Строение эндоплазматической сети

Эндоплазматическая сеть или ЭПС — это совокупность мембран, относительно равномерно распределенная по цитоплазме клеток эукариот. ЭПС имеет огромное количество разветвлений и представляет собой сложно структурированную систему взаимосвязей.

ЭПС является одной из составляющих клеточной мембраны. Сама же она включается в себя каналы, трубочки и цистерны, позволяющие распределить внутреннее пространство клетки на определенные участки, а также значительно расширить ее. Все место внутри клетки заполняет матрикс — плотное синтезированное вещество, и каждый из его участков имеет разный химический состав. Поэтому в полости клетки может идти сразу несколько химических реакций, охватывающих только определенную область, а не всю систему. Заканчивается ЭПС перинуклеарным пространством.

Липиды и белки — основные вещества в составе мембраны эндоплазматической сети. Нередко встречаются еще и различные ферменты.

Виды ЭПС:

  • Агранулярная (аПС) — по сути своей — система скрепленных трубочек, не содержащая рибосом. Поверхность такой ЭПС, из-за отсутствия на ней чего-либо, гладкая.
  • Гранулярная (грЭС) — такая же, как и предыдущая, но имеет на поверхности рибосомы, благодаря чему наблюдаются шероховатости.

В некоторых случаях в этот список включают транзиторную эндоплазматическую сеть (тЭС). Второе ее название — переходящая. Она находится в зоне стыка двух видов сети.

Шероховатая ЭС может наблюдаться внутри всех живых клеток, исключая сперматозоиды. Однако, в каждом организме она развита в разной степени.

Так, например, грЭС достаточно высокоразвита в плазматических клетках, вырабатывающих иммуноглобулины, в фибробластах, продуцентах коллагена, и в железистых эпителиальных клетках. Последние находятся в поджелудочной железе, где синтезируют ферменты, и в печени, производя альбумины.

Гладкая ЭС представлена клетками надпочечников, которые, как известно, создают гормоны. Также ее можно обнаружить в мышцах, где проходит обмен кальция, и в фундальных желудочных железах, выделяющих хлор.

Также существует два вида внутренних мембран ЭПС. Первый являет собой систему трубочек с многочисленными разветвлениями, они насыщены разнообразными ферментами. Второй тип — везикулы — небольшие пузырьки с собственной мембраной. Они выполняют транспортную функцию для синтезируемых веществ.

Функции ЭПС

В первую очередь эндоплазматическая сеть — синтезирующая система. Но также она не реже занимается транспортом цитоплазматических соединений, что делает всю клетку способной на более сложные функциональные особенности.

Вышеописанные возможности ЭПС свойственны для любого из ее типов. Таким образом, эта органелла — универсальная система.

Общие функции для гранулярной и агранулярной сети:


  • Синтезирующая — выработка мембранных жиров (липидов) с помощью ферментов. Именно они позволяют ЭПС самостоятельно воспроизводиться.
  • Структурирующая — организация областей цитоплазмы и предотвращение попадания в нее ненужных веществ.
  • Проводящая — возникновение возбуждающих импульсов за счет реакции между мембранами.
  • Транспортная — выведение веществ даже сквозь мембранные стенки.

Помимо основных особенностей, каждый род эндоплазматических сетей обладает собственными специфическими функциями.

Функции гладкой (агранулярной) эндоплазматической сети

АЭС, не считая особенностей, свойственных для всех типов ЭПС, обладает собственными следующими функциями:

  • Детоксикационнная — ликвидация токсинов как внутри, так и снаружи клетки.

Фенобарбитал разрушается в клетках почек, а именно, в гепатоцитах, вследствие воздействия ферментов оксидазы.

  • Синтезирующая — выработка гормонов и холестерина. Последний выводится в нескольких местах сразу: половые железы, почки, печень и надпочечники. А в кишечнике синтезируются жиры (липиды), попадающие в кровь через лимфу.

АЭС способствует синтезу гликогена в печени, благодаря действию ферментов.

  • Транспортная — саркоплазматический ретикулум, он же специальная ЭПС в поперечно-полосатых мышцах, служит местом хранения кальций-ионов. А благодаря специализированным кальциевым помпам, он выбрасывает кальций прямо в цитоплазму, откуда моментально отправляет его в область каналов. Занимается мышечная ЭПС этим, вследствие изменения количества кальция особыми механизмами. Они находятся, в основном, в клетках сердца, скелетных мышц, а также в нейронах и яйцеклетке.

Функции шероховатой (гранулярной) эндоплазматической сети

Также, как и агранулярная, грЭС имеет свойственные только для себя самой функции:

  • Транспортная — перемещение веществ по внутримембранной секции, так, например, выработанные белки по поверхности ЭПС переходят в комплекс Гольджи, после чего выходят из клетки.
  • Синтезирующая — все, как и раньше: производство белков. Но начинается оно на свободных полисомах, и только после этого вещества связываются с ЭПС.
  • Благодаря гранулярной эндоплазматической сети синтезируются буквально все виды белков: секреторные, выходящие внутрь самой клетки, специфические во внутренней фазе органоидов, а также все вещества в мембране клетки, за исключением митохондрий, хлоропластов и некоторых типов белков.
  • Образующая — комплекс Гольджи создается в том числе благодаря грЭС.
  • Модификационная — включает в себя фосфориллирование, сульфатирование и гидроксилирование белков. Специальный фермент гликозилтранфераза обеспечивает проведение процесса гликозилирования. В основном он предшествует транспорту веществ к выходу из цитоплазмы либо происходит перед секрецией клетки.

Можно проследить, что функции грЭС направлены в основном на регуляцию транспорта белков, синтезирующихся на поверхности эндоплазматической сети в рибосомах. Они преобразуются в третичную структуру, скручиваясь, именно в ЭПС.

Типичное поведение белка заключается в поступлении в гранулированную ЭПС, после в аппарат Гольджи и, в конечном шаге, в выходе наружу к другим органоидам. Также он может отложиться, как запасной. Но часто, в процессе перемещения, он способен кардинально изменить состав и внешний вид: фосфориллироваться, например, или преобразоваться в гликопротеид.

Оба типа эндоплазматической сети способствуют детоксикации клеток печени, то есть выводу из нее ядовитых соединений.

ЭПС пропускает сквозь себя вещества не во всех участках, благодаря чему количество соединений в канальцах и снаружи их разная. По такому же принципу работает проницаемость внешней мембраны. Эта особенность играет определенную роль в жизнедеятельности клетки.

В клеточной цитоплазме мышц гораздо меньше кальций-ионов, чем в ее эндоплазматической сети. Следствием этого является удачное сокращение мышц, ведь именно кальций при выходе из каналов ЭПС обеспечивает этот процесс.

Образование эндоплазматической сети


Основные составляющие ЭПС — белки и липиды. Первые транспортируются из мембранных рибосом, вторые синтезируются самой эндоплазматической сетью с помощью ее ферментов. Так как гладкая ЭПС (аПС) не имеет на поверхности рибосом, а сама синтезировать белок не способна, она образуется при отбрасывании рибосом сетью гранулярного типа.

Источник: sciterm.ru

Строение, функции гранулярной эндоплазматической сети

Цитоплазма эукариотических клеток содержит анастомозирующую сеть, которую образуют сообщающиеся между собой цистерны — структуры в виде канальцев и мешочков. Их стенка состоит из непрерывной мембраны, ограничивающей находящиеся внутри пространства.

На срезах цистерны кажутся изолированными, однако при использовании микроскопии целых клеток с высоким разрешением обнаруживается, что они связаны между собой. Этамембранная система называется эндоплазматическая сеть (ЭПС).

Во многих ее участках цитозольная сторона мембраны покрыта полирибосомами, синтезирующими белковые молекулы, которые переносятся внутрь цистерн. На основании этого признака описаны два типа ЭПС — гранулярная и агранулярная.


Гранулярная эндоплазматическая сеть (англоязычная аббревиатура— RER — от rough endoplasmic reticulum) хорошо развита в клетках, специализированных на секреции белков, таких, как клетки ацинусов поджелудочной железы (пищеварительные ферменты), фибробласты (коллаген) и плазматические клетки (иммуноглобулины).

Гранулярная эндоплазматическая сеть состоит из мешковидных и собранных в стопки плоских цистерн, ограниченных мембранами, которые переходят в наружную мембрану ядерной оболочки. Термин «гранулярная эндоплазматическая сеть» указывает на присутствие полирибосом на цитозольной поверхности мембраны этой органеллы. Наличие полирибосом также придает базофильные тинкториальные свойства этой органелле при изучении клеток под световым микроскопом.

Главной функцией гранулярной эндоплазматической сети является отделение (сегрегация) белков, не предназначенных для нахождения в цитозоле. Дополнительные функции включают начальное гликозилирование гликопротеинов, синтез фосфолипидов, сборку многоцепочечных белков и некоторые посттрансляционные модификации вновь образованных полипептидов.

строение митохондрий
Структурная лабильность митохондрий.
А — клетка поджелудочной железы крысы. В центре — митохондрия с мембранами, кристами (К) и матриксом (М).
Видны также многочисленные уплощенные цистерны гранулярной эндоплазматической сети (грЭПС) с рибосомами на их цитоплазматической поверхности. Электронная микрофотография, х 50 000.
Б — поперечнополосатая мышца пациента с митохондриальной миопатией. Митохондрии (стрелки) резко изменены, в них определяется выраженное набухание матрикса. Электронная микрофотография.

Строение, функции гранулярной эндоплазматической сети
Эндоплазматическая сеть (схема). Эта органелла представлена анастомозирующей сетью сообщающихся между собой канальцев и мешочков, образованных непрерывной мембраной.
Обратите внимание, что агранулярная эндоплазматическая сеть (аЭПС, передний план) не содержит рибосом. Рибосомы имеют вид мелких темных пятнышек, расположенных на гранулярной эндоплазматической сети (грЭПС; задний план).
Цистерны агранулярной сети трубчатые (тубулярные), в гранулярной сети они имеют вид уплощенных мешочков.
Строение, функции гранулярной эндоплазматической сети
Участок гранулярной эндоплазматической сети (грЭПС; схема). Показана форма цистерн, на которых находятся многочисленные рибосомы, образующие полирибосомы.
Следует помнить, что на срезах, сделанных для электронной микроскопии, цистерны выглядят разделенными, однако в действительности они образуют непрерывную структуру в виде туннеля в цитоплазме.


Весь синтез белков начинается на полирибосомах, не прикрепленных к эндоплазматической сети. В молекулах иРНК белков, которые должны сегрегироваться в эндоплазматическую сеть, содержится добавочная последовательность оснований на 5′-конце. Она кодирует около 20—25 преимущественно гидрофобных аминокислот, образующих так называемый сигнальный пептид.

После трансляции сигнальный пептид взаимодействует с комплексом, состоящим из шести неидентичных полипептидов и молекулы 7S РНК, который известен как сигнал-распознающая частица (СРЧ). СРЧ препятствует дальнейшему удлинению полипептида до тех пор, пока комплекс СРЧ—полирибосома не свяжется с рецептором СРЧ и рецептором рибосом на мембране гранулярной эндоплазматической сети. Рецептором СРЧ является особый причальный белок.

После связывания с причальным белком СРЧ отделяется от полирибосом, обусловливая продолжение трансляции.

Уже в просвете гранулярной эндоплазматической сети специфический фермент, называемый сигнальной пептидазой, расположенный на внутренней поверхности гранулярной эндоплазматической сети, удаляет сигнальный пептид. Трансляция белка продолжается и сопровождается происходящими внутри цистерны вторичными и третичными структурными изменениями его молекулы, а также некоторыми посттрансляционными модификациями, такими, как гидроксилирование, гликозилирование, суль-фатирование и фосфорилирование.

Белки, синтезированные в гранулярной эндоплазматической сети, могут иметь несколько мест назначения: они могут храниться внутри клеток (например, в лизосомах и специфических гранулах лейкоцитов), временно накапливаться внутри клеток (белки, предназначенные на экспорт, например, в поджелудочной железе, некоторых эндокринных клетках), служить в качестве компонента других мембран (например, интегральные белки).


Строение, функции гранулярной эндоплазматической сети
Транспорт белков через мембрану гранулярной эндоплазматической сети (грЭПС). Рибосомы связываются с иРНК, а к сигнальному пептиду первоначально прикрепляется сигнал-распознающая частица (СРЧ).
Рибосомы связываются с мембраной грЭПС, взаимодействуя с рецептором СРЧ (причальным белком) и рецептором рибосом. Далее сигнальный пептид удаляется сигнальной пептидазой (не показана).
Эти взаимодействия вызывают открытие поры, через которую белок направляется в грЭПС.
Строение, функции гранулярной эндоплазматической сети
Несколько типов клеток, синтезирующих белки различного назначения. Ультраструктура клетки, синтезирующей белки на свободных полирибосомах (но не секретирующей их) (А); клетки, которая синтезирует, сегрегирует и накапливает белки в органеллах (Б); клетки, синтезирующей, сегрегирующей и непосредственно экспортирующей белки (В); а также клетки, синтезирующей, сегрегирующей, накапливающей белки в надъядерных гранулах и экспортирующей их (Г).

Источник: medicalplanet.su

Эндоплазматическая сеть


Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум (ЭПР), — одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают два вида ЭПС: 1) шероховатая (гранулярная), содержащая на своей поверхности рибосомы, и 2) гладкая (агранулярная), мембраны которой рибосом не несут.

Функции: 1) транспорт веществ из одной части клетки в другую, 2) разделение цитоплазмы клетки на компартменты ( «отсеки»), 3) синтез углеводов и липидов (гладкая ЭПС), 4) синтез белка (шероховатая ЭПС), 5) место образования аппарата Гольджи.

Аппарат Гольджи

Аппарат Гольджи, или комплекс Гольджи, — одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х–6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены.

Аппарат Гольджи

Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра).

Функции аппарата Гольджи: 1) накопление белков, липидов, углеводов, 2) модификация поступивших органических веществ, 3) «упаковка» в мембранные пузырьки белков, липидов, углеводов, 4) секреция белков, липидов, углеводов, 5) синтез углеводов и липидов, 6) место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.

Лизосомы

Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом.

Различают: 1) первичные лизосомы, 2) вторичные лизосомы. Первичными называются лизосомы, отшнуровавшиеся от аппарата Гольджи. Первичные лизосомы являются фактором, обеспечивающим экзоцитоз ферментов из клетки.

Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.

Автофагия — процесс уничтожения ненужных клетке структур. Сначала подлежащая уничтожению структура окружается одинарной мембраной, затем образовавшаяся мембранная капсула сливается с первичной лизосомой, в результате также образуется вторичная лизосома (автофагическая вакуоль), в которой эта структура переваривается. Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.

Автолиз — саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом. В норме автолиз имеет место при метаморфозах (исчезновение хвоста у головастика лягушек), инволюции матки после родов, в очагах омертвления тканей.

Функции лизосом: 1) внутриклеточное переваривание органических веществ, 2) уничтожение ненужных клеточных и неклеточных структур, 3) участие в процессах реорганизации клеток.

Вакуоли

Вакуоли — одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).

В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.

Функции вакуоли: 1) накопление и хранение воды, 2) регуляция водно-солевого обмена, 3) поддержание тургорного давления, 4) накопление водорастворимых метаболитов, запасных питательных веществ, 5) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян, 6) см. функции лизосом.

Эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли образуют единую вакуолярную сеть клетки, отдельные элементы которой могут переходить друг в друга.

Митохондрии

Форма, размеры и количество митохондрий чрезвычайно варьируют. По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр — от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.

Митохондрия ограничена двумя мембранами. Наружная мембрана митохондрий (1) гладкая, внутренняя (2) образует многочисленные складки — кристы (4). Кристы увеличивают площадь поверхности внутренней мембраны, на которой размещаются мультиферментные системы (5), участвующие в процессах синтеза молекул АТФ. Внутреннее пространство митохондрий заполнено матриксом (3). В матриксе содержатся кольцевая ДНК (6), специфические иРНК, рибосомы прокариотического типа (70S-типа), ферменты цикла Кребса.

Митохондриальная ДНК не связана с белками («голая»), прикреплена к внутренней мембране митохондрии и несет информацию о строении примерно 30 белков. Для построения митохондрии требуется гораздо больше белков, поэтому информация о большинстве митохондриальных белков содержится в ядерной ДНК, и эти белки синтезируются в цитоплазме клетки. Митохондрии способны автономно размножаться путем деления надвое. Между наружной и внутренней мембранами находится протонный резервуар, где происходит накопление Н+.

Функции митохондрий: 1) синтез АТФ, 2) кислородное расщепление органических веществ.

Согласно одной из гипотез (теория симбиогенеза) митохондрии произошли от древних свободноживущих аэробных прокариотических организмов, которые, случайно проникнув в клетку-хозяина, затем образовали с ней взаимовыгодный симбиотический комплекс. В пользу этой гипотезы свидетельствуют следующие данные. Во-первых, митохондриальная ДНК имеет такие же особенности строения как и ДНК современных бактерий (замкнута в кольцо, не связана с белками). Во-вторых, митохондриальные рибосомы и рибосомы бактерий относятся к одному типу — 70S-типу. В-третьих, механизм деления митохондрий сходен с таковым бактерий. В-четвертых, синтез митохондриальных и бактериальных белков подавляется одинаковыми антибиотиками.

Пластиды

Пластиды характерны только для растительных клеток. Различают три основных типа пластид: лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты — зеленые пластиды.

Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр — от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана (1) гладкая, внутренняя (2) имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом (4). Группа тилакоидов, уложенных наподобие стопки монет, называется граной (5). В хлоропласте содержится в среднем 40–60 гран, расположенных в шахматном порядке. Граны связываются друг с другом уплощенными каналами — ламеллами (6). В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой (3). В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты цикла Кальвина, зерна крахмала (7). Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н+. Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Они содержатся в клетках зеленых частей высших растений, особенно много хлоропластов в листьях и зеленых плодах. Хлоропласты низших растений называют хроматофорами.

Функция хлоропластов: фотосинтез. Полагают, что хлоропласты произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Лейкопласты. Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты — лейкопласты, которые синтезируют и накапливают крахмал, элайопласты — масла, протеинопласты — белки. В одном и том же лейкопласте могут накапливаться разные вещества.

Хромопласты. Ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты — каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко — корнеплодов. Хромопласты считаются конечной стадией развития пластид.

Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

Все виды пластид могут образовываться из пропластид. Пропластиды — мелкие органоиды, содержащиеся в меристематических тканях. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Лейкопласты могут превращаться в хлоропласты (позеленение клубней картофеля на свету), хлоропласты — в хромопласты (пожелтение листьев и покраснение плодов). Превращение хромопластов в лейкопласты или хлоропласты считается невозможным.

Рибосомы

Рибосомы — немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух субъединиц — большой и малой, на которые могут диссоциировать. Химический состав рибосом — белки и рРНК. Молекулы рРНК составляют 50–63% массы рибосомы и образуют ее структурный каркас. Различают два типа рибосом: 1) эукариотические (с константами седиментации целой рибосомы — 80S, малой субъединицы — 40S, большой — 60S) и 2) прокариотические (соответственно 70S, 30S, 50S).

В составе рибосом эукариотического типа 4 молекулы рРНК и около 100 молекул белка, прокариотического типа — 3 молекулы рРНК и около 55 молекул белка. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы — полирибосомы (полисомы). В таких комплексах они связаны друг с другом одной молекулой иРНК. Прокариотические клетки имеют рибосомы только 70S-типа. Эукариотические клетки имеют рибосомы как 80S-типа (шероховатые мембраны ЭПС, цитоплазма), так и 70S-типа (митохондрии, хлоропласты).

 

Субъединицы рибосомы эукариот образуются в ядрышке. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Функция рибосом: сборка полипептидной цепочки (синтез белка).

Цитоскелет

Цитоскелет образован микротрубочками и микрофиламентами. Микротрубочки — цилиндрические неразветвленные структуры. Длина микротрубочек колеблется от 100 мкм до 1 мм, диаметр составляет примерно 24 нм, толщина стенки — 5 нм. Основной химический компонент — белок тубулин. Микротрубочки разрушаются под воздействием колхицина. Микрофиламенты — нити диаметром 5–7 нм, состоят из белка актина. Микротрубочки и микрофиламенты образуют в цитоплазме сложные переплетения. Функции цитоскелета: 1) определение формы клетки, 2) опора для органоидов, 3) образование веретена деления, 4) участие в движениях клетки, 5) организация тока цитоплазмы.

Клеточный центр

Клеточный центр

Клеточный центр включает в себя две центриоли и центросферу. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из трех слившихся микротрубочек (9 триплетов), соединенных между собой через определенные интервалы поперечными сшивками. Центриоли объединены в пары, где они расположены под прямым углом друг к другу. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками. В клетках высших растений (голосеменные, покрытосеменные) клеточный центр центриолей не имеет. Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы, они возникают в результате дупликации уже имеющихся центриолей. Функции: 1) обеспечение расхождения хромосом к полюсам клетки во время митоза или мейоза, 2) центр организации цитоскелета.

Органоиды движения

Присутствуют не во всех клетках. К органоидам движения относятся реснички (инфузории, эпителий дыхательных путей), жгутики (жгутиконосцы, сперматозоиды), ложноножки (корненожки, лейкоциты), миофибриллы (мышечные клетки) и др.

Жгутики и реснички — органоиды нитевидной формы, представляют собой аксонему, ограниченную мембраной. Аксонема — цилиндрическая структура; стенка цилиндра образована девятью парами микротрубочек, в его центре находятся две одиночные микротрубочки. В основании аксонемы находятся базальные тельца, представленные двумя взаимно перпендикулярными центриолями (каждое базальное тельце состоит из девяти триплетов микротрубочек, в его центре микротрубочек нет). Длина жгутика достигает 150 мкм, реснички в несколько раз короче.

Миофибриллы состоят из актиновых и миозиновых миофиламентов, обеспечивающих сокращение мышечных клеток.

 

Источник: licey.net