  • Вакуоль: полость внутри клеточной цитоплазмы, которая накапливает воду.
  • Клеточное ядро: содержит генетическую марку (ДНК), которая контролирует деятельность клетки.

Хлорофилл поглощает световую энергию, необходимую для фотосинтеза. Важно отметить, что поглощаются не все цветовые длины волны света. Растения в основном поглощают красную и синюю волны — они не поглощают свет в зеленом диапазоне.

Углекислый газ в процессе фотосинтеза

Растения получают углекислый газ из воздуха через их листья. Углекислый газ просачивается через маленькое отверстие в нижней части листа — устьицу.

Нижняя часть листа имеет свободно расположенные клетки, чтобы углекислый газ достиг других клеток в листьях. Это также позволяет кислороду, образующемуся при фотосинтезе, легко покидать лист.

Первичный продукт фотосинтезаУглекислый газ присутствует в воздухе, которым мы дышим, в очень низких концентрациях и служит необходимым фактором темновой фазы фотосинтеза.

Свет в процессе фотосинтеза


Лист обычно имеет большую площадь поверхности, поэтому он может поглощать много света. Его верхняя поверхность защищена от потери воды, болезней и воздействия погоды восковым слоем (кутикулой). Верх листа находится там, где падает свет. Этот слой мезофилла называется палисадным. Он приспособлен для поглощения большого количества света, ведь в нем находится много хлоропластов.

Первичный продукт фотосинтеза

В световых фазах, процесс фотосинтеза увеличивается с большим количеством света. Больше молекул хлорофилла ионизируется, и больше генерируется АТФ и НАДФН, если световые фотоны сосредоточены на зеленом листе. Хотя свет чрезвычайно важен в световых фазах, необходимо отметить, что чрезмерное его количество может повредить хлорофилл, и уменьшить процесс фотосинтеза.

Световые фазы не слишком сильно зависят от температуры, воды или углекислого газа, хотя все они нужны для завершения процесса фотосинтеза.

Вода в процессе фотосинтеза


Растения получают воду, необходимую для фотосинтеза через свои корни. Они имеют корневые волоски, которые разрастаются в почве. Корни характеризуются большой площадью поверхности и тонкими стенками, что позволяет воде легко проходить сквозь них.

Первичный продукт фотосинтезаНа изображении представлены растения и их клетки с достаточным количеством воды (слева) и ее нехваткой (справа).

Заметка: Корневые клетки не содержат хлоропластов, поскольку они, как правило, находятся в темноте и не могут фотосинтезировать.

Если растение не впитывает достаточное количество воды, оно увядает. Без воды, растение будет не способно фотосинтезировать достаточно быстро, и может даже погибнуть.

Какое значение имеет вода для растений?

  • Обеспечивает растворенными минералами, которые поддерживают здоровье растений;
  • Является средой для транспортировки минеральных ресурсов;
  • Поддерживает устойчивость и прямостояние;
  • Охлаждает и насыщает влагой;
  • Дает возможность проводить различные химические реакции в растительных клетках.

Значение фотосинтеза в природе

Биохимический процесс фотосинтеза использует энергию солнечного света для преобразования воды и углекислого газа в кислород и глюкозу. Глюкоза используется в качестве строительных блоков в растениях для роста тканей. Таким образом, фотосинтез — это способ, благодаря которому формируются корни, стебли, листья, цветы и плоды. Без процесса фотосинтеза растения не смогут расти или размножаться.

  • Продуценты

Из-за фотосинтетической способности, растения известны как продуценты и служат основой почти каждой пищевой цепи на Земле. (Водоросли являются эквивалентом растений в водных экосистемах). Вся пища, которую мы едим, происходит от организмов, являющихся  фотосинтетиками. Мы питаемся этими растениями напрямую или едим животных, таких как коровы или свиньи, которые потребляют растительную пищу.

  • Основа пищевой цепи

Внутри водных систем, растения и водоросли также составляют основу пищевой цепи. Водоросли служат пищей для беспозвоночных, которые, в свою очередь, выступают источником питания для более крупных организмов. Без фотосинтеза в водной среде жизнь была бы невозможна.

  • Удаление углекислого газа

Фотосинтез превращает углекислый газ в кислород. Во время фотосинтеза углекислый газ из атмосферы поступает в растение, а затем выделяется в виде кислорода. В сегодняшнем мире, где уровни двуокиси углерода растут ужасающими темпами, любой процесс, который устраняет углекислый газ из атмосферы, является экологически важным.

  • Круговорот питательных веществ

Растения и другие фотосинтезирующие организмы играют жизненно важную роль в круговороте питательных веществ. Азот в воздухе фиксируется в растительных тканях и становится доступным для создания белков. Микроэлементы, находящиеся в почве, также могут быть включены в растительную ткань и стать доступными для травоядных животных, дальше по пищевой цепи.

  • Фотосинтетическая зависимость

Фотосинтез зависит от интенсивности и качества света. На экваторе, где солнечный свет обилен весь год и вода не является ограничивающим фактором, растения имеют высокие темпы роста, и могут стать довольно большими. И наоборот, фотосинтез в более глубоких частях океана встречается реже, поскольку свет не проникает в эти слои, и в результате эта экосистема оказывается более бесплодной.

Источник: natworld.info

Фазы фотосинтеза

Он происходит в две фазы:

Фазы фотосинтезаСветовая фаза (фотофосфорилирование) – представляет собой набор светозависимых фотохимических (т. е. светозахватывающих) реакций, в которых электроны транспортируются через обе фотосистемы (PSI и PSII) для получения АТФ (богатая энергией молекула) и NADPHH (восстанавливающий потенциал).

Таким образом, светлая фаза фотосинтеза позволяет непосредственно превращать световую энергию в химическую энергию. Именно через этот процесс наша планета теперь имеет атмосферу, богатую кислородом. В результате высшие растения сумели доминировать на поверхности Земли, обеспечивая пищу многим другим организмам, которые питаются или находят убежище через неё. Первоначальная атмосфера содержала такие газы, как аммоний, азот и углекислый газ, но очень мало кислорода. Растения нашли способ превратить этот CO настолько обильно в пищу, используя солнечный свет.

Темновая фаза – соответствует полностью ферментативному и не зависящему от света циклу Кальвина, в котором аденозинтрифосфат (АТФ) и НАДФН+Н+ (никотин амид адениндинуклеотидфосфат) используются для конверсии углекислого газа и воды в углеводы. Эта вторая фаза позволяет усвоить углекислый газ.

То есть в этой фазе фотосинтеза, примерно через пятнадцать секунд после поглощения CO происходит реакция синтеза и появляются первые продукты фотосинтеза — сахара: триосы, пентозы, гексозы, гептозы. Из определённых гексоз образуются сахароза и крахмал. Помимо углеводов, могут также развиваться липидами и белками путём связывания с молекулой азота.

Этот цикл существует в водорослях, умеренных растениях и всех деревьях; эти растения называются «растениями С3», наиболее важными промежуточными телами биохимического цикла, имеющими молекулу три атома углерода (С3).

В этой фазе хлорофилл после поглощения фотона имеет энергию 41 ккал на моль, некоторые из которых преобразуются в теплоту или флуоресценцию. Использование изотопных маркеров (18O) показало, что кислород, высвобождаемый во время этого процесса, происходит из разложенной воды, а не из поглощённого диоксида углерода.

Как происходит фотосинтез

Фотосинтез происходит главным образом в листьях растений и редко (когда-либо) в стеблях и т. д. Части типичного листа включают: верхний и нижний эпидермис;

  • мезофилл;
  • сосудистый пучок (вены);
  • устьица.

Если клетки верхнего и нижнего эпидермиса не являются хлоропластами, фотосинтез не происходит. Фактически они служат прежде всего в качестве защиты для остальной части листа.

Фотосинтез в природеУстьица — это дыры, существующие главным образом в нижнем эпидермисе, и позволяют проводить обмен воздуха (CO и O2). Сосудистые пучки (или вены) в листе составляют часть транспортной системы растения, при необходимости перемещая воду и питательные вещества вокруг растения. Клетки мезофилла имеют хлоропласты, вот это и есть место фотосинтеза.

Механизм фотосинтеза очень сложный. Однако эти процессы в биологии имеют особое значение. При энергичном воздействии света хлоропласты (части растительной клетки, содержащие хлорофилл), вступая в реакцию фотосинтеза, объединяют углекислый газ (СО) с пресной водой с образованием сахаров C6H12O6.

Они в процессе реакции превращаются в крахмал C6H12O5, для квадратного дециметра поверхности листа, в среднем 0,2 г крахмала в день. Вся операция сопровождается сильным высвобождением кислорода.

Фактически процесс фотосинтеза состоит в основном из фотолиза молекулы воды.

Формула этого процесса:

6 Н 2 О + 6 СО 2 + свет = 6 O 2 + С 6 Н 12 О 6

Вода + углекислый газ + свет = кислород + глюкоза

  • Н 2 О = вода
  • СО 2 = диоксид углерода
  • O 2 = Кислород
  • С 6 Н 12 О 6 = глюкоза

В переводе этот процесс означает: растению для вступления в реакцию нужны шесть молекул воды + шесть молекул углекислого газа и света. Это приводит к образованию шести молекул кислорода и глюкозы в химическом процессе. Глюкоза — это глюкоза, которую растение использует в качестве исходного материала для синтеза жиров и белков. Шесть молекул кислорода являются всего лишь «необходимым злом» для растения, которое он доставляет в окружающую среду через закрывающие клетки.

Основные продукты фотосинтеза

Продукты фотосинтезаКак уже было сказано, углеводы являются наиболее важным прямым органическим продуктом фотосинтеза в большинстве зелёных растений. В растениях образуется мало свободной глюкозы; вместо этого глюкозные единицы связаны с образованием крахмала или соединены с фруктозой, другим сахаром, с образованием сахарозы.

При фотосинтезе синтезируются не только углеводы, как это когда-то считалось, но также:

  • аминокислоты;
  • белки;
  • липиды (или жиры);
  • пигменты и другие органические компоненты зелёных тканей.

Минералы поставляют элементы (например, азот, N; фосфор, Р; серы, S), необходимых для образования этих соединений.

Химические связи разрушаются между кислородом (O) и углеродом (С), водородом (Н), азотом и серы, а новые соединения образуются в продуктах, которые включают газообразный кислород (O 2) и органические соединения. Для разрушения связей между кислородом и другими элементами (например, в воде, нитрате и сульфате) требуется больше энергии, чем высвобождается, когда в продуктах образуются новые связи. Это различие в энергии связи объясняет большую часть световой энергии, хранящейся в виде химической энергии в органических продуктах, образующихся при фотосинтезе. Дополнительная энергия хранится при создании сложных молекул из простых.

Факторы, влияющие на скорость фотосинтеза

Скорость фотосинтеза определяется в зависимости от скорости производства кислорода либо на единицу массы (или площади) зелёных растительных тканей, либо на единицу веса всего хлорофилла.

Количество света, подача углекислого газа, температура, водоснабжение и наличие полезных ископаемых являются наиболее важными факторами окружающей среды, которые влияют на скорость реакции фотосинтеза на наземных установках. Его скорость определяется также видами растений и его физиологическим состоянием, например, его здоровьем, зрелостью и цветением.

Место фотосинтеза

Как протекает фотосинтез в биологииФотосинтез происходит исключительно в хлоропластах (греческий хлор = зелёный, пластообразный) растения. Хлоропласты преимущественно обнаруживаются в палисадах, но также и в губчатой ​​ткани. На нижней стороне листа находятся блокирующие ячейки, которые координируют обмен газами. CO 2 течёт в межклеточные клетки снаружи.

Вода, необходимая для фотосинтеза, транспортирует растение изнутри через ксилему в клетки. Зелёный хлорофилл обеспечивает поглощение солнечного света. После того как углекислый газ и вода превращаются в кислород и глюкозу, закрывающие клетки открывают и выделяют кислород в окружающую среду. Глюкоза остаётся в клетке и превращается растением среди других в крахмал. Сила сравниваются с полисахаридом глюкозы и лишь слегка растворимой, так что даже в высоких потерях воды в прочности растительных остатков.

Важность фотосинтеза в биологии

В чем важность фотосинтезаИз света, полученного листом, отражается 20%, 10% передаются и 70% фактически поглощаются, из которых 20% рассеивается в тепле, 48% теряется при флуоресценции. Около 2% остаётся для фотосинтеза.

Благодаря этому процессу растения играют незаменимую роль на поверхности Земли; на самом деле зелёные растения с некоторыми группами бактерий являются единственными живыми существами, способными выработать органические вещества из минеральных элементов. По оценкам, каждый год 20 миллиардов тонн углерода фиксируются наземными растениями из углекислого газа в атмосфере и 15 миллиардов водорослями.

Зелёные растения являются основными первичными производителями, первое звено в пищевой цепи; не хлорофилловые растения и травоядные и плотоядные животные (включая людей) полностью зависят от реакции фотосинтеза.

Упрощённое определение фотосинтеза заключается в том, чтобы преобразовать световую энергию от солнца в химическую энергию. Этот фотонный биосинтез углевода производится из углекислого газа СО2 с помощью световой энергии.

То есть фотосинтез является результатом химической активности (синтеза) растений хлорофилла, которые продуцируют основные биохимические органические вещества из воды и минеральных солей благодаря способности хлоропластов захватывать часть энергии солнца.

Источник: obrazovanie.guru

Источник: chem21.info

Образовавшиеся в процессе темновой стадии вещества делят на первичные, промежуточные и конечные. Раньше считали, что первичным продуктом фотосинтеза является крахмал. Затем, в 40-е годы прошлого века шла дискуссия, где одни ученые в качестве первичных продуктов фотосинтеза считали сахарозу, другие – фруктозу и глюкозу. В 50-е годы, когда стали использовать изотопы (радиоактивный СО2), то показали, что через несколько секунд после попадания света на лист или зеленую клетку водоросли метка у С3-растений появляется в ФГК, а затем в продуктах ее восстановления – фосфорилированных сахарах, составных компонентах цикла Кальвина. С того времени ФГК стала считаться первичным продуктом ассимиляции СО2.

Дальнейший путь превращения первичных продуктов фотосинтеза может быть разным в зависимости от вида растений, их физиологического состояния, условий питания, температуры, освещенности. Все это приводит к образованию конечных продуктов разного состава и качества. Некоторые из этих конечных продуктов (крахмал) образуется в самих хлоропластах.

Крахмал используется для синтеза разных веществ, в том числе сахарозы – главного по количеству сахара, запасаемого в растениях. Сахароза синтезируется в слое цитоплазмы, которая прилагает к хлоропласту.

Качественный состав конечных продуктов фотосинтеза зависит от спектрального состава света. Опыты с выращиванием растений при освещении только красным или только синим светом, показали, что при действии красного света увеличивается синтез крахмала; при действии синего – уменьшается. При облучении синим светом увеличивается проницаемость мембраны хлоропласта для ФГК и неорганического фосфата: ФГК выходит, а неорганический фосфат входит в хлоропласт. В результате соотношение ФГК/Фн в хлоропласте уменьшается. Это подавляет синтез крахмала. ФГК, которая вышла из хлоропласта, используется на синтез амино- и органических кислот. «Фотосинтетическое» происхождение (на основе ФГК из С3-цикла) амино- и органических кислот впервые доказано в СССР в 50-е годы А. А. Ничипоровичем и др. Минеральные элементы также влияют на качественный и количественный состав синтезируемых веществ. Например, у кукурузы (С4-растение) в условиях аммонийного питания образование малата понижается, а аспартата увеличивается.

При фотосинтезе, как мы отмечали, действуют две цепи переноса электронов: циклическое фотофосфорилирование (ФС I) и нециклическое (ФС I и ФС II). Обе системы поставляют АТФ, а ФС II еще и восстановительную силу (НАДФН) для фиксации СО2 и восстановления его до уровня углеводов. В других клеточных реакциях используется АТФ, который образуется главным образом в процессе окислительного фотофосфорилирования.

Окислительное фосфорилирование связано с процессом дыхания и осуществляется при помощи другой цепи переноса электронов, которую мы рассмотрим позже.

Постепенно, т. е. в несколько этапов, должно осуществляться не только разрушение органических молекул (так как это необходимое условие эффективного запасания и использования энергии), но и синтез сложных соединений – белков, нуклеиновых кислот, липидов или полисахаридов. Когда из простых молекул строятся более крупные, этим простым молекулам часто необходима активация; другими словами, им необходима энергия. Поэтому синтез того или иного соединения проходит более сложным путем, чем его распад.

Синтез сахарозы и полисахаридов довольно сложный процесс. Углерод, фиксированный при фотосинтезе, как уже отмечалось, превращается в фотосинтезирующих клетках в два основных углевода: сахарозу и крахмал.

Сахароза. Большая часть углеводов выносится из клетки, вероятно, в виде сахарозы. Сахара транспортируются по растению в виде дисахарида, который состоит из остатков глюкозы и фруктозы.

Сахароза транспортируется в те части растения, где она особенно нужна – к участкам быстрого роста, развивающимся семенам и клубням.

Первичный продукт фотосинтеза

Коротко путь синтеза сахарозы у фотосинтезирующих клеток С3-растений следующий. Фруктоза-6-фосфат под влиянием специфических ферментов превращается в глюкоза-6-фосфат и глюкоза-1-фосфат, причем легко происходит и обратное превращение;

 
  Первичный продукт фотосинтеза

Из этих трех гексозофосфатов строятся затем цепи углеводных молекул, которые используются для транспорта, хранения и в других реакциях синтеза. Для таких превращений гексозофосфаты должны быть активированы. Это обычно достигается их присоединением к нуклеотидам – сложным кольцевым структурам, подобным адениловой кислоте.

Продуктом такой реакции присоединения являются нуклеотидные производные моносахаридов или нуклеотидсахаров. Чаще других встречается уридиндифосфатглюкоза (УДФГл), которая образуется в реакциях между уридинтрифосфатом (УТФ) и глюкоза-1-фосфатом (Гл-1-Ф). Сам УТФ образуется косвенным путем, в результате переноса фосфатной группы от АТФ на УДФ:

УДФ + АТФ → УТФ + АДФ

пирофосфат

УТФ + Гл-1-Ф → УДФГл + ФФ

Нуклеотиды АТФ и УТФ присутствуют во всех клетках, потому что они используются вместе с другими нуклеотидами в синтезе ДНК и РНК. Сахароза (ГлФр) образуется в реакции между УДФГл и Фр-6-Ф:

Первичный продукт фотосинтеза

Равновесие этой реакции сильно сдвинуто в сторону синтеза сахарозы, что обеспечивает запасание данного дисахарида в значительных концентрациях. Для последующего использования сахароза должна сначала подвергнуться расщеплению (фермент инвертаза катализирует ее гидролиз с образованием свободной глюкозы и фруктозы):

 
  Первичный продукт фотосинтеза

Энергия гликозидной связи в такой реакции растрачивается впустую, распределяясь между двумя молекулами. Поэтому, когда глюкозе и фруктозе предстоит распад в процессе дыхания или участие (в качестве сырья) в синтезе полисахаридов, то они должны сначала снова подвергнуться фосфорилированию за счет АТФ.

Крахмал представляет собой как бы временный запас фиксированного углевода. Он образуется во время наиболее активного периода фотосинтеза.

Длинные полимерные цепи крахмала построены из элементарных звеньев – остатков глюкозы:

Первичный продукт фотосинтеза

Крахмал представлен двумя формами: линейным полимером – амилазой, и разветвленным полимером – амилопектином. Крахмал – основной запасной полисахарид растений. Он нерастворим в воде и откладывается слой за слоем в крахмальных зернах в хлоропластах, или накапливается в лейкопластах в тканях стебля, корней, семян. Он просто обнаруживается, поскольку способен легко окрашиваться йодом в синий цвет. Так как крахмал нерастворим в воде в отличие от сахарозы и гексоз, он не вызывает в клетках осмотического эффекта. Поэтому образование крахмала в клетках листа в периоды интенсивного фотосинтеза, не вызывает его подавления, которое происходит в результате накопления других продуктов фотосинтеза (ассимилятов). В темноте крахмал постепенно снова гидролизуется с образованием глюкозофосфата, который затем превращается в сахарозу, которая транспортируется в другие части растений.

Начальным продуктом для синтеза крахмала служит аденозиндифосфатглюкоза (АДФГл), образующаяся из АТФ и Гл-1-Ф. Молекула крахмала строится путем поэтапного присоединения одного глюкозного остатка к другому в реакции АДФГл с преобразованной глюкозной цепью:

крахмал

АДФГл + [Глюкозаn] → АДФ + [Глюкозаn+1]

При низком содержании глюкозы крахмал разрушается и переводится в сахарозу. Однако сначала он разрушается до остатков глюкозы и к каждому из них присоединяется остаток фосфорной кислоты, т. е. образуется Г-1-Ф, чем и обеспечивается сохранение энергии связи:

[Глюкозаn+1] + Ф → [Глюкозаn] + Гл-1-Ф.

Затем Гл-1-Ф может использоваться для синтеза сахарозы. В семенах и некоторых других органах, в которых одновременно идет разрушение больших количеств крахмала, он распадается до дисахарида мальтозы под воздействием α-амилазы. Мальтоза затем разрушается до глюкозы:

Первичный продукт фотосинтеза

Из последней может снова синтезироваться сахароза. Для превращения глюкозы в глюкоза-6-фосфат необходима АТФ.

Целлюлоза служит основным компонентом первичной клеточной оболочки и является одним их наиболее распространенных углеводов на Земле. Молекулы целлюлозы построены подобно молекулам крахмала из остатков глюкозы, только в отличие от последнего соединены по другому:

Первичный продукт фотосинтеза

Эти структурные отличия обусловлены тем, что два рассматриваемых полимера глюкозы (глюканы) значительно отличаются по своей природе; крахмал, например, легко переваривается в организме человека, а целлюлоза совсем не переваривается. Основная разница между крахмалом и целлюлозой состоит в том, что 1-й и 4-й углеродные атомы двух соседних остатков глюкозы соединены в крахмале α-связями, а целлюлозе – β-связями.

Отличается от крахмала и реакция синтеза целлюлозы. Роль донора глюкозы выполняет нуклеотидное производное моносахарида – гуаназиндифосфатглюкоза (ГДФГ) и связь между мономерными звеньями относится к β-типу:

ГнДА + АТФ → ГнТФ + АДФ

ГнТФ + Г-1-Ф → ГнДФГ + ФФн

ГнДФГ + [Глюкозаn] → ГнДФ + [Глюкозаn+1]

целлюлоза

В некоторых случаях донором глюкозы для синтеза целлюлозы может быть и уридиндифосфатглюкоза.

У высших растений целлюлоза разрушается редко (если не считать разрушений под действием микробов). Два известных исключения из правил касаются клеток в отделительной зоне листа, образованной перед сбрасыванием листьев, и поперечных стенок сосудов ксилемы. В отделительной зоне листа фермент целлюлаза разрушает клеточные стенки, расщепляет образующуюся в них целлюлозу до отдельных мономерных единиц, т. е. до глюкозы. Клеточные оболочки, в конце концов, разрываются, и лист сбрасывается.

Целлюлозные микрофибриллы в клеточной оболочке скреплены при помощи матрикса из смешанных полисахаридных цепей (пентозы). Эти полисахариды синтезируются также из предшественников, нуклеотидсахаридов, главным образом, в диктиосомах. Пузырьки, которые отшнуровываются от диктиосом, в конце концов, сливаются с плазмалеммой и таким образом передают свое содержимое образующейся клеточной оболочке.

Все полисахариды легко переходят один в другой, но синтез их всегда идет через стадию нуклеотидсахаров, тогда как разрушение проходит более прямым путем.

Источник: studopedia.org