Из истории изучения воздушного питания растений

Знания о питании растений накапливались постепенно. Около 350 лет назад голландский ученый Ян Гельмонт впервые поставил опыт по изучению питания растений. В глиняном горшке с почвой он выращивал иву, добавляя туда только воду. Опадавшие листья ученый тщательно взвешивал. Через пять лет масса ивы вместе с опавшими листьями увеличилась на 74,5 кг, а масса почвы уменьшилась всего на 57 г. На основании этого Гельмонт пришел к выводу, что все вещества в растении образуются не из почвы, а из воды. Мнение о том, что растение увеличивается в размерах только за счет воды, сохранялось до конца XVIII века.

В 1771 г. английский химик Джозеф Пристли изучал углекислый газ, или, как он его называл, «испорченный воздух» и сделал замечательное открытие. Если зажечь свечу и накрыть оо стеклянным колпаком, то, немного погорев, она погаснет. Мышь под таким колпаком начинает задыхаться. Однако если под колпак вместе с мышью поместить ветку мяты, то мышь не задыхается и продолжает жить. Значит, растения «исправляют» воздух, испорченный дыханием животных, то есть превращают углекислый газ в кислород.


Опыт Д.Пристли

В 1862 г. немецкий ботаник Юлиус Сакс с помощью опытов доказал, что зеленые растения не только выделяют кислород, но и создают органические вещества, служащие пищей всем другим организмам.

Фотосинтез

Главное отличие зеленых растений от других живых организмов — наличие в их клетках хлоропластов, содержащих хлорофилл. Хлорофилл обладает свойством улавливать солнечные лучи, энергия которых необходима для создания органических вещсств. Процесс образования органического вещества из углекислого газа и воды с помощью солнечной энергии называется фотосинтезом (греч. рЬо1оз свет). В процессе фотосинтеза образуются не только органические вещества — сахара, но и выделяется кислород.

Схематически процесс фотосинтеза можно изобразить так:

процесс фотосинтез

Вода поглощается корнями и по проводящей системе корней и стебля передвигается к листьям. Углекислый газ — составная часть воздуха. Он поступает в листья через открытые устьица. Поглощению углекислого газа способствует строение листа: плоская поверхность листовых пластинок, увеличивающая площадь соприкосновения с воздухом, и наличие большого числа устьиц в кожице.

Образующиеся в результате фотосинтеза сахара превращаются в крахмал. Крахмал это органическое вещество, которое не растворяется в воде. Кго легко обнаружить с помощью раствора йода.

Доказательства образования крахмала в листьях на свету


Докажем, что в зеленых листьях растений из углекислого газа и воды образуется крахмал. Для этого рассмотрим опыт, который в свое время был поставлен Юлиусом Саксом.

Комнатное растение (герань или примулу) выдерживают двое суток в темноте, чтобы весь крахмал израсходовался на процессы жизнедеятельности. Затем несколько листьев закрывают с двух сторон черной бумагой так, чтобы была прикрыта только их часть. Днем растение выставляют на свет, а ночью его дополнительно освещают с помощью настольной лампы.

Через сутки исследуемые листья срезают. Чтобы выяснить, в какой части листа образовался крахмал, листья кипятят в воле (чтобы набухли крахмальные зерна), а затем выдерживают в горячем спирте (хлорофилл при этом растворяется, и лист обесцвечивается). Затем листья промывают в воде и действуют на них слабым раствором йода. Тс участки листьев, которые были на свету, приобретают от действия йода синюю окраску. Это означает, что крахмал образовался в клетках освещенной части листа. Следовательно, фотосинтез происходит только на свету.

Опыт, доказывающий образование крахмала в зеленых листьях на свету

Доказательства необходимости углекислого газа для фотосинтеза


Чтобы доказать, что для образования крахмала в листьях необходим углекислый газ, комнатное растение также предварительно выдерживают в темноте. Затем один из листьев помещают в колбу с небольшим количеством известковой воды. Колбу закрывают ватным тампоном. Растение выставляют на свет. Углекислый газ поглощается известковой водой, поэтому его в колбе не будет. Лист срезается, и так же, как в предыдущем опыте, исследуется на наличие крахмала. Он выдерживается в горячей воде и спирте, обрабатывается раствором йода. Однако в этом случае результат опыта будет иным: лист не окрашивается в синий цвет, т.к. крахмал в нем не содержится. Следовательно, для образования крахмала, кроме света и воды, необходим углекислый газ.

Таким образом, мы ответили на вопрос, какую пищу получает растение из воздуха. Опыт показал, что это углекислый газ. Он необходим для образования органического вещества.

Организмы, самостоятельно создающие органические вещества для построения своего тела, называются автотрофамн (греч. autos — сам, trofe — пища).

Опыт, доказывающий необходимость углекислого газа для фотосинтеза

Доказательства образования кислорода в процессе фотосинтеза

iv>

Чтобы доказать, что при фотосинтезе растения во внешнюю среду выделяют кислород, рассмотрим опыт с водным растением элодеей. Побеги элодеи опускают в сосуд с водой и сверху накрывают воронкой. На конец воронки надевают пробирку с водой. Растение выставляют на свет на двое-трое суток. На свету элодея выделяет пузырьки газа. Они скапливаются в верхней части пробирки, вытесняя воду. Для того чтобы выяснить, какой это газ, пробирку аккуратно снимают и вносят в нее тлеющую лучинку. Лучинка ярко вспыхивает. Это значит, что в колбе накопился газ, поддерживающий горение кислород.

Опыт, доказывающий выделение зелеными растениями кислорода на свету

Космическая роль растений

Растения, содержащие хлорофилл, способны усваивать солнечную энергию. Поэтому К.А. Тимирязев назвал их роль на Земле космической. Часть энергии Солнца, запасенная в органическом веществе, может долго сохраняться. Каменный уголь, торф, нефть образованы веществами, которые в далекие геологические времена были созданы зелеными растениями и вобрали в себя энергию Солнца. Сжигая природные горючие материалы, человек освобождает энергию, запасенную миллионы лет назад зелеными растениями.


Источник: ebiology.ru

Ответ от Просорушка[новичек]
Фотосинтез протекает в хлоропластах клеток растений. В хлоропластах содержится пигмент хлорофилл, который участвует в процессе фотосинтеза и придает растениям зеленый цвет. Отсюда следует, что фотосинтез протекает только в зеленых частях растений.Фотосинтез — это процесс образования органических веществ из неорганических. В результате процесса фотосинтеза образуется не только органическое вещество, но и кислород. Кислород выделяется в воздух через поверхность растения.Образовавшаяся в результате фотосинтеза глюкоза переносится в другие клетки, превращается в крахмал (запасается), используется на процессы жизнедеятельности.Главным органом, в котором протекает фотосинтез, у большинства растений является лист. Именно в листьях много фотосинтезирующих клеток, составляющих фотосинтезирующую ткань. Поскольку для фотосинтеза важен солнечный свет, то листья обычно имеют большую поверхность. Другими словами, они плоские и тонкие. Чтобы свет попадал на все листья, у растений они располагаются так, чтобы почти не затенять друг друга.Итак, для протекания процесса фотосинтеза нужен углекислый газ, вода и свет. Продуктами фотосинтеза являются органическое вещество (глюкоза) и кислород. Фотосинтез протекает в хлоропластах, которых больше всего в листьях.В частности, органическим веществом является глюкоза, а неорганическими — вода и углекислый газ.Также для протекания фотосинтеза важно наличия солнечного света.

>
ергия света запасается в химических связях органического вещества. В этом и есть главный смысл фотосинтеза: связать энергию, которая в дальнейшем будет использоваться для поддержания жизни растения или животных, которые съедят это растение. Органическое вещество выступает лишь формой, способом для сохранения солнечной энергии.Когда в клетках протекает фотосинтез, в хлоропластах и на их мембранах идут различные реакции. Свет нужен не для всех из них. Поэтому выделяют две фазы фотосинтеза: световую и темновую. Для темновой фазы свет не нужен, и она может происходить ночью.Углекислый газ попадает в клетки из воздуха через поверхность растения. Вода идет из корней по стеблю.

Источник: 22oa.ru

Фазы фотосинтеза

Он происходит в две фазы:

Фазы фотосинтезаСветовая фаза (фотофосфорилирование) – представляет собой набор светозависимых фотохимических (т. е. светозахватывающих) реакций, в которых электроны транспортируются через обе фотосистемы (PSI и PSII) для получения АТФ (богатая энергией молекула) и NADPHH (восстанавливающий потенциал).

Таким образом, светлая фаза фотосинтеза позволяет непосредственно превращать световую энергию в химическую энергию.


енно через этот процесс наша планета теперь имеет атмосферу, богатую кислородом. В результате высшие растения сумели доминировать на поверхности Земли, обеспечивая пищу многим другим организмам, которые питаются или находят убежище через неё. Первоначальная атмосфера содержала такие газы, как аммоний, азот и углекислый газ, но очень мало кислорода. Растения нашли способ превратить этот CO настолько обильно в пищу, используя солнечный свет.

Темновая фаза – соответствует полностью ферментативному и не зависящему от света циклу Кальвина, в котором аденозинтрифосфат (АТФ) и НАДФН+Н+ (никотин амид адениндинуклеотидфосфат) используются для конверсии углекислого газа и воды в углеводы. Эта вторая фаза позволяет усвоить углекислый газ.

То есть в этой фазе фотосинтеза, примерно через пятнадцать секунд после поглощения CO происходит реакция синтеза и появляются первые продукты фотосинтеза — сахара: триосы, пентозы, гексозы, гептозы. Из определённых гексоз образуются сахароза и крахмал. Помимо углеводов, могут также развиваться липидами и белками путём связывания с молекулой азота.

Этот цикл существует в водорослях, умеренных растениях и всех деревьях; эти растения называются «растениями С3», наиболее важными промежуточными телами биохимического цикла, имеющими молекулу три атома углерода (С3).

В этой фазе хлорофилл после поглощения фотона имеет энергию 41 ккал на моль, некоторые из которых преобразуются в теплоту или флуоресценцию. Использование изотопных маркеров (18O) показало, что кислород, высвобождаемый во время этого процесса, происходит из разложенной воды, а не из поглощённого диоксида углерода.

Как происходит фотосинтез

Фотосинтез происходит главным образом в листьях растений и редко (когда-либо) в стеблях и т. д. Части типичного листа включают: верхний и нижний эпидермис;


  • мезофилл;
  • сосудистый пучок (вены);
  • устьица.

Если клетки верхнего и нижнего эпидермиса не являются хлоропластами, фотосинтез не происходит. Фактически они служат прежде всего в качестве защиты для остальной части листа.

Фотосинтез в природеУстьица — это дыры, существующие главным образом в нижнем эпидермисе, и позволяют проводить обмен воздуха (CO и O2). Сосудистые пучки (или вены) в листе составляют часть транспортной системы растения, при необходимости перемещая воду и питательные вещества вокруг растения. Клетки мезофилла имеют хлоропласты, вот это и есть место фотосинтеза.

Механизм фотосинтеза очень сложный. Однако эти процессы в биологии имеют особое значение. При энергичном воздействии света хлоропласты (части растительной клетки, содержащие хлорофилл), вступая в реакцию фотосинтеза, объединяют углекислый газ (СО) с пресной водой с образованием сахаров C6H12O6.


Они в процессе реакции превращаются в крахмал C6H12O5, для квадратного дециметра поверхности листа, в среднем 0,2 г крахмала в день. Вся операция сопровождается сильным высвобождением кислорода.

Фактически процесс фотосинтеза состоит в основном из фотолиза молекулы воды.

Формула этого процесса:

6 Н 2 О + 6 СО 2 + свет = 6 O 2 + С 6 Н 12 О 6

Вода + углекислый газ + свет = кислород + глюкоза

  • Н 2 О = вода
  • СО 2 = диоксид углерода
  • O 2 = Кислород
  • С 6 Н 12 О 6 = глюкоза

В переводе этот процесс означает: растению для вступления в реакцию нужны шесть молекул воды + шесть молекул углекислого газа и света. Это приводит к образованию шести молекул кислорода и глюкозы в химическом процессе. Глюкоза — это глюкоза, которую растение использует в качестве исходного материала для синтеза жиров и белков. Шесть молекул кислорода являются всего лишь «необходимым злом» для растения, которое он доставляет в окружающую среду через закрывающие клетки.

Основные продукты фотосинтеза

Продукты фотосинтезаКак уже было сказано, углеводы являются наиболее важным прямым органическим продуктом фотосинтеза в большинстве зелёных растений. В растениях образуется мало свободной глюкозы; вместо этого глюкозные единицы связаны с образованием крахмала или соединены с фруктозой, другим сахаром, с образованием сахарозы.

При фотосинтезе синтезируются не только углеводы, как это когда-то считалось, но также:

  • аминокислоты;
  • белки;
  • липиды (или жиры);
  • пигменты и другие органические компоненты зелёных тканей.

Минералы поставляют элементы (например, азот, N; фосфор, Р; серы, S), необходимых для образования этих соединений.

Химические связи разрушаются между кислородом (O) и углеродом (С), водородом (Н), азотом и серы, а новые соединения образуются в продуктах, которые включают газообразный кислород (O 2) и органические соединения. Для разрушения связей между кислородом и другими элементами (например, в воде, нитрате и сульфате) требуется больше энергии, чем высвобождается, когда в продуктах образуются новые связи. Это различие в энергии связи объясняет большую часть световой энергии, хранящейся в виде химической энергии в органических продуктах, образующихся при фотосинтезе. Дополнительная энергия хранится при создании сложных молекул из простых.

Факторы, влияющие на скорость фотосинтеза

Скорость фотосинтеза определяется в зависимости от скорости производства кислорода либо на единицу массы (или площади) зелёных растительных тканей, либо на единицу веса всего хлорофилла.

Количество света, подача углекислого газа, температура, водоснабжение и наличие полезных ископаемых являются наиболее важными факторами окружающей среды, которые влияют на скорость реакции фотосинтеза на наземных установках. Его скорость определяется также видами растений и его физиологическим состоянием, например, его здоровьем, зрелостью и цветением.

Место фотосинтеза

Как протекает фотосинтез в биологииФотосинтез происходит исключительно в хлоропластах (греческий хлор = зелёный, пластообразный) растения. Хлоропласты преимущественно обнаруживаются в палисадах, но также и в губчатой ​​ткани. На нижней стороне листа находятся блокирующие ячейки, которые координируют обмен газами. CO 2 течёт в межклеточные клетки снаружи.

Вода, необходимая для фотосинтеза, транспортирует растение изнутри через ксилему в клетки. Зелёный хлорофилл обеспечивает поглощение солнечного света. После того как углекислый газ и вода превращаются в кислород и глюкозу, закрывающие клетки открывают и выделяют кислород в окружающую среду. Глюкоза остаётся в клетке и превращается растением среди других в крахмал. Сила сравниваются с полисахаридом глюкозы и лишь слегка растворимой, так что даже в высоких потерях воды в прочности растительных остатков.

Важность фотосинтеза в биологии

В чем важность фотосинтезаИз света, полученного листом, отражается 20%, 10% передаются и 70% фактически поглощаются, из которых 20% рассеивается в тепле, 48% теряется при флуоресценции. Около 2% остаётся для фотосинтеза.

Благодаря этому процессу растения играют незаменимую роль на поверхности Земли; на самом деле зелёные растения с некоторыми группами бактерий являются единственными живыми существами, способными выработать органические вещества из минеральных элементов. По оценкам, каждый год 20 миллиардов тонн углерода фиксируются наземными растениями из углекислого газа в атмосфере и 15 миллиардов водорослями.

Зелёные растения являются основными первичными производителями, первое звено в пищевой цепи; не хлорофилловые растения и травоядные и плотоядные животные (включая людей) полностью зависят от реакции фотосинтеза.

Упрощённое определение фотосинтеза заключается в том, чтобы преобразовать световую энергию от солнца в химическую энергию. Этот фотонный биосинтез углевода производится из углекислого газа СО2 с помощью световой энергии.

То есть фотосинтез является результатом химической активности (синтеза) растений хлорофилла, которые продуцируют основные биохимические органические вещества из воды и минеральных солей благодаря способности хлоропластов захватывать часть энергии солнца.

Источник: obrazovanie.guru