Образование 7 декабря 2012

Кислород – важнейшая составляющая существования всего живого на Земле. Удивительно, но этот элемент на нашей планете, хоть его концентрация в воздухе по данным некоторых ученых неумолимо уменьшается, является восполнимым запасом. Еще более поразительным кажется тот факт, что синтезируется он из более чем доступных ресурсов – воды, солнечного света и углекислого газа. И осуществляют этот чудесный процесс растения.

Конечно, речь идет о фотосинтезе – удивительном творении природы. Несмотря на то, что ученые досконально изучили этот вопрос, повторить этапы фотосинтеза в лабораторных условиях нереально по сей день.

Этот процесс принято делить на два этапа:

  • Световая фаза фотосинтеза.
  • Темновая фаза фотосинтеза.

Из их названия вполне ясно, что первая часть процесса протекает на свету, то есть при участии солнечных лучей. Происходит она только в зеленых листьях растений, поскольку те содержат хлоропласты – особые элементы, в мембранах которых осуществляется синтез АТФ – молекулы, в которой запасается энергия.


При попадании фотонов солнечного света на листья растений, содержащих хлорофилл, происходит превращение энергии солнечного света в энергетические молекулы АТФ, уже упомянутые выше. Кроме того, благодаря отщеплению двух атомов водорода от молекулы воды (что также происходит при помощи солнечного света) образуется молекула НАДФ. Разложенная молекула воды, лишенная двух атомов водорода, остается со свободным кислородом, который и поступает в атмосферу. Таким образом, продукты фотосинтеза в световой фазе – это:

  • кислород;
  • энергетическая молекула АТФ;
  • атомарный водород НАДФ Н2.

Любопытно, что образование кислорода в этом процессе вовсе не является конечной целью. Скорее, это побочный эффект. Далее происходит темновая фаза фотосинтеза, или хемосинтез, в котором принимают непосредственное участие продукты первой фазы. Рассмотрим его поподробнее.

Действительно, целью процесса не является образование кислорода. Темновая фаза фотосинтеза протекает в иной части листа – в стромах его хлоропластов. По окончанию световой фазы растение успевает запастись внушительным количеством энергетических молекул – АТФ и НАДФ Н2, следовательно, участие света больше не является необходимым. Именно с помощью этих молекул происходит синтез органических элементов. Логично, что задача энергетической молекулы АТФ – поставка энергии для осуществления процессов синтеза, в то время как роль НАДФ Н2 – восстановление.


В начале этой фазы молекула восстановителя окисляется, благодаря чему исчезают два атома водорода, что на выходе дает чистую молекулу НАДФ. В то же время АТФ отдает остаток фосфорной кислоты, превращаясь в АДФ. Эти два процесса происходят в матриксе листа. Вновь полученные молекулы после этого возвращаются в грани листьев, что дает возможность повторить весь процесс световой фазы. Однако и это не является ключевым процессом фотосинтеза, мы лишь обозначили цикличность и последовательность операций, происходящих в листьях.

Конечным продуктом данной фазы становится глюкоза – органическое соединение, относимое к простым сахарам. Впервые подробно описать синтез этой молекулы смог Мелвин Кальвин. Выяснилось, что обе молекулы, рассмотренные в рамках световой фазы, – энергетическая и восстановитель – участвуют в процессах синтеза. Кроме того, важными элементами для образования простых сахаров являются 6 молекул углекислого газа (CO2), 24 атомов водорода, 6 молекул воды:

6СО2 + 24Н + АТФ С6Н12О6 + 6Н2O.

Темновая фаза фотосинтеза важна растениям потому, что кроме глюкозы в этот период образуются различные аминокислоты, нуклеотиды, жирные кислоты и глицерин.

Фотосинтез – в высшей степени уникальный природный процесс. Он не только является залогом поддержания постоянного уровня кислорода в атмосфере и озоновом слое, но и являет собой совершенство природы, когда из неорганических элементов создаются органические.

Источник: fb.ru

Источник: monateka.com

Цикл Кальвина


Первой реакцией цикла Кальвина является карбоксилирование рибулозо-1,5-бифосфата (РиБФ). Карбоксилирование — это присоединение молекулы CO2, в результате чего образуется карбоксильная группа -COOH. РиБФ — это рибоза (пятиуглеродный сахар), у которой к концевым атомам углерода присоединены фосфатные группы (образуемые фосфорной кислотой):

РиБФ
Химическая формула РиБФ

Реакция катализируется ферментом рибулозо-1,5-бифосфат-карбоксилаза-оксигеназа (РуБисКО). Он может катализировать не только связывание углекислого газа, но и кислорода, о чем говорит слово «оксигеназа» в его названии. Если РуБисКО катализирует реакцию присоединения кислорода к субстрату, то темновая фаза фотосинтеза идет уже не по пути цикла Кальвина, а по пути фотодыхания, что в принципе является вредным для растения.

Катализ реакции присоединения CO2 к РиБФ происходит в несколько шагов. В результате образуется неустойчивое шестиуглеродное органическое соединение, которое тут же распадается на две трехуглеродные молекулы фосфоглицериновой кислоты (ФГК).

iv>
ФГК
Химическая формула фосфоглицериновой кислоты

Далее ФГК за несколько ферментативных реакций, протекающих с затратой энергии АТФ и восстановительной силы НАДФ·H2, превращается в фосфоглицериновый альдегид (ФГА), также называемый триозофосфатом.

Меньшая часть ФГА выходит из цикла Кальвина и используется для синтеза более сложных органических веществ, например глюкозы. Она, в свою очередь, может полимеризоваться до крахмала. Другие вещества (аминокислоты, жирные кислоты) образуются при участии различных исходных веществ. Такие реакции наблюдаются не только в растительных клетках. Поэтому, если рассматривать фотосинтез как уникальное явление содержащих хлорофилл клеток, то он заканчивается синтезом ФГА, а не глюкозы.

Большая часть молекул ФГА остается в цикле Кальвина. С ним происходит ряд превращений, в результате которых ФГА превращается в РиБФ. При этом также используется энергия АТФ. Таким образом, РиБФ регенерируется для связывания новых молекул углекислого газа.

Цикл Хэтча-Слэка

У многих растений жарких мест обитания темновая фаза фотосинтеза несколько сложнее. В процессе эволюции C4-фотосинтез возник как более эффективный способ связывания углекислого газа, когда в атмосфере возросло количество кислорода, и РуБисКО стал тратиться на неэффективное фотодыхание.


У C4-растений существует два типа фотосинтезирующих клеток. В хлоропластах мезофилла листьев происходит световая фаза фотосинтеза и часть темновой, а именно связывание CO2 с фосфоенолпируватом (ФЕП). В результате образуется четырехуглеродная органическая кислота. Далее эта кислота транспортируется в хлоропласты клеток обкладки проводящего пучка. Здесь от нее ферментативно отщепляется молекула CO2, которая далее поступает в цикл Кальвина. Оставшаяся после декарбоксилирования трехуглеродная кислота — пировиноградная — возвращается в клетки мезофилла, где снова превращается в ФЕП.

Схема цикл Хэтча-Слэка

Хотя цикл Хэтча-Слэка более энергозатратный вариант темновой фазы фотосинтеза, но фермент связывающий CO2 и ФЕП более эффективный катализатор, чем РуБисКО. Кроме того, он не вступает в реакцию с кислородом. Транспорт CO2 с помощью органической кислоты в более глубоколежащие клетки, к которым затруднен приток кислорода, приводит к тому, что концентрация углекислого газа здесь увеличивается, и РуБисКО почти не расходуется на связывание молекулярного кислорода.

>

Источник: scienceland.info

Определение фотосинтеза

Фотосинтез — это химический процесс, посредством которого растения, некоторые бактерии и водоросли производят глюкозу и кислород из углекислого газа и воды, используя только свет в качестве источника энергии.

Этот процесс чрезвычайно важен для жизни на Земле, поскольку благодаря ему выделяется кислород, от которого зависит вся жизнь.

Зачем растениям нужна глюкоза (пища)?

Подобно людям и другим живым существам, растения также нуждаются в питании для поддержания жизнедеятельности. Значение глюкозы для растений заключается в следующем:

  • Глюкоза, полученная в результате фотосинтеза, используется во время дыхания для высвобождения энергии, необходимой растению для других жизненно важных процессов.
  • Растительные клетки также превращают часть глюкозы в крахмал, который используют по мере необходимости. По этой причине мертвые растения используются в качестве биомассы, ведь в них хранится химическая энергия.
  • Глюкоза также необходима, чтобы производить другие химические вещества, такие как белки, жиры и растительные сахара, необходимые для обеспечения роста и других важных процессов.

Фазы фотосинтеза

Процесс фотосинтеза разделен на две фазы: световую и темновую.

Темновая фаза фотосинтеза протекает в


187;(max-width: 700px) 100vw, 700px» />

Световая фаза фотосинтеза

Как следует из названия, световые фазы нуждаются в солнечном свете. В светозависимых реакциях энергия солнечного света поглощается хлорофиллом и преобразуется в запасенную химическую энергию в виде молекулы электронного носителя НАДФН (никотинамидадениндинуклеотидфосфат) и молекулы энергии АТФ (аденозинтрифосфат). Световые фазы протекают в тилакоидных мембранах в пределах хлоропласта.

Темновая фаза фотосинтеза или цикл Кальвина

В темновой фазе или цикле Кальвина возбужденные электроны из световой фазы обеспечивают энергию для образования углеводов из молекул углекислого газа. Не зависящие от света фазы иногда называют циклом Кальвина из-за цикличности процесса.

Хотя темновые фазы не используют свет в качестве реагента (и, как результат, могут происходить днем или ночью), им необходимо, чтобы продукты светозависимых реакций функционировали. Независимые от света молекулы зависят от молекул энергоносителей — АТФ и НАДФН — для создания новых молекул углеводов. После передачи энергии молекулы энергоносители возвращаются к световым фазам для получения более энергичных электронов. Кроме того, несколько ферментов темновой фазы активируются с помощью света.

Схема фаз фотосинтеза


Заметка: Это означает, что темновые фазы не будут продолжаться, если растения будут лишены света слишком долго, так как они используют продукты световых фаз.

Строение листьев растений

Мы не можем полностью изучить фотосинтез, не зная больше о строении листа. Лист адаптирован для того, чтобы играть жизненно важную роль в процессе фотосинтеза.

Внешнее строение листьев

  • Площадь

Одной из самых главных особенностей растений является большая площадь поверхности листьев. Большинство зеленых растений имеют широкие, плоские и открытые листья, которые способны захватывать столько солнечной энергии (солнечного света), сколько необходимо для фотосинтеза.

  • Центральная жилка и черешок

Центральная жилка и черешок соединяются вместе и являются основанием листа. Черешок располагает лист таким образом, чтобы он получал как можно больше света.

  • Листовая пластинка

Простые листья имеют одну листовую пластину, а сложные — несколько. Листовая пластинка — одна из самых главных составляющих листа, которая непосредственно участвует в процессе фотосинтеза.

  • Жилы

Сеть жилок в листьях переносит воду от стеблей к листьям. Выделяемая глюкоза также направляется в другие части растения из листьев через жилки. Кроме того, эти части листа поддерживают и удерживают листовую пластину плоской для большего захвата солнечного света. Расположение жилок (жилкование) зависит от вида растения.

  • Основание листа

Основанием листа выступает самая нижняя его часть, которая сочленена со стеблем. Зачастую, у основания листа располагается парное количество прилистников.

  • Край листа

В зависимости от вида растения, край листа может иметь различную форму, включая: цельнокрайнюю, зубчатую, пильчатую, выемчатую, городчатую и т.п.

  • Верхушка листа

Как и край листа, верхушка бывает различной формы, включая: острую, округлую, туповатую, вытянутую, оттянутою и т.д.

Внутреннее строение листьев

Ниже представлена ​​близкая схема внутреннего строения тканей листьев:

  • Кутикула

Кутикула выступает главным, защитным слоем на поверхности растения. Как правило, она толще на верхней части листа. Кутикула покрыта веществом, похожим на воск, благодаря которому защищает растение от воды.

  • Эпидермис

Эпидермис — слой клеток, который является покровной тканью листа. Его главная функция — защита внутренних тканей листа от обезвоживания, механических повреждений и инфекций. Он также регулирует процесс газообмена и транспирации.

  • Мезофилл

Мезофилл — это основная ткань растения. Здесь происходит процесс фотосинтеза. У большинства растений мезофилл разделен на два слоя: верхний — палисадный и нижний — губчатый.

  • Защитные клетки

Защитные клетки — специализированные клетки в эпидермисе листьев, которые используются для контроля газообмена. Они выполняют защитную функцию для устьица. Устьичные поры становятся большими, когда вода есть в свободном доступе, в противном случае, защитные клетки становятся вялыми.

  • Устьице

Фотосинтез зависит от проникновения углекислого газа (CO2) из воздуха через устьица в ткани мезофилла. Кислород (O2), полученный как побочный продукт фотосинтеза, выходит из растения через устьица. Когда устьица открытые, вода теряется в результате испарения и должна быть восполнена через поток транспирации, водой, поглощенной корнями. Растения вынуждены уравновешивать количество поглощенного СО2 из воздуха и потерю воды через устьичные поры.

Условия, необходимые для фотосинтеза

Ниже приведены условия, которые необходимы растениям для осуществления процесса фотосинтеза:

  • Углекислый газ. Бесцветный природный газ без запаха, обнаруженный в воздухе и имеет научное обозначение CO2. Он образуется при горении углерода и органических соединений, а также возникает в процессе дыхания.
  • Вода. Прозрачное жидкое химическое вещество без запаха и вкуса (в нормальных условиях).
  • Свет. Хотя искусственный свет также подходит для растений, естественный солнечный свет, как правило, создает лучшие условия для фотосинтеза, потому что в нем присутствует природное ультрафиолетовое излучение, которое оказывает положительное влияние на растения.
  • Хлорофилл. Это зеленый пигмент, найденный в листьях растений.
  • Питательные вещества и минералы. Химические вещества и органические соединения, которые корни растений поглощают из почвы.

Что образуется в результате фотосинтеза?

  • Глюкоза;
  • Кислород.

Заметка: Растения получают CO2 из воздуха через их листья, и воду из почвы через корни. Световая энергия исходит от Солнца. Полученный кислород выделяется в воздух из листьев. Получаемую глюкозу можно превратить в другие вещества, такие как крахмал, который используется как запас энергии.

Если факторы, способствующие фотосинтезу, отсутствуют или присутствуют в недостаточном количестве, это может негативно повлиять на растение. Например, меньшее количество света создает благоприятные условия для насекомых, которые едят листья растения, а недостаток воды замедляет.

Где происходит фотосинтез?

Фотосинтез происходит внутри растительных клеток, в мелких пластидах, называемых хлоропластами. Хлоропласты (в основном встречающиеся в слое мезофилла) содержат зеленое вещество, называемое хлорофиллом. Ниже приведены другие части клетки, которые работают с хлоропластом, чтобы осуществить фотосинтез.

Строение растительной клетки

Функции частей растительной клетки

  • Клеточная стенка: обеспечивает структурную и механическую поддержку, защищает клетки от патогенов, фиксирует и определяет форму клетки, контролирует скорость и направление роста, а также придает форму растениям.
  • Цитоплазма: обеспечивает платформу для большинства химических процессов, контролируемых ферментами.
  • Мембрана: действует как барьер, контролируя движение веществ в клетку и из нее.
  • Хлоропласты: как было описано выше, они содержат хлорофилл, зеленое вещество, которое поглощает световую энергию в процессе фотосинтеза.
  • Вакуоль: полость внутри клеточной цитоплазмы, которая накапливает воду.
  • Клеточное ядро: содержит генетическую марку (ДНК), которая контролирует деятельность клетки.

Хлорофилл поглощает световую энергию, необходимую для фотосинтеза. Важно отметить, что поглощаются не все цветовые длины волны света. Растения в основном поглощают красную и синюю волны — они не поглощают свет в зеленом диапазоне.

Углекислый газ в процессе фотосинтеза

Растения получают углекислый газ из воздуха через их листья. Углекислый газ просачивается через маленькое отверстие в нижней части листа — устьицу.

Нижняя часть листа имеет свободно расположенные клетки, чтобы углекислый газ достиг других клеток в листьях. Это также позволяет кислороду, образующемуся при фотосинтезе, легко покидать лист.

Углекислый газ присутствует в воздухе, которым мы дышим, в очень низких концентрациях и служит необходимым фактором темновой фазы фотосинтеза.

Свет в процессе фотосинтеза

Лист обычно имеет большую площадь поверхности, поэтому он может поглощать много света. Его верхняя поверхность защищена от потери воды, болезней и воздействия погоды восковым слоем (кутикулой). Верх листа находится там, где падает свет. Этот слой мезофилла называется палисадным. Он приспособлен для поглощения большого количества света, ведь в нем находится много хлоропластов.

В световых фазах, процесс фотосинтеза увеличивается с большим количеством света. Больше молекул хлорофилла ионизируется, и больше генерируется АТФ и НАДФН, если световые фотоны сосредоточены на зеленом листе. Хотя свет чрезвычайно важен в световых фазах, необходимо отметить, что чрезмерное его количество может повредить хлорофилл, и уменьшить процесс фотосинтеза.

Световые фазы не слишком сильно зависят от температуры, воды или углекислого газа, хотя все они нужны для завершения процесса фотосинтеза.

Вода в процессе фотосинтеза

Растения получают воду, необходимую для фотосинтеза через свои корни. Они имеют корневые волоски, которые разрастаются в почве. Корни характеризуются большой площадью поверхности и тонкими стенками, что позволяет воде легко проходить сквозь них.

На изображении представлены растения и их клетки с достаточным количеством воды (слева) и ее нехваткой (справа).

Заметка: Корневые клетки не содержат хлоропластов, поскольку они, как правило, находятся в темноте и не могут фотосинтезировать.

Если растение не впитывает достаточное количество воды, оно увядает. Без воды, растение будет не способно фотосинтезировать достаточно быстро, и может даже погибнуть.

Какое значение имеет вода для растений?

  • Обеспечивает растворенными минералами, которые поддерживают здоровье растений;
  • Является средой для транспортировки минеральных ресурсов;
  • Поддерживает устойчивость и прямостояние;
  • Охлаждает и насыщает влагой;
  • Дает возможность проводить различные химические реакции в растительных клетках.

Значение фотосинтеза в природе

Биохимический процесс фотосинтеза использует энергию солнечного света для преобразования воды и углекислого газа в кислород и глюкозу. Глюкоза используется в качестве строительных блоков в растениях для роста тканей. Таким образом, фотосинтез — это способ, благодаря которому формируются корни, стебли, листья, цветы и плоды. Без процесса фотосинтеза растения не смогут расти или размножаться.

  • Продуценты

Из-за фотосинтетической способности, растения известны как продуценты и служат основой почти каждой пищевой цепи на Земле. (Водоросли являются эквивалентом растений в водных экосистемах). Вся пища, которую мы едим, происходит от организмов, являющихся  фотосинтетиками. Мы питаемся этими растениями напрямую или едим животных, таких как коровы или свиньи, которые потребляют растительную пищу.

  • Основа пищевой цепи

Внутри водных систем, растения и водоросли также составляют основу пищевой цепи. Водоросли служат пищей для беспозвоночных, которые, в свою очередь, выступают источником питания для более крупных организмов. Без фотосинтеза в водной среде жизнь была бы невозможна.

  • Удаление углекислого газа

Фотосинтез превращает углекислый газ в кислород. Во время фотосинтеза углекислый газ из атмосферы поступает в растение, а затем выделяется в виде кислорода. В сегодняшнем мире, где уровни двуокиси углерода растут ужасающими темпами, любой процесс, который устраняет углекислый газ из атмосферы, является экологически важным.

  • Круговорот питательных веществ

Растения и другие фотосинтезирующие организмы играют жизненно важную роль в круговороте питательных веществ. Азот в воздухе фиксируется в растительных тканях и становится доступным для создания белков. Микроэлементы, находящиеся в почве, также могут быть включены в растительную ткань и стать доступными для травоядных животных, дальше по пищевой цепи.

  • Фотосинтетическая зависимость

Фотосинтез зависит от интенсивности и качества света. На экваторе, где солнечный свет обилен весь год и вода не является ограничивающим фактором, растения имеют высокие темпы роста, и могут стать довольно большими. И наоборот, фотосинтез в более глубоких частях океана встречается реже, поскольку свет не проникает в эти слои, и в результате эта экосистема оказывается более бесплодной.

Понравилась статья? Поделись с друзьями:

Источник: NatWorld.info

Фотосинтез у зеленых растений — это процесс преобразования света в химическую энергию органических соединений, синтезируемых из диоксида углерода и воды. Процесс фотосинтеза представляет собой цепь окислительно-восстановительных реакций, совокупность которых принято подразделять на две фазы — световую и темновую.

Во время световой фазы фотосинтеза энергия солнечной радиации, поглощенная пигментными системами хлоропластов, преобразуется в электрохимическую. Преобразование осуществляется путем переноса электронов и ионов водорода с помощью специальных переносчиков через мембрану тилакоидов. Такой перенос ионов Н+ и электронов выяснен еще не до конца. С позиции хемиосмотической теории П. Митчелла в общих чертах его можно представить следующим образом.

При попадании кванта света на молекулу хлорофилла один из его электронов переходит на более высокий энергетический уровень, т. е. оказывается в возбужденном состоянии. Возбужденный электрон может вернуться в основное состояние, и в этом случае его избыточная энергия выделяется в виде флуоресценции (красное свечение) или тепла, или же он передается в качестве энергии возбуждения другим молекулам. Кроме того, электрон может отрываться от молекулы хлорофилла. В последнем случае электроны, обладающие запасом энергии, захватываются переносчиками, встроенными в мембрану, и парами переносятся на внешнюю сторону мембраны тилакоида.

Здесь электроны акцептируются коферментом НАДФ (никотинамидадениндинуклеотидфосфат), к которому присоединяется два протона из стромы и образуется НАДФ-восстановленный НАДФ ∙ H + H+:

НАДФ+ + 2e + 2H+ → НАДФ ∙ H + H.

Связывание протонов приводит к формированию отрицательного поля вокруг тилакоида.

Молекулы хлорофилла, утратившие электроны, являются сильными окислителями и заполняют «электронные дырки» электронами из молекул воды, находящихся внутри тилакоидов. Молекулы воды при этом разрушаются:

2H2O — 4e → 4H+ + O2.

Этот процесс называется фотолизом, или фотоокислением воды. Благодаря фотолизу внутри тилакоида накапливаются положительно заряженные протоны H+ и образуется молекулярный кислород, который диффундирует в атмосферу.

Увеличение концентрации протонов внутри тилакоида осуществляется также благодаря активному закачиванию их из стромы, что сопряжено с транспортом электронов.

Таким образом, в результате поглощения хлорофиллом световой энергии и вызванного ею транспорта электронов на внутренней стороне мембраны тилакоидов создается электрохимический потенциал водорода (ΔμH+), имеющий две составляющие: концентрационную (ΔpH+), возникающую в результате неравномерного распределения H+ по разные стороны мембраны, и электрохимическую, обусловленную противоположными зарядами разных сторон мембраны тилакоида.

По мере накопления протонов на внутренней стороне тилакоида нарастает разность потенциалов и при достижении критической величины (150 мв) протоны начинают двигаться в строму через каналы фермента АТФ-синтетазы, встроенного в мембрану тилакоида. Энергия перехода H+ по протонному каналу используется для фосфорилирования имеющихся в матриксе молекул АДФ:

АДФ + Фн → АТФ.

Образовавшиеся молекулы АТФ переходят в строму, где участвуют в реакциях фиксации CO2.

Таким образом, в результате переноса электронов и протонов через мембрану тилакоида происходит превращение световой энергии в химическую энергию макроэргических связей молекулы АТФ, а также образование сильного восстановителя НАДФ ∙ H + H+ и выделение свободного кислорода. Кислород, образующийся при фотолизе воды, является побочным продуктом фотосинтеза. Он может использоваться дальше растительными клетками для дыхания или выделяться в атмосферу.

Темновая фаза осуществляется в строме хлоропластов без непосредственного участия света. Это восстановление CO2 до уровня органических веществ за счет использования энергии АТФ и НАДФ ∙ H + H+, синтезированных во время световой фазы. Восстановление молекул CO2 начинается с их фиксации молекулами пятиуглеродного сахара рибулозодифосфата. При взаимодействии рибулозодифосфата и CO2 образуется сначала нестойкое шестиуглеродное соединение, которое затем ферментативным путем распадается на две трехуглеродные молекулы фосфоглицериновой кислоты (ФГК). Дальнейшее превращение ФГК требует участия продуктов световой фазы фотосинтеза — АТФ и НАДФ ∙ H + H+. При восстановлении фосфоглицериновой кислоты образуется фосфоглицериновый альдегид (триозофосфат) — первый сахар. В конечном итоге через ряд промежуточных соединений образуются шестиуглеродные сахара, а затем другие органические вещества (амино- и органические кислоты, нуклеотиды, спирты, в том числе глицерол и др.):

CO2 + C5 → C6 → 2C3

2C3 + АТФ + НАДФ ∙ H + H+ → 2C3 + АДФ + НАДФ + H3PO4.

Следует учесть, что в этих реакциях одновременно участвуют многие однотипные молекулы. На определенном этапе судьба трехуглеродных молекул ФГА может оказаться различной. Одни из них соединяются друг с другом и образуют шестиуглеродные сахара (C6H12O6), которые, в свою очередь, могут полимеризоваться в крахмал, целлюлозу и другие макромолекулы или использоваться на энергетические нужды клетки. Другие молекулы ФГА идут на синтез аминокислот путем присоединения аминогрупп или на синтез карбоновых кислот, спиртов и т. д. Наконец, третьи вовлекаются в длинный ряд реакций, которые приводят к превращению трехуглеродных молекул в молекулы исходного пятиуглеродного сахара — рибулозодифосфата, которые снова могут акцептировать диоксид углерода. Поскольку часть трехуглеродных конечных продуктов превращается в новые молекулы рибулозодифосфата, процесс фиксации углерода, по существу представляет собой цикл. Его называют C3-циклом (по C3-продуктам) или циклом Кальвина — в честь ученого, открывшего этот процесс. Следует также отметить, что неорганические соединения, используемые в цикле Кальвина, поглощаются корнями растений в виде нитратов, фосфатов и сульфатов из почвы.

В темновой фазе фотосинтеза энергия макроэргических связей АТФ преобразуется в химическую энергию органических веществ, т. е. энергия как бы консервируется в химических связях между атомами органических соединений.

Если объединить реакции световой и темновой фазы, исключив все промежуточные этапы, то получается суммарное уравнение процесса фотосинтеза:

6CO2 + 6H2O → C6H12O6 + 6O2.

В изучение процесса фотосинтеза, раскрытие его механизма большой вклад внесли русский ученый К. А. Тимирязев, американцы М. Кальвин и Д. Арнон, австралийцы М. Д. Хетч и К. Р. Слэйк, белорусские ученые Т. Н. Годнев, А. А. Шлык.

Источник: ed-lib.ru

За световой фазой следует темновая фаза фотосинтеза, во время которой происходит синтез моносахаридов (глюкозы) из углекислого газа с затратой энергии АТФ и восстановительных эквивалентов (НАДФН). Синтез глюкозы является результатом целого ряда последовательных ферментативных реакций, которые назвали циклом Кальвина. Как было сказано ранее в разделе «Кислородный этап энергетического обмена», в цикле Кребса в митохондриях от молекул органических кислот отрываются молекулы углекислого газа (CO2), промежуточные продукты цикла последовательно окисляются, отрываемые от них атомы водорода присоединяются к НАД+ (т.е. образуется НАДН). В цикле Кальвина происходит все наоборот, к молекулам субстрата присоединяется молекулы углекислого газа (СО2), и они восстанавливаются за счет НАДФН (т.е образуется НАДФ+).

Началом синтеза глюкозы является присоединение молекулы углекислого газа к молекуле пятиуглеродного сахара – рибулозо-1,5-бисфосфата. При этом образуется шестиуглеродная молекула, которая сразу же распадается на две молекулы трехуглеродной фосфоглицериновой кислоты, которая восстанавливается до трехуглеродных сахаров с затратой АТФ и НАДФН. В результате их дальнейших перестроек и конденсаций образуются рибулозомонофосфат и глюкоза — конечный продукт фотосинтеза. Рибулозомонофосфат фосфорилируется АТФ до рибулозобисфостата, который вновь вступает в цикл Кальвина. На образование одной молекулы глюкозы затрачивается 18 молекул АТФ и 12 молекул НАДФН, накопленных в процессе световой фазы фотосинтеза. Следовательно, для темновой фазы фотосинтеза можно представить следующее общее уравнение:

6СО2 + 12НАДФН + 12Н+ + 18АТФ —> С6Н12О6 + 6Н2О + 12НАДФ+ + 18АДФ + 18Фн

Даже если учесть частичные потери энергии на различных стадиях темновой фазы, общий КПД фотосинтеза остается очень высоким и составляет приблизительно 60%.

У некоторых растений (например, сахарного тростника или кукурузы) процесс фотосинтеза идет вначале не через трехуглеродные, а через четырехуглеродные соединения. Эти растения называются С4-растениями. В отличие от С3-растений им характерен быстрый рост и высокая эффективность фотосинтеза, который протекает даже при очень низких концентрациях углекислого газа. В этом случае углекислый газ присоединяется не к рибулозобисфосфату, а к одному из промежуточных продуктов гликолиза – фосфоенолпирувату. В результате образуются четырехуглеродные яблочная или аспарагиновая кислоты, которые диффундируют в клетки обкладки сосудистых пучков, где от них отщепляется СО2, вступая в цикл Кальвина. В этих клетках слабо выражено фотодыхание, связанное с окислением рибулозобисфосфата кислородом, поэтому энергозатраты на фотосинтез резко снижаются (на 50%). В последние годы благодаря необычайно высокой биологической продуктивности С4-растения привлекают внимание ученых как потенциальный источник органического сырья.

Перейти к оглавлению.

Источник: www.studentguru.ru