Источник: chem21.info

Цианобактерии способны к фотосинтезу
Цианобактерии
(лат. Cyanobacteria, или сине-зелёные во́доросли или цианопрокариоты , от греч. κυανός — сине-зелёный) — значительная группа крупных грамотрицательных бактерий, способных к фотосинтезу, сопровождающемуся выделением кислорода.

Эволюционное и систематическое положение
Цианобактерии наиболее близки к древнейшим микроорганизмам, остатки которых (строматолиты, возраст более 3,5 млрд лет) обнаружены на Земле. Это — единственные бактерии, способные к оксигенному фотосинтезу. Цианопрокариоты относятся к числу наиболее сложно организованных и морфологически дифференцированных прокариотных микроорганизмов. Предки цианобактерий рассматриваются в теории эндосимбиогенеза как наиболее вероятные предки хроматофоров красных водорослей. Внесистематическая группировка под условным названием «прохлорофиты» согласно этой теории имеет общих предков с хлоропластами прочих водорослей и высших растений).
Цианобактерии являются объектом исследования как бактериологов (как прокариоты), так и альгологов (как организмы физиологически схожие с эукариотическими водорослями). Сравнительно крупные размеры клеток и сходство с водорослями было причиной их рассмотрения ранее в составе растений («сине-зелёные водоросли»). За это время было альгологически описано более 1000 видов в почти 175 родах. Бактериологическими методами в настоящее время подтверждено существование не более 400 штаммов. Биохимическое, молекулярно-генетическое и филогенетическое сходство цианобактерий с остальными бактериями в настоящее время подтверждено солидным корпусом доказательств.

Жизненные формы и экология
В морфологическом отношении цианопрокариоты – разнообразная и полиморфная группа. Общие черты их морфологии заключаются только в отсутствии жгутиков и наличии слизистой оболочки (гликокаликс, состоящий из пептидогликана). Поверх слоя пептидогликана толщиной 2-200 нм имеют наружную мембрану. Ширина или диаметр клеток варьируют от 0,5 мкм до 100 мкм. Цианобактерии — одноклеточные, нитчатые и колониальные микроорганизмы. Отличаются выдающейся способностью адаптировать состав фотосинтетических пигментов к спектральному составу света, так что цвет варьирует от светло-зелёного до тёмно-синего. Некоторые азотфиксирующие цианобактерии способны к дифференцировке — формированию специализированных клеток: гетероцист и гормогониев. Гетероцисты выполняют функцию азотфиксации, в то время как другие клетки осуществляют фотосинтез.
Морские и пресноводные, почвенные виды, участники симбиозов (например, в лишайнике). Составляют значительную долю океанического фитопланктона. Способны к формированию толстых бактериальных матов. Некоторые виды токсичны (наиболее изучен токсин микроцистин, продуцируемый Microcystis, и условно-патогенны (например, Anabaena). Главные участники цветения воды, которое вызывает массовые заморы рыбы и отравления животных и людей. Уникальное экологическое положение обусловлено наличием двух трудносочетаемых способностей: к фотосинтетической продукции кислорода и фиксации атмосферного азота (у 2/3 изученных видов).
Деление бинарное в одной или нескольких плоскостях, множественное деление. Жизненный цикл у одноклеточных форм при оптимальных условиях роста — 6—12 часов.

Значение
Цианобактерии, по общепринятой версии, явились «творцами» современной кислородсодержащей атмосферы на Земле, что привело к первой глобальной экологической катастрофе в естественной истории и драматической смене биосферы. В настоящее время, являясь значительной составляющей океанического планктона, цианобактерии стоят в начале большей части пищевых цепей и производят значительную часть кислорода (вклад точно не определен: наиболее вероятные оценки колеблются от 20 % до 40 %).
Цианобактерия Synechocystis стала первым фотосинтезирующим организмом, чей геном был полностью расшифрован.
В настоящее время цианобактерии служат важнейшими модельными объектами исследований в биологии. В Южной Америке и Китае бактерии родов спирулина и носток из-за недостатка других видов продовольствия используют в пищу: их высушивают, а затем готовят муку. Им приписывают целебные и оздоравливающие свойства, которые, однако, в настоящее время не нашли подтверждения. Рассматривается возможное применение цианобактерий в создании замкнутых циклов жизнеобеспечения, а также как массовой кормовой или пищевой добавки.
Цианобактерии являются плацдармом для освоения растениями бесплодной поверхности земли.

Источник: biology623.blogspot.com

Цианобактерии (Cyanobacteria) – это тип бактерий, получающих необходимую им энергию через фотосинтез. Их также иногда называют сине-зелеными водорослями, ссылаясь на внешний вид и экологическую нишу этих организмов, однако сейчас термин «водоросли» обычно ограничивается эукариотических представителями группы. Найдены cкамьянили следы цианобактерий (строматолиты) имеют, как считается, возраст до 2,8 миллиардов лет, хотя недавно полученные данные ставят под сомнение это утверждение. Сразу после возникновения, они стали доминирующей группой фотосинтезирующих организмов, продуцируя кислород, углеводороды и другие органические соединения. Именно благодаря этим организмам изменился качественный состав атмосферы Земли, в которой постепенно накопился кислород и стало меньше углекислого газа. Также именно представители этой группы были захвачены в результате ендосимбиозу, став хлоропластами растений и других эукариот, позволяя и им проводить фотосинтез. Цианобактерии – это крупнейшая и важнейшая по влиянию на биосферу группа живых организмов на Земле, составляя 90% живой массы всей биосферы.

Жизненные формы

Цианобактерии включают одноклеточные, колониальные и нитчатые формы. Некоторые нитчатые цианофиты (Cyanophytes) формируют дифференцированные клетки, известные как Гетероцисты (heterocysts), специализирующихся на фиксации азота, и спящие клетки или споры, называемые акинеты. Каждая клетка обычно имеет толстые, желатиноподибни клеточные стенки, которые окрашиваются по Граму отрицательно. Средний размер клеток 2 мкм. Отличаются способностью адаптировать состав фотосинтетических пигментов к спектральному составу света, так что их цвет варьирует от ярко-зеленого до темно-синего.

Движение

Цианобактерии не имеют жгутиков, но некоторые из них способны передвигаться вдоль поверхностей с помощью бактериального скольжения. Многие другие также имеют способность к движению, но механизм этого явления до сих пор не имеет объяснения.

Среда и экология

Большинство видов найдено в пресной воде, тогда как другие живите в морях, во влажной почве, или даже на временно увлажненных скалах в аридных зонах. Некоторые вступают в симбиотические отношения с лишайниками, растениями, противостою или губками, и обеспечивают своего симбионта продуктами фотосинтеза. Некоторые живут в мехах лени, обеспечивая камуфляжный цвет. Цианобактерии составляют значительную долю океанического фитопланктона. Способны к формированию толстых бактериальных матов. Некоторые виды токсичны (наиболее изучен токсин – микроцистин, продуцируемый например, видом Microcystis aeruginosa) или условно-патогенные (Anabaena sp.) Главные участники цветения воды, вызывают массовые заморы рыбы и отравления животных и людей, например, при цветении воды в водохранилищах Украины. Цианобактерии являются уникальной экологической группой, которая сочетает способность к фотосинтетической продукции кислорода и фиксации атмосферного азота (у 2 / 3 изученных видов).

Физиология

Фотосинтез в цианобактериях обычно использует воду в качестве донора электронов и производит кислород как побочный продукт, однако некоторые, возможно, также используют сульфид водорода, как это происходит среди других фотосинтезирующих бактерий. Углекислота редуцируется, создавая углеводы через цикл Кальвина. В большинстве форм фотосинтезирующие органы находятся в складках клеточной мембраны, называемой тилакоиды. Большое количество кислорода в атмосфере была создана действиями древних цианобактерий. Благодаря их способностям связывать в аэробных условиях, их часто находят как симбионтов с целым рядом других групп организмов, таких как грибки (лишайники), кораллы, папоротника (Azolla), цветочных растений (Gunnera) и т.д. Цианобактерии – единственная группа организмов, которые могут связывать азот и углерод в условиях аэробов, факте, который, возможно, отвечает за их эволюционный и экологический успех.

Цианобактерии обладают полноценным фотосинтетическим аппаратом, характерным для кисневидиляючих фотосинтетиков. Фотосинтетический электронтранспортная цепь включает фотосистему (ФС)-II b6f-цитохромный комплекс и ФС-I. Конечным акцептором электронов служит ферредоксин, донором электронов – вода, расщепляется в системе окисления воды, аналогичной такой системе высших растений. Свитлазбираючи комплексы представлены особыми пигментами – фикобилинами, собранными (как и у красных водорослей) в фикобилисомы. При отключении ФС-II способны к использованию других, нежели вода, экзогенных доноров электронов: восстановленных соединений серы, органических веществ в рамках циклического переноса электронов с участием ФС-I. Однако эффективность такого пути фотосинтеза невелика, и он используется преимущественно для переживания неблагоприятных условий.

Цианобактерии отличает чрезвычайно развитая система внутриклеточных складок цитоплазматичеськои мембраны (ЦПМ) – тилдакоидив; высказаны предположения о возможном существовании у них системы тилакоидов, не связанных с мембраной, что до недавнего времени считалось невозможным у прокариот. Накопленная в результате фотосинтеза энергия используется в темновых процессах фотосинтеза для производства органических веществ из атмосферного CO 2.

Большинство цианобактерий – облигатные фототрофы, которые однако способны к непродолжительному существованию за счет расщепления накопленного на свету гликогена в окислительном пентозофосфатном цикле и в процессе гликолиза (достаточность одного гликолиза для поддержания жизнедеятельности подвергается сомнению). Цикл трикарбоновых кислот (ЦТК) не может использоваться для получении энергии за отсутствия ?-кетоглутаратдегидрогеназы. «Разорванная» ЦТК, в частности, приводит к тому, что цианобактерии отличаются повышенным уровнем экспорта метаболитов в окружающую среду.

Фиксация азота обеспечивается энзимом нитрогеназой, который отличается высокой чувствительностью к молекулярному кислороду. Поскольку кислород выделяется при фотосинтезе, в эволюции цианобактерий реализованы две стратегии: пространственного и временного разобщения этих процессов. У одноклеточных цианобактерий пик фотосинтетической активности наблюдается в светлое, а пик нитрогеназной активности – в темное время суток. Процесс регулируется генетически на уровне транскрипции; цианобактерии являются единственными прокариотами, у которых доказано существование циркадных ритмов (причем продолжительность суточного цикла может превышать продолжительность жизненного цикла!) В нитчатых цианобактерий процесс фиксации азота локализован в специализированных терминальных дифференцированных клетках – гетероцистах, отличающихся толстыми клеточными стункамы, которые препятствуют проникновению кислорода. При недостатке связанного азота в среде в колонии насчитывается 5-15% гетероцистах. ФС-II в гетероцистах редуцирована. Гетероцисты получают органические вещества от фотосинтезирующих членов колонии. Накопленный связанный азот накапливается в гранулах цианофицин или экспортируется в виде глутаминовой кислоты.

Взаимоотношения в хлоропластов

Хлоропласты найдены у эукариот (морские водоросли и высшие растения), более вероятно представляют собой уменьшенные ендосимбиотични цианобактерии. Эта ендосимбиотична теория поддерживается структурной и генетической сходством. Первичные хлоропласты найдены среди зеленых растений, где они содержат хлорофилл b, и среди красных морских водорослей и глаукофитив, где ионы содержат фикобилины (phycobilins). Сейчас считается, что эти хлоропласты вероятно имели единое происхождение. Другие морские водоросли вероятно взяли свои хлоропласты из этих форм посредством вторичного ендосимбиозу или еды.

Значение

Цианобактерии, по общепринятой версии, явились «творцами» современной кислородсодержащей атмосферы на Земле (согласно другой теории, кислород атмосферы имеет геологическое происхождение), что привело к первой глобальной экологической катастрофе в естественной истории и драматической смене биосферы. Сейчас, будучи в значительной составной частью океанического планктона, цианобактерии стоят в начале большей части пищевых цепей и производят большую часть кислорода (более 90%, но ца цифра признается не всеми исследователями). Цианобактерия Synechocystis стала первым фотосинтезирующим организмом, чей геном был полностью расшифрован (в 1996, Исследовательским институтом Казусы, Япония). В настоящее время цианобактерии служат важнейшими моделдьнимы объектами исследований в биологии. В Южной Америке и Китае бактерии родов Spirulina и Nostoc за недостатка других видов продовольствия используют в пищу, высушивая и готовя муку. Им приписывают целебные и оздоравливающие свойства, которые, однако, в настоящее время не нашли подтверждения. Рассматривается возможное применение цианобактерий в создании замкнутых циклов жизнеобеспечения или как массовой кормовой / пищевой добавки.
Определенные цианобактерии вырабатывают цианотоксины, например, анатоксин-a, анатоксин-as, аплизиатоксин, домоиву кислоту, микроцистин LR, нодуралин R (от Nodularia) или сакситоксин. Как минимум один вторичный метаболит циановирин, имеет активность против ВИЧ. Смотреть гиполиты для примера цианобактерий, живущих в экстремальных условиях.

Похожие статьи:


Цианобактерии способны к фотосинтезу

Firmicutes

Классы / ряды класс Clostridia класс Mollicutes класс Thermolithobacteria Ссылки Firmicutes – тип бактерий, большинство из которых грамположительные. …


Цианобактерии способны к фотосинтезу

Одноклеточные организмы

Одноклеточные организмы – внесистемная группа организмов, тело которых состоит из одной клетки. К одноклеточных организмов могут относиться …


Цианобактерии способны к фотосинтезу

Фототрофы

Земные и водные фототрофы: Растения растут на бревне, плавающего в воде богатой водоросли. Фототрофи или фотоавтотрофы – организмы, осуществляющие …


Цианобактерии способны к фотосинтезу

Литотрофы

Литотрофы – организмы, использующие неорганические вещества (обычно минерального происхождения, в качестве восстановительных агентов для …


Цианобактерии способны к фотосинтезу

Heliobacteriaceae

Heliobacteriaceae (гелиобактерии) – небольшая семья бактерий, которые получают энергию через фотосинтез. Они используют уникальный в эту группу …


Цианобактерии способны к фотосинтезу

Простейшие

Простейшие (Protista) или противостою – гетерогенная группа животных. Исторически группа рассматривалась как царство живых организмов, но через ее …

Источник: mir-prekrasen.net

Аутотрофы и гетеротрофы

Различают две большие группы живых организмов – автотрофы, способные получать органические вещества при помощи таких процессов, как фото- и хемосинтез, и гетеротрофы, требующие для своего питания готовую органику. Большинство бактерий, а также грибы не способны к фотосинтезу, потому что не имеют в своем составе специальных пигментов для автотрофного питания. В свою очередь, гетеротрофы делятся на симбионтов, паразитов, и сапрофитов.

Аутотрофные прокариоты способны к питанию с помощью фотосинтеза, так как содержат необходимые для этого структуры. Фотосинтез таких бактерий – это способность, обеспечившая возможность существования современных гетеротрофов, таких как грибы, животные, микроорганизмы.

Интересно, что синтез у аутотрофных прокариот происходит в более длинноволновом диапазоне, чем у растений. Зеленые бактерии способны синтезировать органические вещества, поглощая свет длиной волны до 850 нм, у пурпурных, содержащих бактериохлорофилл A, это происходит при длине волны до 900 нм, а у тех, которые содержат бактериохлорофилл B, – до 1100 нм. Если сделать анализ поглощения света in vivo, то окажется, что существует несколько пиков, и находятся они в инфракрасной области спектра. Эта особенность зеленых и пурпурных бактерий дает им возможность существовать в условиях наличия только невидимых инфракрасных лучей.

Типы хемотрофов

Одной из необычных разновидностей аутотрофного питания является хемосинтез. Это процесс, в котором энергию для образования органических веществ организм получает из реакции окислительного преобразования неорганических соединений. Фото- и хемосинтез у автотрофных бактерий сходны тем, что энергия от химической реакции окисления сначала накапливается в виде АТФ и только потом передается процессу ассимиляции. К числу видов, жизнедеятельность которых обеспечивает хемосинтез, относятся следующие:

  1. Железобактерии. Существуют за счет окисления железа.
  2. Нитрифицирующие. Хемосинтез этих микроорганизмов настроен на переработку аммиака. Многие являются симбионтами растений.
  3. Серобактерии и тионобактерии. Перерабатывают соединения серы.
  4. Водородные бактерии, хемосинтез которых позволяет им при высокой температуре окислять молекулярный водород.

Бактерии, питание которых обеспечивает хемосинтез, не способны к фотосинтезу, потому что не могут использовать в качестве источника энергии солнечный свет.

Синезеленые водоросли – вершина бактериальной эволюции

Фотосинтез цианей происходит так же, как и у растений, что отличает их от других прокариот, а также грибов, поднимая на высшую степень эволюционного развития. Они являются облигатными фототрофами, так как не могут существовать без света. Однако некоторые имеют способность азотфиксации и образуют симбиозы с высшими растениями (как и некоторые грибы), сохраняя при этом способность к фотосинтезу. Недавно было обнаружено, что у этих прокариот существуют тилакоиды, обособленные от складок клеточной стенки, как у эукариот, что дает возможность сделать выводы о направлении эволюции фотосинтезирующих систем.

Сине-зеленые водоросли под микроскопом

Другими известными симбионтами цианей являются грибы. С целью совместного выживания в суровых климатических условиях они вступают в симбиотические отношения. Грибы в этой паре играют роль корней, получая из внешней среды минеральные соли и воду, а водоросли осуществляют фотосинтез, поставляя органические вещества. Водоросли и грибы, входящие в состав лишайников, не смогли бы выжить в таких условиях раздельно. Кроме таких симбионтов, как грибы, у цианей есть ещё друзья среди губок.

Немного о фотосинтезе

Фотосинтез у зеленых растений и прокариот– основа органической жизни на нашей планете. Это процесс образования сахаров из воды и углекислого газа, который происходит при помощи специальных пигментов. Именно благодаря им бактерии, колонии которых окрашены, способны к фотосинтезу. Выделяющийся в результате кислород, без которого не могут существовать животные, в данном процессе является побочным продуктом. Все грибы и многие прокариоты не способны к синтезу, потому что они не сумели в процессе эволюции обзавестись нужными для этого пигментами.

У растений фотосинтез происходит в хлоропластах. В клетках зеленых, пурпурных и цианобактерий пигменты также прикреплены к мембране. То есть синтез прокариот также происходит в специальных пузырьках, которые называются тилакоидами. Здесь же расположены системы, передающие электроны и ферменты.

Сравнивая фотосинтез прокариот и высших растений, некоторые ученые пришли к выводу, что растительные хлоропласты – не что иное, как потомки зеленых бактерий. Это симбионты, приспособившиеся к жизни внутри более развитых эукариот (клетки таких организмов, в отличие от бактериальных, имеют настоящее ядро).

Существует две разновидности фотосинтеза – оксигенный и аноксигенный. Первый наиболее распространен у растений, цианобактерий и прохлорофитов. Второй происходит у пурпурных, некоторых зеленых и гелиобактерий.

Виды фотосинтеза бактерий

Аноксигенный синтез

Происходит без выделения кислорода в окружающую среду. Он характерен для зеленых и пурпурных бактерий, которые являются своеобразными реликтами, сохранившимися до наших дней с древнейших времен. Фотосинтез всех пурпурных бактерий имеет одну особенность. Они не могут пользоваться водой, как донором водорода (это более характерно для растений) и нуждаются в веществах с более высокими степенями восстановления (органикой, сероводородом или молекулярным водородом). Синтез обеспечивает питание зеленых и пурпурных бактерий и позволяет им заселять пресные и соленые водоемы.

Оксигенный синтез

Происходит с выделением кислорода. Он характерен для цианобактерий. У этих микроорганизмов процесс проходит аналогично фотосинтезу растений. В состав пигментов у цианобактерий входят хлорофилл А, фикобилины и каротиноиды.

Этапы фотосинтеза

Происходит синтез в три этапа.

  1. Фотофизический. Происходит поглощение света с возбуждением пигментов и передачей энергии другим молекулам фотосинтезирующей системы.
  2. Фотохимический. На этом этапе фотосинтеза у зеленых или пурпурных бактерий полученные заряды разделяются и электроны переносятся по цепочке, которая завершается образованием АТФ и НАДФ.
  3. Химический. Происходит без света. Включает в себя биохимические процессы синтеза органических веществ у пурпурных, зеленых и цианобактерий с использованием энергии, накопленной на предыдущих стадиях. Например, это такие процессы, как цикл Кальвина, глюкогенез, завершающиеся образованием сахаров и крахмала.

Источник: probakterii.ru