Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.




Наименование:


реферат Структура хлоропластов и фотосинтез

Информация:

Тип работы: реферат. Добавлен: 23.10.2012. Год: 2012. Страниц: 17. Уникальность по antiplagiat.ru: < 30%

Описание (план):

Роль хлоропластов в фотосинтезе  
 
     Университет Российской Академии Образования 

     Факультет психологии 
 
 
 
 
 

     Реферат по биологии на тему:
     «Структура хлоропластов и фотосинтез» 
 
 
 

                           
 
 

      
     Работу выполнила студентка первого курса
     Денисова М.К.
     Работу проверила
     Полякова И.А. 
 
 
 

                                                                     
        
 
 
 
 
 
 
 

     Оглавление. 
 

      хлоропласт
      химический состав хлоропласта
      строение хлоропласта
      структура хлоропласта
      фотосинтез
      значение фотосинтеза
      роль хлоропластов в фотосинтезе
      световая фаза фотосинтеза
      темновая фаза фотосинтеза

              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

В клетках большинства растений имеются пластиды — небольшие тельца, в которых происходит синтез или накопление органических веществ. Наиболее важные пластиды — хлоропласты — содержат зеленый пигмент хлорофилл, который придает растению зеленую окраску и играет важнейшую роль в фотосинтезе, улавливая энергию солнечного света. Типичные хлоропласты — это дисковидные образования диаметром около 5 мкм и толщиной 1 мкм. При изучении в электронном микроскопе видно, что хлоропласты построены из мембран, плотно уложенных параллельно друг другу. Каждая клетка содержит от 20 до 100 хлоропластов, которые могут расти и делиться, образуя новые, дочерние хлоропласты. Внутри каждого хлоропласта находится множество мелких телец, называемых гранами; эти тельца содержат хлорофилл. 
   Хлоропласт — это не просто мешочек, наполненный хлорофиллом. Сама способность этого пигмента, улавливать энергией света зависит от его упаковки в гранах.
ой молекул хлорофилла и слой фосфолипидных молекул лежат здесь между слоями белка. Благодаря этому молекулы хлорофилла распределены по большой площади; кроме того, слоистая структура, возможно, облегчает перенос энергии с одной молекулы на другую — соседнюю с ней — во время фотосинтеза. Материал, в который погружены граны, называется стромой. Многочисленные граны одного хлоропласта соединены между собой листками мембран, проходящий через строму.   Другой тип пластид — это бесцветные лейкопласты, которые служат центрами накопления крахмала и других веществ. Пластиды третьего типа — хромопласты — содержат различные пигменты, обусловливающие окраску цветков и плодов.
 
 

     Химический  состав хлоропластов достаточно сложен и характеризуется высоким (75 %) содержанием воды. Около 75—80 % общего количества сухих веществ приходится на долю различных органических соединений, 20—25 % — на долю минеральных веществ. Структурной основой хлоропластов являются белки, содержание которых достигает 50—55 % сухой массы, примерно половина из них водорастворимые. Такое высокое содержание белков объясняется их многообразными функциями в составе хлоропластов. Это структурные белки, являющиеся основой мембран, белки-ферменты, транспортные белки, поддерживающие определенный ионный состав, отличающийся от цитозоля, сократительные белки, подобные актомиозину мышц, которые обеспечивают двигательную активность хлоропластов.
лки выполняют также рецепторную функцию, принимая участие в регуляции интенсивности фотосинтеза в меняющихся условиях внутренней и внешней среды.

     Важнейшей составной частью хлоропластов являются липиды, содержание которых колеблется от 30 до 40 % сухой массы. Липиды хлоропластов представлены тремя группами соединений.
     Углеводы  не являются конституционными веществами хлоропласта. В очень небольших количествах фосфорные эфиры сахаров участвуют в восстановительном цикле углерода, в основном же это продукты фотосинтеза. Поэтому содержание углеводов в хлоропластах колеблется значительно (от 5 до 50 %). В активно функционирующих хлоропластах углеводы обычно не накапливаются, происходит их быстрый отток. При уменьшении потребности в продуктах фотосинтеза в хлоропластах образуются крупные крахмальные зерна. В этом случае содержание крахмала может возрасти до 50 % сухой массы и активность хлоропластов снизится.
     В хлоропластах высокое содержание минеральных  веществ. Сами хлоропласты составляют 25—30 % массы листа, но в них сосредоточено  до 80 % железа, 70—72 % — магния и цинка, около 50 % — меди, 60 % кальция, содержащихся в тканях листа. Эти данные хорошо согласуются с высокой и разнообразной ферментативной активностью хлоропластов. Минеральные элементы выступают в роли простетических групп и кофакторов деятельности ферментов. Магний входит в состав хлорофилла. Важная роль кальция заключается в стабилизации мембранных структур хлоропластов. 
 


     Строение  хлоропласта, наблюдаемое с помощью электронного микроскопа, весьма сложное. Подобно ядру и митохондриям хлоропласт окружен оболочкой, состоящей из двух липопротеидных мембран. Внутреннюю среду представляет относительно однородная субстанция — матрикс, или строма, которую пронизывают мембраны — ламеллы. Ламеллы, соединенные друг с другом, образуют пузырьки — тилакоиды. Плотно прилегая друг к другу, тилакоиды образуют граны, которые различают даже под световым микроскопом. В свою очередь, граны в одном или нескольких местах объединены друг с другом с помощью межгранных тяжей — тилакоидов стромы. Пигменты хлоропласта, участвующие в улавливании световой энергии, а также ферменты, необходимые для световой фазы фотосинтеза, вмонтированы в мембраны тилакоидов.
     Строение  зрелых хлоропластов одинаково у  всех высших растений, как и в  клетках разных органов одного растения (листьях, зеленеющих корнях, коре, плодах). В зависимости от функциональной нагрузки клеток, физиологического состояния хлоропластов, их возраста различают степень их внутренней структурированности: размеры, количество гран, связь между ними.
к, в замыкающих клетках устьиц основная функция хлоропластов — фоторегуляция устьичных движений. Этот процесс обеспечивается энергией высокоструктурированными митохондриями. Хлоропласты содержат крупные крахмальные зерна, набухшие тилакоиды, липофильные глобулы, что свидетельствует об их низкой энергетической нагрузке.

     С возрастом строение хлоропластов существенно  меняется. Молодые хлоропласты характеризуются ламеллярной структурой, в таком состоянии хлоропласты способны размножаться делением. В зрелых хлоропластах хорошо выражена система гран. В стареющих хлоропластах происходит разрыв тилакоидов стромы, связь между гранами уменьшается, в дальнейшем наблюдаются распад хлорофилла и деструкция гран. В осенней листве деградация хлоропластов приводит к образованию хромопластов, в которых каротиноиды сосредоточены в пластоглобулах. 
 
 

Структура хлоропластов состоит из следующих главных компонентов: двойная липопротендиая мембрана толщиной 20,0 нм, которая покрывает хлоропласт и отделяет его от цитоплазмы; белковая строма, в которую погружены структурные элементы хлоропласта, и граны, представляющие собой плотно упакованную систему мембран. Строма — это растворимая фаза хлоропласта сложного состава. В ней находятся все ферменты углеводного обмена, различные синтетические системы, и в том числе система синтеза белка. Строма является гетерогенной системой, в ней обнаружены мелкогранулярные образования и фибриллы белковой или нуклеоиротеидной природы диаметром около 8,5 нм, а также рибосомоподобные элементы диаметром 20,0 нм, состоящие из белка и РНК. В строме находятся также крахмальные зерна, липидные включения и пр. 

     Внутреннее  пространство хлоропластов заполнено  системой мембран. Фотосинтетические  мембраны соединяются между собой  и образуют диски различных типов  — большие и малые. Диски большого диаметра расположены вдоль длинной  оси хлоропласта. Это диски или  тилакоиды (тилакоидес — «мешковидный») стромы пронизывают весь внутренний объем хлоропласта и соединяют между собой отдельные граны. Граны имеют вид плотно упакованных пачек дисков меньшего диаметра (0,5—0,6 нм), которые называют тилаклоиды гран. В гране содержится от 5 до 30 тилакоидов. Отдельные граны соединяются между собой трубчатыми элементами, образующими внутри хлоропласта разветвленную систему каналов. Внутреннее строение хлоропласта сильно отличается в зависимости от того, идет ли речь о хлоропласте водорослей или высших растений. У зеленых водорослей, например, хлоропласты не содержат гран. 
 

     Пигмент хлоропластов поглощает свет для  осуществления фотосинтеза. Фотосинтез — процесс преобразования энергии  света в химическую энергию органических веществ, прежде всего углеводов, которые синтезируются в хлоропластах из веществ, бедных энергией — СО2 и Н2О. 
 

Хлоропласты, как полагают, тоже произошли от самостоятельных организмов, только гораздо позднее, чем митохондрии. Общепризнанная теория гласит, что  хлоропласты первоначально были фотосинтезирующими цианобактериями (сине-зелеными «водорослями»), которых поглотили ядерные клетки эукариот, содержащие митохондрии. Как и митохондрии до них, цианобактерии вступили в симбиотические отношения с поглотившими их клетками и постепенно превратились в то, что мы видим сегодня: несущие хлорофилл, использующие фотосинтез энергетические фабрики царства растений  
 

                                        фотосинтез 

     Фотосинтез (от греч. ????- — свет и ???????? — синтез, совмещение, помещение вместе) — процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция — совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества. 

 Значение фотосинтеза 

     Фотосинтез  является основным источником биологической  энергии, фотосинтезирующие автотрофы  используют её для синтеза органических веществ из неорганических, гетеротрофы  существуют за счёт энергии, запасённой автотрофами в виде химических связей, высвобождая её в процессах дыхания и брожения. Энергия, получаемая человечеством при сжигании ископаемого топлива (уголь, нефть, природный газ, торф), также является запасённой в процессе фотосинтеза.
     Фотосинтез  является главным входом неорганического  углерода в биологический цикл. Весь свободный кислород атмосферы — биогенного происхождения и является побочным продуктом фотосинтеза. Формирование окислительной атмосферы (кислородная катастрофа) полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя, позволило жизни выйти на сушу. 
 
 
 
 

Роль хлоропластов в фотосинтезе 

     В клетках растений имеются микроскопические образования — хлоропласты. Это  органоиды, в которых происходит поглощение энергии и света и превращение ее в энергию АТФ и иных молекул — носителей энергии. В гранах хлоропластов содержится хлорофилл — сложное органическое вещество. Хлорофилл улавливает энергию света для использования ее в процессах биосинтеза глюкозы и других органических веществ. Ферменты, необходимые для синтеза глюкозы, расположены также в хлоропластах. 

Световая  фаза фотосинтеза 

     Квант красного света, поглощенный хлорофиллом, переводит электрон в возбужденное состояние. Возбужденный светом электрон приобретает большой запас энергии, вследствие чего перемещается на более высокий энергетический уровень. Возбужденный светом электрон можно сравнить с камнем, поднятым на высоту, который также приобретает потенциальную энергию. Он теряет ее, падая с высоты. Возбужденный электрон, как по ступеням, перемещается по цепи сложных органических соединений, встроенных в хлоропласт. Перемещаясь с одной ступени на другую, электрон теряет энергию, которая используется для синтеза АТФ. Растративший энергию электрон возвращается к хлорофиллу. Новая порция световой энергии вновь возбуждает электрон хлорофилла. Он снова проходит по тому же пути, расходуя энергию на образования молекул АТФ.
     Ионы  водорода и электроны, необходимые  для восстановления молекул-носителей  энергии, образуются при расщеплении молекул воды. Расщепление молекул воды в хлоропластах осуществляется специальным белком под воздействием света. Называется этот процесс фотолизом воды.
     Таким образом, энергия солнечного света  непосредственно используется растительной клеткой для:
     1. возбуждения электронов хлорофилла, энергия которых далее расходуется  на образование АТФ и других  молекул-носителей энергии;
     2. фотолиза воды, поставляющего ионы  водорода и электроны в световую  фазу фотосинтеза.
     При этом выделяется кислород как побочный продукт реакций фотолиза. Этап, в течение которого за счет энергии света образуются богатые энергией соединения — АТФ и молекулы-носители энергии, называют световой фазой фотосинтеза. 
 

Темновая  фаза фотосинтеза 

     В хлоропластах есть пятиуглеродные сахара, один из которых рибулозодифосфат, является акцептором углекислого газа. Особый фермент связывает пятиуглеродный сахар с углекислым газом воздуха. При этом образуется соединения, которые за счет энергии АТФ и иных молекул-носителей энергии восстанавливаются до шестиуглеродной молекулы глюкозы. Таким образом, энергия света, преобразованная в течение световой фазы в энергию АТФ и иных молекул-носителей энергии, используется для синтеза глюкозы. Эти процессы могут идти в темноте.
     Из  растительных клеток удалось выделить хлоропласты, которые в пробирке под действием света осуществляли фотосинтез — образовывали новые молекулы глюкозы, при этом поглощали углекислый газ. Если прекращали освещать хлоропласты, то приостанавливался и синтез глюкозы. Однако если к хлоропластам добавляли АТФ и восстановленные молекулы-носители энергии, то синтез глюкозы возобновлялся и мог идти в темноте. Это означает, что свет действительно нужен только для синтеза АТФ и зарядки молекул-носителей энергии. Поглощение углекислого газа и образование глюкозы в растениях называют темновой фазой фотосинтеза, поскольку она может идти в темноте.
     Интенсивное освещение, повышенное содержание углекислого  газа в воздухе приводят к повышению  активности фотосинтеза.
и т.д……………..


Источник: www.webkursovik.ru

Строение листьев растений

Листья растений по анатомическому строению отличаются большим разнообразием, которое зависит и от вида растения, и от условий их роста. Лист сверху и снизу покрыт эпидермисом — покровной тканью с многочисленными отверстиями, называемыми устьицами. Под верхним эпидермисом расположена палисадная, или столбчатая паренхима, называемая ассимиляционной. Под ней находится более рыхлая ткань — губчатая паренхима, за которой идет нижний эпидермис. Весь лист пронизан сетью жилок, состоящих из проводящих пучков, по которым проходят вода, минеральные и органические вещества.Поперечный разрез листа Поперечный разрез листа. В столбчатой и губчатой ткани листа расположены зеленые пластиды — хлоропласты, содержащие пигменты. Наличием хлоропластов и содержащихся в них зеленых пигментов (хлорофиллов) объясняется окраска растений. Огромная листовая поверхность, достигающая 30 000 — 50 000 кв. м на 1 га у разных растений, хорошо приспособлена для успешного поглощения СО2 из воздуха в процессе фотосинтеза. Углекислый газ проникает в лист растения через устьица, расположенные в эпидермисе, поступает в межклетники и, проникая через оболочку клеток, попадает в цитоплазму, а затем в хлоропласты, где и осуществляется процесс ассимиляции. Образующийся в этом процессе кислород диффундирует с поверхности хлоропластов в свободном состоянии. Таким образом, через устьица осуществляется газообмен листьев с внешней средой — поступление углекислого газа и выделение кислорода в процессе фотосинтеза, выделение углекислого газа и поглощение кислорода в процессе дыхания. Кроме того, устьица служат для выделения паров воды. Несмотря на то, что общая площадь устьичных отверстий составляет лишь 1—2% всей листовой поверхности, тем не менее при открытых устьицах углекислый газ проникает в листья со скоростью, превышающей в 50 раз поглощение его щелочью. Количество устьиц очень велико — от нескольких десятков до 1500 на 1 кв. мм.

Хлоропласты

Хлоропласты — зеленые пластиды, в которых происходит процесс фотосинтеза. Они расположены в цитоплазме. У высших растений хлоропласты имеют дискообразную или линзовидную форму, у низших они более разнообразны.Хлоропласты в клетках зеленых растений Хлоропласты в клетках зеленых растений. Размер хлоропластов у высших растений довольно постоянен, составляя в среднем 1 —10 мк. Обычно в клетке содержится большое количество хлоропластов, в среднем 20—50, а иногда и больше. Расположены они главным образом в листьях, много их в незрелых плодах. В растении общее количество хлоропластов огромно; во взрослом дереве дуба, например, площадь их равняется 2 га. Хлоропласт имеет мембранную структуру. От цитоплазмы он отделен двухмембранной оболочкой. В хлоропласте находятся ламеллы, белково-липоидные пластинки, собранные в пучки и называемые гранами. Хлорофилл расположен в ламеллах в виде мономолекулярного слоя. Между ламеллами находится водянистая белковая жидкость — строма; в ней встречаются крахмальные зерна и капли масла. Строение хлоропласта хорошо приспособлено к фотосинтезу, так как разделение хлорофиллоносного аппарата на мелкие пластинки значительно увеличивает активную поверхность хлоропласта, что облегчает доступ энергии и перенос ее к химическим системам, участвующим в фотосинтезе. Данные А. А. Табенцкого показывают, что хлоропласты все время изменяются в онтогенезе растения. В молодых листьях наблюдается мелкогранулярная структура хлоропластов, в листьях, закончивших рост,— крупногранулярная. В старых листьях уже наблюдается распад хлоропластов. В сухом веществе хлоропластов содержится 20—45% белков, 20—40% липоидов, 10—12% углеводов и других запасных веществ, 10% минеральных элементов, 5—10% зеленых пигментов (хлорофилл а и хлорофилл б), 1—2% каротиноидов, а также небольшое количество РНК и ДНК. Содержание воды достигает 75%. В хлоропластах имеется большой набор гидролитических и окислительно-восстановительных ферментов. Исследованиями Н. М. Сисакяна показано, что в хлоропластах происходит и синтез многих ферментов. Благодаря этому они принимают участие во всем сложном комплексе процессов жизнедеятельности растения.

Пигменты, их свойства и условия образования

Пигменты можно извлечь из листьев растений спиртом или ацетоном. В вытяжке находятся следующие пигменты: зеленые — хлорофилл а и хлорофилл б; желтые — каротин и ксантофилл (каротиноиды).  

Хлорофилл

Хлорофилл представляет собой

одно из интереснейших веществ на земной поверхности

(Ч. Дарвин), так как благодаря ему возможен синтез органических веществ из неорганических СО2 и Н2О. Хлорофилл не растворяется в воде, под влиянием солей, кислот и щелочей легко изменяется, поэтому было очень трудно установить его химический состав. Для извлечения хлорофилла обычно применяют этиловый спирт или ацетон. Хлорофилл имеет следующие суммарные формулы: хлорофилл а — С55Н72О5N4Mg,        хлорофилл б — С55Н70О6N4Mg. У хлорофилла а больше на 2 атома водорода и меньше на 1 атом кислорода, чем у хлорофилла б. Формулы хлорофилла можно представить и так:Процесс фотосинтеза в листьях растений Формулы хлорофилла а и б. Центральное место в молекуле хлорофилла занимает Мg; его можно вытеснить, подействовав на спиртовую вытяжку хлорофилла соляной кислотой. Зеленый пигмент превращается в бурый, называемый феофитином, в котором Мg замещается двумя атомами Н из соляной кислоты. Восстановить зеленый цвет вытяжки очень легко внесением в молекулу феофитина магния или другого металла. Следовательно, зеленый цвет хлорофилла связан с наличием в его составе металла. При воздействии на спиртовую вытяжку хлорофилла щелочью происходит отщепление спиртовых групп (фитола и метилового спирта); в этом случае зеленая окраска хлорофилла сохраняется, что указывает на сохранение ядра молекулы хлорофилла при этой реакции. Химический состав хлорофилла у всех растений одинаков. Содержание хлорофилла а всегда больше (примерно в 3 раза), чем хлорофилла б. Общее количество хлорофилла невелико и составляет около 1 % от сухого вещества листа. По своей химической природе хлорофилл близок к красящему веществу крови — гемоглобину, центральное место в молекуле которого занимает не магний, а железо. В соответствии с этим различаются и их физиологические функции: хлорофилл принимает участие в важнейшем восстановительном процессе в растении — фотосинтезе, а гемоглобин — в процессе дыхания животных организмов, перенося кислород.

Оптические свойства пигментов

Хлорофилл поглощает солнечную энергию и направляет ее на химические реакции, которые не могут протекать без энергии, получаемой извне. Раствор хлорофилла в проходящем свете имеет зеленый цвет, но при увеличении толщины слоя или концентрации хлорофилла он приобретает красный цвет. Хлорофилл поглощает свет не сплошь, а избирательно. При пропускании белого света через призму получается спектр, состоящий из семи видимых цветов, которые постепенно переходят друг в друга. При пропускании белого света через призму и раствор хлорофилла на полученном спектре наиболее интенсивное поглощение будет в красных и сине-фиолетовых лучах. Зеленые лучи поглощаются мало, поэтому в тонком слое хлорофилл имеет в проходящем свете зеленый цвет. Однако с увеличением концентрации хлорофилла полосы поглощения расширяются (значительная часть зеленых лучей также поглощается) и без поглощения проходит только часть крайних красных. Спектры поглощения хлорофилла а и б очень близки. В отраженном свете хлорофилл кажется вишнево-красным, так как он излучает поглощенный свет с изменением длины его волны. Это свойство хлорофилла называется флюоресценцией.

Каротин и ксантофилл

Каротин и ксантофилл имеют полосы поглощения только в синих и фиолетовых лучах. Их спектры близки друг другу.Процесс фотосинтеза в листьях растений Спектры поглощения хлорофиллом а и б.   Поглощенная этими пигментами энергия передается хлорофиллу а, который является непосредственным участником фотосинтеза. Каротин считают провитамином А, так как при его расщеплении образуются 2 молекулы витамина А. Формула каротина — С40Н56, ксантофилла — С40Н54(ОН)2.  

Условия образования хлорофилла

Образование хлорофилла осуществляется в 2 фазы: первая фаза — темновая, во время которой образуется предшественник хлорофилла — протохлорофилл, а вторая — световая, при которой из протохлорофилла на свету образуется хлорофилл. Образование хлорофилла зависит как от вида растения, так и от ряда внешних условий. Некоторые растения, например проростки хвойных, могут позеленеть и без участия света, в темноте, но у большинства растений хлорофилл образуется из протохлорофилла только на свету. В отсутствие света получаются этиолированные растения, имеющие тонкий, слабый, сильно вытянутый стебель и очень мелкие бледно-желтые листья. Если выставить этиолированные растения на свет, то листья быстро позеленеют. Это объясняется тем, что в листьях уже имеется протохлорофилл, который под воздействием света легко превращается в хлорофилл. Большое влияние на образование хлорофилла оказывает температура; при холодной весне у некоторых кустарников листья не зеленеют до установления теплой погоды: при понижении температуры подавляется образование протохлорофилла. Минимальной температурой, при которой начинается образование хлорофилла, является 2°, максимальной, при которой образование хлорофилла не происходит, 40°. Кроме определенной температуры, для образования хлорофилла необходимы элементы минерального питания, особенно железо. При его отсутствии у растений наблюдается заболевание, называемое хлорозом. По-видимому, железо является катализатором при синтезе протохлорофилла, так как в состав молекулы хлорофилла оно не входит. Для образования хлорофилла также необходимы азот и магний, входящие в состав его молекулы. Важным условием является и наличие в клетках листа пластид, способных к позеленению. При их отсутствии листья растений остаются белыми, растение не способно к фотосинтезу и может жить только до тех пор, пока не израсходует запасы семени. Это явление называется альбинизмом. Оно связано с изменением наследственной природы данного растения.

Количественные отношения между хлорофиллом и усваиваемой углекислотой

При большем содержании хлорофилла в растении процесс фотосинтеза начинается при меньшей интенсивности света и даже при более низкой температуре. С увеличением содержания хлорофилла в листьях фотосинтез возрастает, но до известного предела. Следовательно, нет прямой зависимости между содержанием хлорофилла и интенсивностью поглощения СО2. Количество ассимилированного листом СО2 в час в пересчете на единицу содержащегося в листе хлорофилла тем выше, чем меньше хлорофилла. Р. Вильштеттером и А. Штолем была предложена единица, характеризующая соотношение между количеством хлорофилла и поглощенным углекислым газом. Количество разложенной в единицу времени углекислоты, приходящееся на единицу веса хлорофилла, они назвали ассимиляционным числом. Ассимиляционное число непостоянно: оно больше при малом содержании хлорофилла и меньше при высоком содержании его в листьях. Следовательно, молекула хлорофилла используется более продуктивно при низком его содержании в листе и продуктивность хлорофилла уменьшается с увеличением его количества. Данные введены в таблицу.

Таблица Ассимиляционное число в зависимости от содержания хлорофилла (по Р. Вильштеттеру и А. Штолю)

Растения

Содержание хлорофилла

в 10г. листьев (мг)

Ассимиляционное число

Вяз:

зеленая раса

желтая раса

  16,2 1,2

  6,9 82,0
Сирень 16,2 5,8
Этиолированные проростки фасоли после освещения в течение: 6 часов 4 дней    

0,3

7,8

   

133,0

13,3

  Изданных таблицы видно, что нет прямой зависимости между содержанием хлорофилла и количеством поглощенной СО2. Хлорофилл в растениях всегда содержится в избытке и, очевидно, не весь участвует в фотосинтезе. Это объясняется тем, что при фотосинтезе наряду с процессами фотохимическими, которые осуществляются при участии хлорофилла, есть процессы чисто химические, которым свет не нужен. Темновые реакции в растениях протекают значительно медленнее, чем световые. Скорость световой реакции равна 0,00001 секунды, темновой — 0,04 секунды. Впервые темновые реакции в процессе фотосинтеза обнаружены Ф. Блэкманом. Он установил, что темновая реакция зависит от температуры, и с повышением ее скорость темновых процессов увеличивается. Длительность световых реакций ничтожна, поэтому скорость процесса фотосинтеза определяется главным образом продолжительностью темновых процессов. Иногда при благоприятных для фотосинтеза условиях (достаточное количество хлорофилла и света) он протекает медленно. Это объясняется тем, что продукты, образующиеся при фотохимических реакциях, не успевают перерабатываться при темновых. Малое количество хлорофилла позволяет всем образующимся продуктам в фотохимической реакции быстро и полностью перерабатываться при темновой реакции.

Источник: LibTime.ru

фото­синтез протекает в специализированных органеллах клеток — хлоро­пластах. Хлоропласты высших растений имеют форму двояковы­пуклой линзы (диска), которая наиболее удобна для поглощения солнечных лучей. Их размеры, количество, расположение полностью отвечают назначению: как можно эффектив­нее поглощать солнечную энергию, как можно полнее усваивать углерод. Установ­лено, что количество хлоропластов в клетке измеряется десятка­ми. Это обеспечивает высокое содержание этих органелл на еди­ницу поверхности листа. Так, на 1 мм2 листа фасоли приходится 283 тыс. хлоропластов, у подсолнечника — 465 тыс. Диаметр хло­ропластов в среднем 0,5-2 мкм.

Строение хлоропласта весьма сложное. По­добно ядру и митохондриям хлоропласт окружен оболочкой, со­стоящей из двух липопротеидных мембран. Внутреннюю среду представляет относительно однородная субстанция — матрикс или строма, которую пронизывают мембраны — ламеллы (рис.). Ламеллы, соединен­ные друг с другом, образуют пузырьки — тилакоиды. Плотно прилегая друг к другу, тила­коиды образуют граны, которые различают даже под свето­вым микроскопом. В свою очередь, граны в одном или нескольких местах объединены друг с другом с помощью меж­гранных тяжей — тилакоидов стромы.

Свойства хлоропластов: способны измененять ориентацию и перемещаться. Например, под влиянием яркого света хлоропласты поворачиваются узкой сто­роной диска к падающим лучам и перемещаются на боковые стенки клеток. Хлоропласты передвигаются в направлении более вы­сокой концентрации СО2 в клетке. Днем они обычно вы­страиваются вдоль стенок, ночью опускаются на дно клетки.

Химический состав хлоропластов: воды — 75 %; 75-80 % общего количества сухих веществ составляют орг. соединения, 20-25 % -минеральные.

Структурной основой хлоропластов являются белки (50-55 % сухой массы),  половина из них составляют водорастворимые белки. Такое вы­сокое содержание белков объясняется их многообразными функ­циями в составе хлоропластов (структурные белки мембран, белки-ферменты, транспортные белки, сократительные белки, реценторные).

Важнейшей составной частью хлоропластов являются липиды, (30-40% сух. м.). Липиды хлоропластов представлены тремя группами соединений.

  1. Структурные компоненты мембран, которые представлены амфипатическими липоидами и отличаются высоким содержанием (более 50%) галактолипидов и сульфолипидов. Фосфолипидный состав характеризуется отсутствием фосфатидилэтаноламина и высоким содержанием фосфатидилглицерина (более 20 %). Свыше 60 % состава ЖК приходится на линолевую кислоту.

  2. Фотосинтетическне пигменты хлоропластов — гидрофобные вв-а, относящиеся к липоидам (в клеточном соке — водораствори­мые пигменты). Высшие растения содержат 2 формы зеленых пигментов: хлорофилл а и хлорофилл b и 2 формы желтых пигментов: каротины и ксантофиллы (каротиноиды). Хлорофиллы выполняет роль фотосенсибилизаторов, другие пигменты расширяют спектр действия фотосинтеза за счет более полного поглощения ФАР. Каротиноиды защищают хлорофилл от фотоокисления, участвуют в транспорте водорода, образующегося при фотолизе воды.

  3. Жирорастворимые витаминыэргостерол (провитамин Д), витамины Е, К — сосредоточены практически целиком в хлоро­пластах, где участвуют в преобразовании световой энергии в химическую. В цитозоле клеток листа в основном находятся водорастворимые витамины. Так, у шпината содержание аскор­биновой кислоты в хлоропластах в 4-5 раз меньше, чем в лис­тьях.

В хлоропластах листьев присутствует значительное количество РНК и ДНК. НК со­ставляют примерно 1 % сухой массы хлоропластов (РНК — 0.75 %, ДНК — 0,01-0,02 %). Геном хлоропластов представлен кольцевой молекулой ДНК длиной 40 мкм с моле­кулярной массой 108, кодирующей 100-150 белков средних раз­меров. Рибосомы хлоропластов составляют от 20 до 50 % общей популяции рибосом клетки. Т.о., хлоропласты имеют собственную белоксинтезирующую систему. Однако для нормального функционирования хлоропластов необходимо взаи­модеЯствие ядерного и хлоропластного геномов. Ключевой фермент фотосинтеза РДФ-карбоксилаза синтезируется под двойным контролем-ДНК ядра и хлоропласта.

Углеводы не являются конституционными веществами хлоро­пласта. Представлены фосфорными эфирами саха­ров и продуктами фотосинтеза. Поэтому содержание углеводов в хлоропластах значительно колеблется (от 5 до 50 %). В активно функционирующих хлоропластах углеводы обычно не накаплива­ются, происходит их быстрый отток. При уменьшении потреб­ности в продуктах фотосинтеза в хлоропластах образуются круп­ные крахмальные зерна. В этом случае содержание крахмала может возрасти до 50 % сухой массы и активность хлоропластов снизится.

Минеральные вещества. Сами хлоропласты составляют 25-30 % массы листа, но в них сосредоточено до 80 % Fe, 70-72 — Mg и Zn,  50 — Cu, 60 % Ca, содержащихся в тканях листа. Это объясняется высокой и разнообразной ферментативной ак­тивностью хлоропластов (входят с состав простетических групп и кофакторов). Mg входит в состав хлорофилла. Ca стабилизирует мембранные структуры хлоро­пластов.

Возникновение и развитие хлоропластов. Хлоропласты обра­зуются в меристематических клетках из инициальных частиц или зачаточных пластид (рис.). Инициальная частица состоит из амебоидной стремы, окруженной двухмембранной оболочкой. По мере роста клетки инициалььные частицы увеличиваются в размере и приобретают форму двояковыпуклой линзы, в стреме появляются небольшие крахмальные зерна. Одновре­менно внутренняя мембрана начинает разрастаться, образуя складки (впячивания), от которых отшнуровываются пузырьки и трубочки. Такие образования называют пропластидами. Для дальнейшего их развития необходим свет. В темноте же фор­мируются этиопласты, в которых образуется мембранная ре­шетчатая структура — проламеллярное тело. На свету внутрен­ние мембраны пропластид и этиопластов образуют гранильную систему. Одновременно с этим также на свету в граны встра­иваются вновь образованные молекулы хлорофилла и других пигментов. Таким образом, структуры, которые подготавлива­ются к функционированию на свету, появляются и развиваются только при его наличии.

Наряду с хлоропластами имеется ряд других пластид, которые образуются либо непосредственно из пропластид, либо одна из другой путем взаимных превращений (рис.). К ним относятся накапливающие крахмал амилопласты (лейкопласты) и хромо­пласты, содержащие каротиноиды. В цветках и плодах хромо­пласты возникают на ранних стадиях развития пропластид. Хро­мопласты осенней листвы представляют собой продукты деграда­ции хлоропластов, в которых в качестве структур — носителей каротнноидов выступают пластоглобулы.

Пигменты хлоропласта, участвующие в улавливании световой энергии, а также ферменты, необходимые для световой фазы фотосинтеза, вмонтированы в мембраны тилако­идов.

Ферменты, которые катализируют многочисленные реакции восстановительного цикла углеводов (темповой фазы фотосинте­за), а также разнообразные биосинтезы, в том числе биосинтезы белков, липидов, крахмала, присутствуют главным образом в строме, часть из них является периферическими белками ламелл.

Строение зрелых хлоропластов одинаково у всех высших рас­тений, так же как в клетках разных органов одного растения (листьях, зеленеющих корнях, коре, плодах). В зависимости от функциональной нагрузки клеток, физиологического состояния хлоропластов, их возраста различают степень их внутренней структурированности: размеры, количество гран, связь между ними. Так, в замыкающих клетках устьиц основная функция хлоропластов — фоторегуляция устьичных движений. Хлоропласты не имеют строгой гранальной структу­ры, содержат крупные крахмальные зерна, набухшие тилакоиды, липофильные глобулы. Все это свидетельствует об их низкой энергетической нагрузке (эту функцию выполняют мито­хондрии). Другая картина наблюдается при изучении хлоропластов зеленых пло­дов томата. Наличие хорошо развитой гранулярной системы сви­детельствует о высокой фукциональной нагрузке этих органелл и, вероятно, существенном вкладе фотосинтеза при формирова­нии плодов.

Возрастные изменения: Молодые характеризуются ламеллярнои структурой, в таком состоянии хлоропласты способны размножаться путем деления. В зрелых хорошо выражена система гран. В стареющих происходит разрыв тилакоидов стро­мы, связь между гранами уменьшается, в дальнейшем наблюдаются распад хлорофилла и деструкция гран. В осенней листве деградация хлоропластов приводит к образованию хромопластов.

Структура хлоропластов лабильна и ди­намична, в ней отражаются все условия жизни растения. Большое влияние оказывает режим минерального питания растений. При недостатке N хлоропласты становятся в 1.5-2 раза мельче, дефицит P и S нарушает нормальную структуру ламелл и гран, одновременная нехватка N и Ca приводит к переполнению хлоропластов крахмалом из-за нарушения нормального оттока ассимилятов. При недостатке Ca нарушается структура наружной мембраны хло­ропласта. Для поддержания структуры хлоропласта также необхо­дим свет, в темноте идет постепенное разрушение тилакоидов гран и стремы.

Источник: StudFiles.net

Фотосинтез – вид пластического обмена, который происходит в клетках растений и некоторых автотрофных бактерий. Фотосинтез – процесс образования органических веществ из углекислого газа и воды, идущий в хлоро-пластах с использованием солнечной энергии. Суммарное уравнение фотосинтеза:

Роль хлоропластов в фотосинтезе

2. Значение фотосинтеза – образование органических веществ и запасание солнечной энергии, необходимой всем организмам, обогащение атмосферы кислородом. Зависимость жизни всех организмов от фотосинтеза.

3. Хлоропласты – расположенные в цитоплазме органоиды, в которых происходит фотосинтез. Их отделение от цитоплазмы двумя мембранами. Образование гран – многочисленных выростов на внутренней мембране, в которые встроены молекулы хлорофилла и ферментов.

4. Хлорофилл – высокоактивное вещество, зеленый пигмент, способный поглощать и использовать энергию солнечного света на синтез органических веществ из неорганических. Зависимость активности хлорофилла от включения его в структуры хлоропласта.

5. Фотосинтез – сложный процесс, в котором выделяют световую и темновую фазы.

Световая фаза фотосинтеза:

1) поглощение на свету хлорофиллом энергии солнечного света и ее преобразование в энергию химических связей (синтез молекул АТФ);

2) расщепление молекул воды на протоны и атомы кислорода;

3) образование из атомов молекулярного кислорода и выделение его в атмосферу;

4) восстановление протонов электронами и превращение их в атомы водорода.

Темновая фаза фотосинтеза – ряд последовательных реакций синтеза углеводов: восстановление углекислого газа водородом, который образовался в световую фазу при расщеплении молекул воды. Использование запасенной в световую фазу энергии молекул АТФ на синтез углеводов.

Пластический обмен. Биосинтез белка. Роль ядра, рибосом и

Эндоплазматической сети в этом процессе. Матричный характер реакций биосинтеза.

 

1. Пластический обмен — совокупность реакций синтеза органических веществ в клетке с использованием энергии. Синтез белков из аминокислот, жиров из глицерина и жирных кислот — примеры биосинтеза в клетке.

2. Значение пластического обмена: обеспечение клетки строительным материалом для создания клеточных структур; органическими веществами, которые используются в энергетическом обмене.

3. Фотосинтез и биосинтез белков — примеры пластического обмена. Роль ядра, рибосом, эндоплазматической сети в биосинтезе белка. Ферментативный характер реакций биосинтеза, участие в нем разнообразных ферментов. Молекулы АТФ — источник энергии для биосинтеза.

4. Матричный характер реакций синтеза белков и нуклеиновых кислот в клетке. Последовательность нуклеотидов в молекуле ДНК — матричная основа для расположения нуклеотидов в молекуле иРНК, а последовательность нуклеотидов в молекуле иРНК — матричная основа для расположения аминокислот в молекуле белка в определенном порядке.

5. Этапы биосинтеза белка:

1) транскрипция — переписывание в ядре информации о структуре белка с ДНК на иРНК. Значение дополнительности азотистых оснований в этом процессе. Молекула иРНК — копия одного гена, содержащего информацию о структуре одного белка. Генетический код — последовательность нуклеотидов в молекуле ДНК, которая определяет последовательность аминокислот в молекуле белка. Кодирование аминокислот триплетами — тремя рядом расположенными нуклеотидами;

2) перемещение иРНК из ядра к рибосоме, нанизывание рибосом на иРНК. Расположение в месте контакта иРНК и рибосомы двух триплетов, к одному из которых подходит тРНК с аминокислотой. Дополнительность нуклеотидов иРНК и тРНК — основа взаимодействия аминокислот. Передвижение рибосомы на новый участок иРНК, содержащий два триплета, и повторение всех процессов: доставка новых аминокислот, их соединение с фрагментом молекулы белка. Движение рибосомы до конца иРНК и завершение синтеза всей молекулы белка.

6. Высокая скорость реакций биосинтеза белка в клетке. Согласованность процессов в ядре, цитоплазме, рибосомах — доказательство целостности клетки. Сходство процесса биосинтеза белка в клетках растений, животных и др. — доказательство их родства, единства органического мира.

 

Фотосинтез. Хемосинтез.

Все живые существа нуждаются в пище и питательных веществах. Питаясь, они используют энергию, запасенную, прежде всего, в органических соединениях – белках, жирах, углеводах. Гетеротрофные организмы, как уже говорилось, используют пищу растительного и животного происхождения, уже содержащую органические соединения. Растения же создают органические вещества в процессе фотосинтеза. Исследования в области фотосинтеза начались в 1630 г. экспериментами голландца ван Гельмонта. Он доказал, что растения получают органические вещества не из почвы, а создают их самостоятельно. Джозеф Пристли в 1771 г. доказал «исправление» воздуха растениями. Помещенные под стеклянный колпак они поглощали углекислый газ, выделяемый тлеющей лучиной. Исследования продолжались, и в настоящее время установлено, что фотосинтез– это процесс образования органических соединений из диоксида углерода (СО2) и воды с использованием энергии света и проходящий в хлоропластах зеленых растений и зеленых пигментах некоторых фотосинтезирующих бактерий.

Хлоропласты и складки цитоплазматической мембраны прокариот содержат зеленый пигмент – хлорофилл . Молекула хлорофилла способна возбуждаться под действием солнечного света и отдавать свои электроны и перемещать их на более высокие энергетические уровни. Этот процесс можно сравнить с подброшенным вверх мячом. Поднимаясь, мяч запасается потенциальной энергией; падая, он теряет ее. Электроны не падают обратно, а подхватываются переносчиками электронов (НАДФ+ – никотинамиддифосфат ). При этом энергия, накопленная ими ранее, частично расходуется на образование АТФ. Продолжая сравнение с подброшенным мячом, можно сказать, что мяч, падая, нагревает окружающее пространство, а часть энергии падающих электронов запасается в виде АТФ. Процесс фотосинтеза подразделяется на реакции, вызываемые светом, и реакции, связанные с фиксацией углерода. Их называют световой и темновой фазами.

«Световая фаза» – это этап, на котором энергия света, поглощенная хлорофиллом, преобразуется в электрохимическую энергию в цепи переноса электронов. Осуществляется на свету, в мембранах гран при участии белков – переносчиков и АТФ-синтетазы.

Реакции, вызываемые светом, происходят на фотосинтетических мембранах гран хлоропластов:

1) возбуждение электронов хлорофилла квантами света и их переход на более высокий энергетический уровень;

2) восстановление акцепторов электронов – НАДФ+ до НАДФ • Н

2Н+ + 4е- + НАДФ+ → НАДФ • Н;

3) фотолиз воды , происходящий при участии квантов света: 2Н2О → 4Н+ + 4е- + О2.

Данный процесс происходит внутри тилакоидов – складках внутренней мембраны хлоропластов. Из тилакоидов формируются граны – стопки мембран.

Так как в экзаменационных работах спрашивают не о механизмах фотосинтеза, а о результатах этого процесса, то мы и перейдем к ним.

Результатами световых реакций являются: фотолиз воды с образованием свободного кислорода, синтез АТФ, восстановление НАДФ+ до НАДФ • Н. Таким образом свет нужен только для синтеза АТФ и НАДФ-Н.

«Темновая фаза» – процесс преобразования СО2 в глюкозу в строме (пространстве между гранами) хлоропластов с использованием энергии АТФ и НАДФ • Н.

Результатом темновых реакций являются превращения углекислого газа в глюкозу, а затем в крахмал. Помимо молекул глюкозы в строме происходит образование, аминокислот, нуклеотидов, спиртов.

Суммарное уравнение фотосинтеза —

Роль хлоропластов в фотосинтезе

Роль хлоропластов в фотосинтезе

Значение фотосинтеза . В процессе фотосинтеза образуется свободный кислород, который необходим для дыхания организмов:

кислородом образован защитный озоновый экран, предохраняющий организмы от вредного воздействия ультрафиолетового излучения;

фотосинтез обеспечивает производство исходных органических веществ, а следовательно, пищу для всех живых существ;

фотосинтез способствует снижению концентрации диоксида углерода в атмосфере.

Хемосинтез– образование органических соединений из неорганических за счет энергии окислительно-восстановительных реакций соединений азота, железа, серы. Существует несколько видов хемосинтетических реакций:

1) окисление аммиака до азотистой и азотной кислоты нитрифицирующими бактериями:

NH3 → HNQ2 → HNO3 + Q;

2)превращение двухвалентного железа в трехвалентное железобактериями:

Fe2+ → Fe3+ + Q;

3)окисление сероводорода до серы или серной кислоты серобактериями

H2S + O2 = 2H2O + 2S + Q,

H2S + O2 = 2H2SO4 + Q.

Выделяемая энергия используется для синтеза органических веществ.

Роль хемосинтеза. Бактерии – хемосинтетики, разрушают горные породы, очищают сточные воды, участвуют в образовании полезных ископаемых.

Источник: studopedia.net