Световая фаза фотосинтеза зависит от поступления в клетку светового излучения (фотонов). В природе фотосинтез стимулируется солнечным светом.

Содержащиеся в хлоропластах растительных клеток хлорофиллы и другие пигменты улавливают излучение определенных длин волн. Энергия фотонов переводит электроны пигментов на более высокий энергетический уровень. Вместо того, чтобы снова вернуться на прежний энергетический уровень с обратным излучение энергии, электроны захватываются акцепторами и переносятся по электрон-транспортной цепи, встроенной в мембрану тилакоидов хлоропластов.

По пути следования электронов их энергия частично теряется, а частично тратится на синтез АТФ и восстановление НАДФ. Таким образом солнечная энергия переводится в энергию химических связей, используемую потом в темновой фазе на синтез органических веществ. В этом смысле световую фазу фотосинтеза можно назвать подготовительной.

Электрон-транспортную цепь составляют пигменты, ферменты и коферменты. Одни локализованы в мембране почти неподвижно, другие перемещаются, выполняя роль переносчиков электронов и протонов.


Однако световые реакции фотосинтеза происходят не только на мембране тилакоидов. Также фотоны света запускают фотолиз воды. В результате фотолиза вода распадается на протоны водорода (H+), электроны (e) и атомы кислорода (O). Последние, попарно объединяясь, выделяются из клетки в виде молекулярного кислорода (O2).

Причина необходимости фотолиза становится ясна при более подробном рассмотрении реакций световой фазы, протекающих на тилакоидной мембране.

Здесь функционируют две фотосистемы. Это так называемые фотосистема I и фотосистема II. Каждая из них улавливает световую энергию, и от каждой отрываются возбужденные электроны, которые принимаются своими акцепторами. В фотосистемах образуются электронные дырки, т. е. недостаток электронов. Хлорофиллы реакционных центров фотосистем становятся положительно заряженными. Чтобы система снова могла работать, необходимо эти дырки устранять за счет притока электронов из вне.

В растениях световая фаза фотосинтеза организована таким образом, что фотосистема I заполняет дырки электронами, транспортирующимися от фотосистемы II. А та получает электроны, которые образуются при фотолизе воды.


Электроны, вышедшие из первой фотосистемы, пройдя по электрон-транспортной цепи, достигают НАДФ. Этот кофермент восстанавливается и заряжается отрицательно. После этого притягивает протоны водорода, превращаясь в НАДФ·H2. Таким образом, фотолиз воды необходим для получения протонов и электронов.

По пути следования электронов от второй фотосистемы к первой происходит синтез АТФ за счет накопленного электро-химического градиента — разницы зарядов по разные стороны мембраны.

Рассмотрим подробнее упрощенную схему световой фазы фотосинтеза:

Фотосистемы, ферменты и коферменты световой фазы фотосинтеза

Помимо энергии света для фотолиза воды нужен еще фермент, который отмечен на схеме как «водоокисляющий комплекс». Он встроен в фотосистему. Образовавшиеся протоны остаются в люмене, а электроны уходят в фотосистему II (PSII). Поток электронов показан синей пунктирной стрелкой.

Надписи P680 и P700 в фотосистемах обозначают длины волн света, которые преимущественно поглощаются реакционными центрами PS. Сами фотосистемы имеют сложное строение. Кроме испускающего электроны реакционного центра, они включают также светособирающий комплекс.


Из PSII электроны передаются на кофермент пластохинон. Заряжаясь отрицательно, он присоединяет протоны из стромы. Поток протонов показан красной пунктирной стрелкой. Пластохинон транспортирует электроны и протоны до ферментативного комплекса цитохром-b6f. Последний окисляет пластохинон.

Цитохром-b6f перекачивает протоны в люмен, а электроны передает следующему коферменту-переносчику – пластоцианину.

В это время в люмене за счет протонов, перенесенных из стромы и образовавшихся в результате фотолиза воды, накапливается достаточный положительный заряд, чтобы «сработал» фермент АТФ-синтаза. Через его каналы протоны устремляются на внешнюю сторону тилакоидной мембраны. Эта энергия используется АТФ-синтазой для синтеза АТФ из АДФ и фосфорной кислоты.

Пластоцианин транспортирует электроны в PSI, восстанавливая ее. Отсюда в результате действия света электроны передаются на ферредоксин. Под действием фермента ферредоксин-НАДФ-редуктазы он восстанавливает НАДФ. При этом также используются протоны, находящиеся в строме хлоропласта. Сюда они поступили в том числе и через каналы АТФ-синтазы.

Рассмотренные реакции световой фазы представляют собой нециклический транспорт электронов. Однако данный этап фотосинтеза может протекать и по циклическому пути. В этом случае ферродоксин восстанавливает не НАДФ, а пластохинон. Таким образом, PSI получает свои электроны обратно. В случае циклического транспорта электронов синтеза НАДФ·H2 не происходит, световая фаза дает только АТФ.

iv>
Z-схема потока электронов в световых реакциях фотосинтеза

Нециклический (обычный) транспорт электронов называют также Z-схемой переноса электронов. Если изобразить поток электронов с учетом постепенного понижения их энергии, то получится схема, похожая на повернутую на 90° букву Z.

Источник: scienceland.info

О. В. Кузьмина

Объяснение такого объемного материала, каким является фотосинтез, лучше проводить на двух спаренных уроках – тогда не теряется целостность восприятия темы. Урок необходимо начать с истории изучения фотосинтеза, строения хлоропластов и проведения лабораторной работы по изучению хлоропластов листа. После этого необходимо перейти к изучению световой и темновой фаз фотосинтеза. При объяснении реакций, происходящих в этих фазах, необходимо составить общую схему:

В световой фазе фотосинтеза образуется

Далее следует перейти к реакциям световой фазы фотосинтеза. Очень доступно и подробно этот материал изложен в книге Т.Л. Богдановой, Е.Л. Солодовой.


По ходу объяснения надо нарисовать схему световой фазы фотосинтеза.

1. Поглощение кванта света молекулой хлорофилла, которая находится в мембранах тилакоидов гран, приводит к потере ею одного электрона и переводит ее в возбужденное состояние. Электроны переносятся по электронтранспортной цепи, что приводит к восстановлению НАДФ+ до НАДФ•Н.

2. Место вышедших электронов в молекулах хлорофилла занимают электроны молекул воды – так вода под действием света подвергается разложению (фотолизу). Образовавшиеся гидроксилы ОН– становятся радикалами и объединяются в реакции 4 ОН → 2 H2O +O2, приводящей к выделению в атмосферу свободного кислорода.

3. Ионы водорода Н+ не проникают через мембрану тилакоида и накапливаются внутри, заряжая его положительно, что приводит к увеличению разности электрических потенциалов (РЭП) на мембране тилакоида.

4. При достижении критической РЭП протоны устремляются по протонному каналу наружу. Этот поток положительно заряженных частиц используется для получения химической энергии с помощью специального ферментного комплекса. Образовавшиеся в результате молекулы АТФ переходят в строму, где участвуют в реакциях фиксации углерода.

5. Ионы водорода, вышедшие на поверхность мембраны тилакоида, соединяются с электронами, образуя атомарный водород, который идет на восстановление переносчика НАДФ+.

После рассмотрения данного вопроса, проанализировав его еще раз по составленной схеме, предлагаем учащимся заполнить таблицу.

Таблица. Реакции световой и темновой фаз фотосинтеза

>

Фаза фотосинтеза

Где происходит

Основные процессы

Что образуется

Световая

Тилакоиды гран

Фотолиз воды, восстановление переносчика НАДФ+, образование АТФ

Свободный кислород, АТФ

Темновая

Строма хлоропластов, куда поступают АТФ, НАДФ•Н2 и углекислый газ

Цикл Кальвина

Углеводы

После заполнения первой части таблицы можно перейти к разбору темновой фазы фотосинтеза.

В строме хлоропласта постоянно присутствуют пентозы – углеводы, представляющие собой пятиуглеродные соединения, которые образуются в цикле Кальвина (цикл фиксации углекислого газа).


1. К пентозе присоединяется углекислый газ, образуется неустойчивое шестиуглеродное соединение, которое распадается на две молекулы 3-фосфоглицериновой кислоты (ФГК).

2. Молекулы ФГК принимают от АТФ по одной фосфатной группе и обогащаются энергией.

3. Каждая из ФГК присоединяет по одному атому водорода от двух переносчиков, превращаясь в триозу. Триозы, объединяясь, образуют глюкозу, а затем крахмал.

4. Молекулы триозы, объединяясь в разных сочетаниях, образуют пентозы и вновь включаются в цикл.

Суммарная реакция фотосинтеза:

В световой фазе фотосинтеза образуется

Схема. Процесс фотосинтеза

В световой фазе фотосинтеза образуется

Тест

1. Фотосинтез осуществляется в органеллах:

а) митохондрии;
б) рибосомы;
в) хлоропласты;
г) хромопласты.

2. Пигмент хлорофилл сосредоточен в:

а) оболочке хлоропласта;
б) строме;
в) гранах.

3. Хлорофилл поглощает свет в области спектра:

а) красной;
б) зеленой;
в) фиолетовой;
г) во всей области.

4. Свободный кислород при фотосинтезе выделяется при расщеплении:


а) углекислого газа;
б) АТФ;
в) НАДФ;
г) воды.

5. Свободный кислород образуется в:

а) темновой фазе;           
б) световой фазе.

6. В световой фазе фотосинтеза АТФ:

а) синтезируется;             
б) расщепляется.

7. В хлоропласте первичный углевод образуется в:

а) световой фазе;        
б) темновой фазе.

8. НАДФ в хлоропласте необходим:

1) как ловушка для электронов;
2) в качестве фермента для образования крахмала;
3) как составная часть мембраны хлоропласта;
4) в качестве фермента для фотолиза воды.

9. Фотолиз воды – это:

1) накопление воды под действием света;
2) диссоциация воды на ионы под действием света;
3) выделение водяных паров через устьица;
4) нагнетание воды в листья под действием света.

10. Под воздействием квантов света:

1) хлорофилл превращается в НАДФ;
2) электрон покидает молекулу хлорофилла;
3) хлоропласт увеличивается в объеме;
4) хлорофилл превращается в АТФ.

ЛИТЕРАТУРА

Богданова Т.П., Солодова Е.А. Биология. Справочник для старшеклассников и поступающих в вузы. – М.: ООО «АСТ-Пресс школа», 2007.

Источник: bio.1september.ru

Фотосинтез

Фотосинтез — синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:


6СО2 + 6Н2О + Qсвета → С6Н12О6 + 6О2.

У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d), главным является хлорофилл a. В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.

Фотосинтез

Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы. У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы.

Световая фаза


Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:

Н2О + Qсвета → Н+ + ОН.

Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы •ОН:

ОН → •ОН + е.

Радикалы •ОН объединяются, образуя воду и свободный кислород:

4НО• → 2Н2О + О2.

Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н+ заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ+ (никотинамидадениндинуклеотидфосфат) до НАДФ·Н2:

+ + 2е + НАДФ → НАДФ·Н2.

Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н2; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

1 — строма хлоропласта; 2 — тилакоид граны.

Темновая фаза

Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н2, образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

6СО2 + 24Н+ + АТФ → С6Н12О6 + 6Н2О.

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С3— и С4-фотосинтез.

С3-фотосинтез

С3-фотосинтез

Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С3) соединения. С3-фотосинтез был открыт раньше С4-фотосинтеза (М. Кальвин). Именно С3-фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С3-фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

Фотодыхание

Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:

О2 + РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать. Он поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО2. В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО2. Фотодыхание приводит к понижению урожайности С3-растений на 30–40% (С3-растения — растения, для которых характерен С3-фотосинтез).

С4-фотосинтез

С4-фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С4-растениями. В 1966 году австралийские ученые Хэтч и Слэк показали, что у С4-растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С4-растениях стали называть путем Хэтча-Слэка.

Для С4-растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой. В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО2 и, самое главное, не взаимодействует с О2. В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.

Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО2 и НАДФ·Н2.

Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С3-фотосинтезе.

С4-фотосинтез   Строение С4-растений

Строение С4-растений:
1 — наружный слой — клетки мезофилла; 2 — внут­ренний слой — клетки обкладки; 3 — «Кранц-анатомия»; 4, 5 — хлоро­пласты; 4 — много­числен­ные граны, крахмала мало; 5 — немного­числен­ные граны, крахмала много.

С4-фотосинтез:
1 — клетка мезофилла; 2 — клетка обкладки проводящего пучка.

   

Значение фотосинтеза

Благодаря фотосинтезу, ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ. Из кислорода образуется озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации.

При фотосинтезе зеленый лист использует лишь около 1% падающей на него солнечной энергии, продуктивность составляет около 1 г органического вещества на 1 м2 поверхности в час.

Хемосинтез

Синтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом. К хемосинтезирующим организмам относятся некоторые виды бактерий.

Нитрифицирующие бактерии окисляют аммиак до азотистой, а затем до азотной кислоты (NH3 → HNO2 → HNO3).

Железобактерии превращают закисное железо в окисное (Fe2+ → Fe3+).

Серобактерии окисляют сероводород до серы или серной кислоты (H2S + ½O2 → S + H2O, H2S + 2O2 → H2SO4).

В результате реакций окисления неорганических веществ выделяется энергия, которая запасается бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза органических веществ, который проходит аналогично реакциям темновой фазы фотосинтеза.

Хемосинтезирующие бактерии способствуют накоплению в почве минеральных веществ, улучшают плодородие почвы, способствуют очистке сточных вод и др.

 

Источник: licey.net

Химизм фотосинтеза

 

В хлоропластах молекулы хлорофилла располагаются не в беспорядке, а образуют так называемые фотосинтетические единицы или фотосистемы (Фс), представляющие собой ловушки для квантов. Каждая такая фотосинтетическая единица состоит из 200 – 250 молекул хлорофилла, но только одна непосредственно участвует в передаче энергии света на синтез органического вещества. Эту центральную молекулу называют хлорофилл-ловушкой. Остальные служат для восприятия световой энергии и передачи ее на эту молекулу. Эти пигменты получили название «вспомогательных» или «антенны». Кроме хлорофилла в состав фотосистемы входит около 50 молекул каротина. Каротиноиды – обязательные компоненты всех фотосинтезирующих микроорганизмов. Роль каротина состоит в поглощении квантов света с длинной волны ниже 550 нм и защите хлорофилла от окисления кислородом, выделяющемся в процессе фотосинтеза.

Фотосинтез — сложный многоступенчатый процесс. На каком именно этапе необходима энергия света? Оказалось, что реакции синтеза органических веществ за счет включения углекислого газа в состав их молекул непосредственно энергии света не требуют. Эти реакции назвали темновыми, хотя идут они на свету, просто свет для них необязателен.

А вот для протекания так называемых световыхреакций фотосинтеза, в основе которых лежит световое разложение (фотолиз) молекул воды, выделение кислорода, образование аденозинтрифосфорной кислоты (АТФ) и сильного восстановителя — вещества со сложным названием никотинамидадениндинуклеотид фосфат (НАДФ ∙ Н), он необходим. НАДФ ∙ Н образуется в результате присоединения к никотинамидадениндинуклеотид фосфату водорода, выделяющегося при фотолизе молекулы воды (фотоводорода).

Световая фаза фотосинтеза протекает в тилакоидах и гранах хлоропластов. Ее двигают две машины – две фотосистемы различающиеся между собой центральной молекулой хлорофилла. Хлорофилл-ловушкой первой фотосистемы (Фс I) является пигмент П700 , а второй фотосистемы (Фс II) – пигмент П680.

Первой начинает работу Фс I (рис. 9). Энергия кванта света, воспринятого молекулой антенны фотосинтетической единицы, передается на центральную молекулу – П700, она возбуждается и ее электрон перемещается на более высокий энергетический уровень, с которого легко отрывается и поступает в цепь транспорта электронов, соединенную с фотосинтетической единицей. Цепь переноса электронов состоит из окислительно-восстановительных ферментов, размещенных в определенной последовательности. В световой фазе фотосинтеза образуетсяОторвавшийся электрон движется по цепи переносчиков электронов на НАДФ+, сообщая ему отрицательный заряд. Молекула П700, отдавшая электрон, заполняет образующуюся электронную вакансию за счет другой фотосистемы (Фс II). В свою очередь, центральная молекула хлорофилла второй фотосистемы — пигмент П680 поглощая энергию квантов света, переданную ему собственной антенной, возбуждается, электрон переходит на высокий энергетический уровень, с которого легко отрывается и идет по другой цепи переносчиков электронов на восполнение электронной вакансии у П700. Когда электрон движется на освободившееся место, его энергия переходит в энергию макроэргических (богатых энергией) связей молекул АТФ, образующихся путем присоединения остатков молекул фосфорной кислоты к АДФ(аденозиндифосфорной кислоте). Но теперь образовалась электронная вакансия у П680. Чтобы восполнить недостающие электроны в ФсII, происходит разложение молекул воды и выделение кислорода (фотолиз).



 

В световой фазе фотосинтеза образуется

 

Электроны, высвобождающиеся в ходе этой реакции, заполняют электронную вакансию у П680. А вот протоны водорода движутся к НАДФ и взаимодействуют с ним:

 

В световой фазе фотосинтеза образуется

 

Итак, при движении возбужденных электронов от молекул-ловушек по цепи транспорта электронов происходит образование очень важных веществ: АТФ(запас энергии) и НАДФН (сильный восстановитель). Вот они — то и используются в ходе синтеза органических веществ из неорганических, в так называемых темновых реакциях фотосинтеза. Такой путь переноса электронов получил название нециклического фотофосфорилирования.

Есть и другой путь световых реакций. Если в хлоропластах накоплено достаточное количество восстановителя (НАДФ ∙ Н) и его больше не требуется, то электроны движутся по циклическому пути. В этом случае работает только первая фотосистема. Возбужденные электроны от П700 двигаются по цепи переносчиков электронов и возвращаются на П700. При этом происходит синтез АТФ. Такой тип образования АТФ в ходе фотосинтеза назвали циклическим фотофосфорилированием.

Источник: studopedia.su