Лекция 5. Цитоплазма. Одномембранные органоиды

  • Печать
  • E-mail

Цитоплазма включает в себя жидкое содержимое клетки или гиалоплазму и органоиды. Плазмолемма на 80-90% состоит из воды. Плотный остаток включает в себя различные электролиты и органические вещества. С точки зрения содержания веществ и концентрации ферментов гиалоплазму можно разделить на центральную и периферическую. Содержание ферментов в периферической гиалоплазме значительно выше, кроме того в ней выше концентрация ионов. Гиалоплазма компартментализирована в основном за счет тонких филаментов.


тя и все остальные компоненты СОСА выполняют структурную функцию. Часть органоидов, например, рибосомы, митохондрии, клеточный центр взаимодействуют с фибриллярными структурами, поэтому можно сказать, что вся цитоплазма структурно организована. Органоиды клетки делятся на мембранные и немембранные. К мембранным органоидам относятся: комплекс Гольджи, ЭПС, лизосомы, пероксисомы. К немембранным органоидам относятся: клеточный центр, рибосомы (у прокариот из органоидов присутствуют только рибосомы).

Это структурно-единая мембранная система, которая пронизывает всю клетку и которая, как предполагают, первой образовалась в процессе становления эукориотной клетки. Произошел экзоцитоз плазмалеммы, и такие клетки получили определенное преимущество, т.к. возник компартмент, в котором можно осуществлять определенные ферментативные процессы, а именно полость ЭПС. С функциональной точки зрения ЭПС можно разделить на 3 отдела:

  1. шероховатая или гранулярная ЭПС. Представлена уплощенными мембранными цистернами, на которых располагаются рибосомы.

  2. промежуточная ЭПС, так же представлена уплощенными цистернами, но на них не располагаются рибосомы

  3. гладкая ЭПС представлена сетью разветвленных аностомазирующих мембранных трубочек. Рибосом на мембране нет.


Функции шЭПС.

Основная функция связана с синтезом и сегрегацией белков. Это во многом определяется тем, что на мембране располагаются специальные белки рибофорины, с которыми способна взаимодействовать большая часть рибосом. Т.о. на мембране ЭПС могут идти элонгация и терминация белкового синтеза. В ряде случаев рибосомы, на которых происходит белковый синтез в гиалоплазме не доводят его до конца и вступают в так называемую трансляционную паузу, затем при помощи специальных причальных белков такие рибосомы присоединяются к мембране шЭПС и выходят из трансляционной паузы заканчивая синтез белка. Помимо рибофоринов на мембране шЭПС образуются специальный комплекс интегральных белков, который называется транслокационным комплексом. Он участвует в транспортировке определенных белков через мембрану шЭПС в ее полость. Все белки, которые синтезируются на рибосомах ЭПС можно разделить на две группы:

  1. белки, которые уходят в ПАК и геалоплазму

  2. белки, которые уходят в полость ЭПС и которые на своем конце имеют специальную пептидную последовательность, она опознается рецепторами транслокационного комплекса и в процессе прохождения белка через транслокационный комплекс отделяется.

Первый этап сигригации проходит на мембране шЭПС. В полости шЭПС белки сигрегируют на два потока:


  1. белки собственно ЭПС, например, рибофорины, белки транслокационного комплекса, рецепторы, ферменты. Эти белки имеют специальный аминокислотный сигнал задержки и называются резидентными белками.

  2. белки, которые из полости шЭПС выводятся в промежуточную ЭПС не имеют сигнала задержки и еще в полости шЭПС гликозилируются. Такие белки называются транзитными.

С внутренней стороны на мембране промежуточной ЭПС находятся рецепторы, которые опознают углеводородную сигнальную часть. За счет экзоцитоза в промежуточной ЭПС образуются мембранные пузырьки, которые содержат гликозилированные белки и рецепторы их опознающие. Эти пузырьки направляются к комплексу Гольджи.

Помимо синтеза и сегрегации белков в шЭПС осуществляются конечные этапы синтеза некоторых мембранных липидов.

Функции промежуточной ЭПС.

Заключается в отпочковывании мембранных пузырьков с помощью клатринподобных белков. Эти белки сильно увеличивают скорость экзоцитоза.

Функции гладкой ЭПС.

  1. на мембране гЭПС существуют ферменты за счет, которых синтезируются практически все клеточные липиды.

    iv>
    первую очередь это относится к фосфолипидам и церамиду. Кроме того в гладкой ЭПС локализованы ферменты, которые участвуют в синтезе холестерола, который в свою очередь является предшественником стероидных гормонов. Холестерол в основном синтезируется гепатоцитами, поэтому при различных вирусных гепатитах наблюдается гипохолесторемия. Результатом является анемия, т.к. страдают мембраны эритроцитов. В некоторых клетках например надпочечников и половых желез синтезируются стероидные гормоны, причем в надпочечниках в начале синтезируются женские половые гормоны, а затем на их основе мужские половые гормоны.

  2. депонирование кальция и регуляция концентрации Са в гиалоплазме. Эта функция определяется тем, что на мембране трубочек гЭПС существуют переносчики для Са, а в полости гЭПС находятся Са-связывающии белки. За счет активного транспорта с помощью Са-ого насоса он закачивается в полость ЭПС и связывается с белками. При уменьшении концентрации Са в клетке пассивным транспортом Са выводится в гиалоплазму. Эта функция особенно развита в мышечных клетках, например, в кардиомиоцитах. Транспорт Са может быть вызван активацией фосфолипазной системы. Регуляция уровня Са в клетке особенно важна в условиях Са-вой перегрузки. При избытке Са возможен Са-зависимый апоптоз. Поэтому в мембране г ЭПС существует белок, который препятствует апоптозу


  3. детоксикация. Выполняется в основном клетками печени, куда поступают лекарственные препараты и различные ядовитые вещества из кишечника. В клетках печени ядовитые гидрофобные вещества переводятся в неядовитые гидрофобные, при помощи специфичных оксидоредуктаз

  4. гладкая ЭПС участвует в метоболизме углеводов. Эта функция особенно характерна для клеток печени, мышечных клеток, клеток кишечника. В этих клетках на мембране гЭПС локализован фермент глюкоза-6-фосфатаза, который способен отщеплять фосфатный остаток от глюкозы. Глюкоза может быть выведена в кровь только после дефосфолилирования, при наследственных дефектах этого фермента наблюдается болезнь Гирке. Для этой болезни характерно накопление избытка гликогена в печени и почках, а также гипогликимия. Кроме того, образуется большое количество молочной кислоты, что приводит к развитию ацидоза.

Это мембранный органоид клетки в состав которого входят мембранные пузырьки, мембранные цистерны, мембранные трубочки. Является универсальным для всех эукориот, у некоторых одноклеточных паразитов может отсутствовать (кинетопласты). Цистерны в комплексе Гольджи изолированы друг от друга, транспорт между цистернами только в мембранной упаковке. Как правило цистерны связаны между собой фибриллярными структурами и в простейшем варианте комплекс Гольджи можно выделить мембранную элементарную часть, представленная стопкой мембранных цистерн , такая стопка получила название диктиосома. Такая стопка включает в себя не менее 4 цистерн. Какие-то цистерны оказываются дальше, какие-то ближе к ядерному аппарату.

Универсальной функцией комплекса Гольджи является то, что он участвует в:

>
  1. формировании компонентов ПАКа

  2. формировании секреторных гранул

  3. формировании лизосом

в комплексе Гольджи наблюдается сегрегация белков, которые транспортируются сюда из ЭПС. (сами белки комплекса Гольджи синтезируются на рибосомах, которые локализованы в непосредственной близости от комплекса. Эти белки имеют сигнальную последовательность и транспортируются в полость комплекса Гольджи через транслокационный комплекс.)

Мембранные пузырьки, поступающие из ЭПС, сливаются с цистерной спасения. Цистерна спасения выполняется функцию возвращения в ЭПС рецепторов и причальных белков. Белки из цистерны спасения транспортируются в соседнюю цистерну цис-отдела. Здесь происходит сегрегация белков на два потока. Часть белков фосфолилируются за счет специального фермента фосфогликозыдазы, т.е. фосфолилирование идет по углеводной части. После этого белки поступают в медиальный отдел , где происходят различные химические модификации: гликозилирование, ацетилирование, сиалирование, после чего белки поступают в транс отдел, где наблюдается частичный протеолиз белков возможны дальнейшие химические модификации, а затем белки в трансраспределительном отделе сегрегируются на три потока:


  1. постоянный или констутативный поток белков к ПАКу, за счет которых регинирируют компоненты плазмолеммы и гликокаликса

  2. поток секреторных гранул. Они могут задерживаться, либо около комплекса Гольджи, либо под плазмалеммой, это так называемый индуцируемый экзоцитоз

  3. с помощью этого потока из комплекса Гольджи выводятся мембранные пузырьки с фосфолилированными белками. Это поток так называемых первичных лизосом, которые затем участвуют в фагических циклах клетки. Помимо этого в комплексе Гольджи происходит синтез гликозамингликанов, синтезируются многии гликопротеины и гликолипиды, происходит окончательный синтез сфинголипидов, происходит конденсация растворенных веществ.

 Это универсальные органоиды эукариотной клетки, который представлен мембранными пузырьками, диаметром 0,4мкм, которые участвуют в обеспечении клетки реакций гидролиза. Все лизосомы имеют матрикс , состоящий из мукополисахаридов, к котором локализованы неактивные гидролазы. Ингибирование гидролаз осуществляется за счет их гликозилирования в ЭПС, за счет фосфолилирования в комплексе Гольджи, за счет того, что Рh матрикса не соответствует реакциям гидролиза. Функции лизосом реализуются в двух фагических циклах:


  1. аутофагический цикл

  2. гетерофагический цикл

Аутофагический цикл.

При помощи этого цикла можно:

  • расщеплять старые, потерявшие функциональную активность компоненты клетки (митохондрии). Это обеспечивает физиологическую регенерацию клетки и возможность ее существования значительно дольше любую из ее структур

  • расщеплять запасные питательные вещества в клетке

  • расщеплять избыточное количество секреторных гранул.

Т.о. аутофагический цикл обеспечивает клетку мономерами, которые необходимы для синтеза свойственных клетке новых биополимеров. В ряде случаев, когда экзогенное питание клетки отсутствует, он становится единственным источником мономеров, т.е. клетка переходит к экзогенному питанию. При длительном голодании это приводит к лизису клетки. Выделяют 2 типа аутофагического цикла:


  1. макроаутофагия или типичная аутофагия. Она начинается с формирования мембранных пузырьков, в которые заключен старый органоид клетки. Такой пузырек называется аутофагосомой. Первичная лизосома, образующаяся в комплексе Гольджи и содержащая неактивные гидролазы , сливается с аутофагосомой. Процесс слияния активирует на мембране вторичной лизосомы протольные помпы или насосы. Протоны закачиваются внутрь лизосомы, что приводит к сдвигу Ph, на мембране активируется фермент кислая фосфотаза, которая отщепляет фосфатный остаток от гидролаз. Гидролазы становятся активными и начинают отщеплять сложные молекулы, и мономеры поступают в цитоплазму. С вторичной лизосомой могут сливаться аутофагасомы и первичные лизосомы пока гидролазы не потеряют свою активность, и вторичные лизосомы ни превратятся в телолизосомы. Телолизосомы либо выводятся из клетки, либо накапливаются в ней.

  2. микроаутофагия. В этом случае вещества, подлежащие расщеплению, поступают в первичную лизосому не в виде аутофагического пузырька, а непосредственно через мембрану лизосомы. В этом случае наблюдается фосфолилирование определенных белков первичной лизосомы.

Патологии. Причинами патологий может являться дестабилизация мембраны первичной лизосомы.


блюдается массовый выход гидролаз в цитоплазму и неконтролируемое расщепление компонентов клетки. Таким дестабилизирующим агентом является ионизирующее облучение, токсины некоторых грибов, витамины А, Д, Е, интенсивные физические нагрузки, гипер- и гипотермия. Стрессовые факторы вызывают такой выход гидролаз, т.к. на клетки организма начинает действовать повышая количество адреналина, который дестабилизирует мембрану. Возможны варианты суперстабилизации лизосомной мембраны. В этом случае лизосомы не могут вступать в фагический цикл. При нарушении структуры ферментов лизосом наблюдается различные болезни, которые чаще всех ведут к гибели организма. Если белки в комплексе Гольджи не фосфолилируются, то гидролазы обнаруживаются не в первичных лизосомах, а в секреторных потоках, которые выводятся из клетки. Одной из патологий является У-клеточная болезнь, характерная для фибробластов, клеток соединительной ткани. Там лизосомы не содержат гидролаз. Они выводятся в плазму крови. В фибробластах накапливаются различные вещества, что приводит к развитию болезни накопления (синдром Тея-Сакса). В нейронах накапливается большое количество комплексных углеводов – гликозидов, а лизосомы занимают очень большой объем. Ребенок теряет эмоциональность, перестает улыбаться, узнавать родителей, отстает в психомоторном развитии, теряет зрение и умирает к 4-5 годам. Болезни накопления могут быть связаны с патологичным развитием лизосомных ферментов, но как правило ведут к летальному исходу. Возможны варианты нормального лизирования клеток в ходе аутофагического цикла. В основном это касается лизиса клеток у разных организмов в период эмбрионального развития. У человека аутолизу подвергаются перепонки между пальцами. У головастика аутолизу подвергается хвост. В наибольшей степени аутолизу подвергаются насекомые с полным метаморфозом.

Гетерофагический цикл.

Заключается в расщеплении веществ, поступающих в клетку из внешней среды. За счет любого из типов эндоцитоза формируется гетерофагосома, которая способна сливаться с первичной лизосомой. Весь дальнейший гетерофагический цикл осуществляется так же, как и аутофагический.

Функции гетерофагического цикла.

  • Трофическая у одноклеточных

  • Защитная. Характерна для нейтрофилов и макрофагов.

Существуют варианты гетерофагического цикла, при которых гидролазы выводятся из клетки во внешнюю среду. Например, простеночное пищеварение, акросомы реакция сперматозоида. Модификационного гетефагического цикла наблюдается при переломах костей, в местах переломов межотломкоквая щель заполняется хрящевой тканью, затем благодаря деятельности специальных клеток остеобластов. Хрящевая ткань разрушается и образуется костная мозоль. Патологии гетерофагического цикла являются различные иммунодефициты.

Это универсальный мембранный органоид клетки, диаметром примерно 0,15-0,25нм. Главной функцией пероксисом является расщепление длиннорадикальных жирных кислот. Хотя в целом они могут выполнять и другие функции. Пероксисомы в клетке образуются только за счет деления материнских пероксисом, поэтому , если в клетку по каким-то причинам не попали пероксисомы, то клетка погибает из-за накопления жирных кислот. Мембрана пероксисом имеет типичное жидкостно-мозаичное строение и может увеличиваться за счет переносимых сюда специальными белками переносчиками сложных липидов и белков.

Функции.

  • Расщепление жирных кислот. В пероксисомах содержаться ферменты , относящиеся к группе ферментов оксидоредуктаз, которые начинают расщепление жирных кислот с отщепления остатков уксусной кислоты и образуют внутри радикала жирной кислоты двойную связь и как побочный продукт образуется перекись водорода. Перекись расщепляется специальным ферментом каталазой до Н2О и О2. такой процесс расщепления жирных кислот получило название β-окисление, он проходит не только в пероксисомах , но и в митохондриях. В митохондриях происходит расщепление короткорадикальные кислоты. В любом случае расщепление идет с образованием остатков уксусной кислоты или ацетата. Ацетат взаимодействует с коферментов А с образованием ацетилСоА. Это вещество является ключевым продуктом метаболизма, до которого расщепляется все органические соединения. АцСоА может использоваться в энергообмене и на основе АцСоА образуются новые жирные кислоты. При нарушении β-окисления жирных кислот наблюдается Синдром Боумена-Цельвегера. Он характеризуется отсутствием пероксисом в клетках. Новорожденные рождаются с очень маленьким весом и с патологичным развитием некоторых внутренних органов, например, мозга, печени, почек. Сильно отстают в развитие, рано погибают (до 1 года), причем в клетках обнаруживаются большое количество длиннорадикальных кислот.

  • Пероксисомы участвуют в детоксикации многих вредных веществ, например, спиртов, альдегидов и кислот. Эта функция характерна для клеток печени, причем пероксисомы в печени имеют более крупные размеры. Детоксикация ядов веществ происходит за счет их окисления. Например, окисление этанола проходит до Н2О и ацетальдегида. В пероксисомах проходит окисление 50% этанола. Образовавшийся ацетальдегид поступает в митохондрии, где из него образуется ацетилСоА. При хроническом употреблении алкоголя количество ацетилСоА в гепатоцитах резко возрастает. Это приводит к снижению β-окисления жирных кислот и к синтезу новых жирных кислот. Следовательно, начинается синтезироваться жиры, которые откладываются в клетках печени и это приводит к возникновению жирового перерождения печени (цирроз)

  • Пероксисомы способны катализировать окисление уратов, т.к. в них находится фермент уратоксидаза. Однако у высших приматов и человека данный фермент неактивен, поэтому в крови циркулирует большое количество уратов в растворенном виде. Они хорошо фильтруются в почечных клубочках и выводятся с вторичной мочой. Концентрация уратов в крови способствует развитию определенных заболеваний, например, наследственные патологии метаболизма пурина приводят к увеличению концентрации уратов в десятки раз. В результате развивается подагра, которая заключается в отложении уратов в суставах и некоторых тканях, а также возникновении уратных камней в почках.

  • < Назад
  • Вперёд >

Источник: biobox.spb.ru

Эндоплазматическая сеть — это обязательная органелла эукариотической клетки. Она обнаружена в клетках растений, животных и человека. Функции этой составляющей части клетки разнообразны и связаны в основном с синтезом, модификацией и транспортом органических соединений.

Впервые эндоплазматическая сеть была обнаружена в 1945 году. Американский ученый К. Портер разглядел ее с помощью одного из первых электрических микроскопов. С этого времени началось ее активное исследование.

В клетке есть две разновидности этой органеллы:

  • Гранулярная, или шероховатая эндоплазматическая сеть (покрыта множеством рибосом).
  • Агранулярная, или гладкая эндоплазматическая сеть.

Каждый тип ретикулума имеет некоторые особенности и выполняет совершенно разные функции. Давайте рассмотрим их более подробно.

Гранулярная эндоплазматическая сеть: строение. Данная органелла представляет собой системы цистерн, пузырьков и канальцев. Стенки ее состоят из билипидной мембраны. Ширина полости может колебаться от 20 нм до нескольких микрометров — здесь все зависит от секреторной активности клетки.

У мало специализированных клеток, которые характеризируются низким уровнем метаболизма, ЭПС представлена всего лишь несколькими разрозненными цистернами. Внутри клетки, которая активно синтезирует белок, эндоплазматическая сеть состоит из множества цистерн и разветвленной системы канальцев.

Как правило, гранулярная ЭПС посредством канальцев связана с мембранами ядерной оболочки — именно таким образом происходят сложные процессы синтеза и транспорта белковых молекул.

Гранулярная эндоплазматическая сеть: функции. Как уже упоминалось, вся поверхность ЭПС со стороны цитоплазмы покрыта рибосомами, которые, как известно, участвуют в синтезе белка. ЭПС — это место синтеза и транспорта протеиновых соединений.

Эта органелла отвечает за синтез интегральных белков цитоплазматической мембраны. Но в большинстве случаев созданные белковые молекулы далее с помощью мембранных пузырьков транспортируются в комплекс Гольджи, где происходит их дальнейшая модификация и распределение соответственно потребностям клетки и тканей.

Кроме того, в полостях цистерн ЭПС происходят и некоторые изменения белка — например, присоединение к нему углеводного компонента. Здесь же, путем агрегации образуются большие секреторные гранулы.

Агранулярная эндоплазматическая сеть: строение и функции. Строение гладкой ЭПС имеет некоторые отличия. Например, такая органелла состоит только из цистерн и не имеет системы канальцев. Комплексы такой ЭПС, как правило, имеют меньшие размеры, а вот ширина цистерны, наоборот, больше.

Гладкая эндоплазматическая сеть не имеет отношения к синтезу белковых компонентов, но исполняет ряд не менее важных функций. Например, именно здесь происходит синтез стероидных гормонов у человека и всех позвоночных животных. Именно поэтому объем гладкой ЭПС в клетках надпочечников довольно большой.

В клетках печени ЭПС вырабатывает необходимые ферменты, которые участвуют в углеводном обмене, а именно в распаде гликогена. Известно также, что печеночные клетки отвечают за обезвреживание токсинов. В цистернах этой органеллы происходит синтез гидрофильного компонента, который затем присоединяется к токсической молекуле, увеличивает ее растворимость в крови и моче. Интересно, что в гепатоцитах, которые постоянно поддаются влиянию токсинов (ядов, алкоголя), практически вся клетка занята плотно расположенными цистернами гладкой ЭПС.

В мышечных клетках имеется особая разновидность гладкой ЭПС — саркоплазматический ретикулум. Он выступает как депо кальция, регулируя, таким образом, процессы активности и покоя клетки.

Как видно, функции ЭПС разнообразны и очень важны для нормального функционирования здоровой клетки.

Источник: fb.ru

Эндоплазматическая сеть

Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум (ЭПР), — одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают два вида ЭПС: 1) шероховатая (гранулярная), содержащая на своей поверхности рибосомы, и 2) гладкая (агранулярная), мембраны которой рибосом не несут.

Функции: 1) транспорт веществ из одной части клетки в другую, 2) разделение цитоплазмы клетки на компартменты ( «отсеки»), 3) синтез углеводов и липидов (гладкая ЭПС), 4) синтез белка (шероховатая ЭПС), 5) место образования аппарата Гольджи.

Аппарат Гольджи

Аппарат Гольджи, или комплекс Гольджи, — одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х–6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены.

Аппарат Гольджи

Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра).

Функции аппарата Гольджи: 1) накопление белков, липидов, углеводов, 2) модификация поступивших органических веществ, 3) «упаковка» в мембранные пузырьки белков, липидов, углеводов, 4) секреция белков, липидов, углеводов, 5) синтез углеводов и липидов, 6) место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.

Лизосомы

Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом.

Различают: 1) первичные лизосомы, 2) вторичные лизосомы. Первичными называются лизосомы, отшнуровавшиеся от аппарата Гольджи. Первичные лизосомы являются фактором, обеспечивающим экзоцитоз ферментов из клетки.

Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.

Автофагия — процесс уничтожения ненужных клетке структур. Сначала подлежащая уничтожению структура окружается одинарной мембраной, затем образовавшаяся мембранная капсула сливается с первичной лизосомой, в результате также образуется вторичная лизосома (автофагическая вакуоль), в которой эта структура переваривается. Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.

Автолиз — саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом. В норме автолиз имеет место при метаморфозах (исчезновение хвоста у головастика лягушек), инволюции матки после родов, в очагах омертвления тканей.

Функции лизосом: 1) внутриклеточное переваривание органических веществ, 2) уничтожение ненужных клеточных и неклеточных структур, 3) участие в процессах реорганизации клеток.

Вакуоли

Вакуоли — одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).

В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.

Функции вакуоли: 1) накопление и хранение воды, 2) регуляция водно-солевого обмена, 3) поддержание тургорного давления, 4) накопление водорастворимых метаболитов, запасных питательных веществ, 5) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян, 6) см. функции лизосом.

Эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли образуют единую вакуолярную сеть клетки, отдельные элементы которой могут переходить друг в друга.

Митохондрии

Форма, размеры и количество митохондрий чрезвычайно варьируют. По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр — от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.

Митохондрия ограничена двумя мембранами. Наружная мембрана митохондрий (1) гладкая, внутренняя (2) образует многочисленные складки — кристы (4). Кристы увеличивают площадь поверхности внутренней мембраны, на которой размещаются мультиферментные системы (5), участвующие в процессах синтеза молекул АТФ. Внутреннее пространство митохондрий заполнено матриксом (3). В матриксе содержатся кольцевая ДНК (6), специфические иРНК, рибосомы прокариотического типа (70S-типа), ферменты цикла Кребса.

Митохондриальная ДНК не связана с белками («голая»), прикреплена к внутренней мембране митохондрии и несет информацию о строении примерно 30 белков. Для построения митохондрии требуется гораздо больше белков, поэтому информация о большинстве митохондриальных белков содержится в ядерной ДНК, и эти белки синтезируются в цитоплазме клетки. Митохондрии способны автономно размножаться путем деления надвое. Между наружной и внутренней мембранами находится протонный резервуар, где происходит накопление Н+.

Функции митохондрий: 1) синтез АТФ, 2) кислородное расщепление органических веществ.

Согласно одной из гипотез (теория симбиогенеза) митохондрии произошли от древних свободноживущих аэробных прокариотических организмов, которые, случайно проникнув в клетку-хозяина, затем образовали с ней взаимовыгодный симбиотический комплекс. В пользу этой гипотезы свидетельствуют следующие данные. Во-первых, митохондриальная ДНК имеет такие же особенности строения как и ДНК современных бактерий (замкнута в кольцо, не связана с белками). Во-вторых, митохондриальные рибосомы и рибосомы бактерий относятся к одному типу — 70S-типу. В-третьих, механизм деления митохондрий сходен с таковым бактерий. В-четвертых, синтез митохондриальных и бактериальных белков подавляется одинаковыми антибиотиками.

Пластиды

Пластиды характерны только для растительных клеток. Различают три основных типа пластид: лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты — зеленые пластиды.

Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр — от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана (1) гладкая, внутренняя (2) имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом (4). Группа тилакоидов, уложенных наподобие стопки монет, называется граной (5). В хлоропласте содержится в среднем 40–60 гран, расположенных в шахматном порядке. Граны связываются друг с другом уплощенными каналами — ламеллами (6). В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой (3). В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты цикла Кальвина, зерна крахмала (7). Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н+. Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Они содержатся в клетках зеленых частей высших растений, особенно много хлоропластов в листьях и зеленых плодах. Хлоропласты низших растений называют хроматофорами.

Функция хлоропластов: фотосинтез. Полагают, что хлоропласты произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Лейкопласты. Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты — лейкопласты, которые синтезируют и накапливают крахмал, элайопласты — масла, протеинопласты — белки. В одном и том же лейкопласте могут накапливаться разные вещества.

Хромопласты. Ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты — каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко — корнеплодов. Хромопласты считаются конечной стадией развития пластид.

Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

Все виды пластид могут образовываться из пропластид. Пропластиды — мелкие органоиды, содержащиеся в меристематических тканях. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Лейкопласты могут превращаться в хлоропласты (позеленение клубней картофеля на свету), хлоропласты — в хромопласты (пожелтение листьев и покраснение плодов). Превращение хромопластов в лейкопласты или хлоропласты считается невозможным.

Рибосомы

Рибосомы — немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух субъединиц — большой и малой, на которые могут диссоциировать. Химический состав рибосом — белки и рРНК. Молекулы рРНК составляют 50–63% массы рибосомы и образуют ее структурный каркас. Различают два типа рибосом: 1) эукариотические (с константами седиментации целой рибосомы — 80S, малой субъединицы — 40S, большой — 60S) и 2) прокариотические (соответственно 70S, 30S, 50S).

В составе рибосом эукариотического типа 4 молекулы рРНК и около 100 молекул белка, прокариотического типа — 3 молекулы рРНК и около 55 молекул белка. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы — полирибосомы (полисомы). В таких комплексах они связаны друг с другом одной молекулой иРНК. Прокариотические клетки имеют рибосомы только 70S-типа. Эукариотические клетки имеют рибосомы как 80S-типа (шероховатые мембраны ЭПС, цитоплазма), так и 70S-типа (митохондрии, хлоропласты).

 

Субъединицы рибосомы эукариот образуются в ядрышке. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Функция рибосом: сборка полипептидной цепочки (синтез белка).

Цитоскелет

Цитоскелет образован микротрубочками и микрофиламентами. Микротрубочки — цилиндрические неразветвленные структуры. Длина микротрубочек колеблется от 100 мкм до 1 мм, диаметр составляет примерно 24 нм, толщина стенки — 5 нм. Основной химический компонент — белок тубулин. Микротрубочки разрушаются под воздействием колхицина. Микрофиламенты — нити диаметром 5–7 нм, состоят из белка актина. Микротрубочки и микрофиламенты образуют в цитоплазме сложные переплетения. Функции цитоскелета: 1) определение формы клетки, 2) опора для органоидов, 3) образование веретена деления, 4) участие в движениях клетки, 5) организация тока цитоплазмы.

Клеточный центр

Клеточный центр

Клеточный центр включает в себя две центриоли и центросферу. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из трех слившихся микротрубочек (9 триплетов), соединенных между собой через определенные интервалы поперечными сшивками. Центриоли объединены в пары, где они расположены под прямым углом друг к другу. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками. В клетках высших растений (голосеменные, покрытосеменные) клеточный центр центриолей не имеет. Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы, они возникают в результате дупликации уже имеющихся центриолей. Функции: 1) обеспечение расхождения хромосом к полюсам клетки во время митоза или мейоза, 2) центр организации цитоскелета.

Органоиды движения

Присутствуют не во всех клетках. К органоидам движения относятся реснички (инфузории, эпителий дыхательных путей), жгутики (жгутиконосцы, сперматозоиды), ложноножки (корненожки, лейкоциты), миофибриллы (мышечные клетки) и др.

Жгутики и реснички — органоиды нитевидной формы, представляют собой аксонему, ограниченную мембраной. Аксонема — цилиндрическая структура; стенка цилиндра образована девятью парами микротрубочек, в его центре находятся две одиночные микротрубочки. В основании аксонемы находятся базальные тельца, представленные двумя взаимно перпендикулярными центриолями (каждое базальное тельце состоит из девяти триплетов микротрубочек, в его центре микротрубочек нет). Длина жгутика достигает 150 мкм, реснички в несколько раз короче.

Миофибриллы состоят из актиновых и миозиновых миофиламентов, обеспечивающих сокращение мышечных клеток.

 

Источник: licey.net

Строение и функции эндоплазматической сети связаны с синтезом органических веществ (белков, жиров и углеводов) и их транспортом внутри клетки. Представляет собой мембранный органоид клетки, занимающий существенную ее часть и выглядящий как система трубочек, канальцев и т. п., ответвляющихся (берущих свое начало) от оболочки ядра, точнее от ее внешней мембраны.

Кроме термина «эндоплазматическая сеть» используется термин «эндоплазматический ретикулум». Это одно и то же, «reticulum» с английского переводится как «сеть». В литературе можно встретить следующие сокращенные обозначения данной клеточной структуры: ЭПС, ЭПР, ЭС, ЭР.

Если взять какой-либо участок эндоплазматической сети, то по своему строению он будет представлять ограниченное мембраной внутреннее пространство (полость, канал). При этом канал несколько уплощен, в разных участках ЭПС в разной степени. По своему химическому строению мембраны ЭПС близки к мембране оболочки ядра.

Различают гладкую и шероховатую эндоплазматическую сеть. Шероховатая отличается тем, что на ее мембранах с внешней стороны прикрепляются рибосомы, а ее каналы имеют большее уплощение.

Наличие рибосом говорит о главной функции шероховатой ЭПС: место, где идет синтез белка. Синтезируемый расположенными на ЭПС рибосомами белок сразу попадает в каналы сети, где приобретает свою третичную структуру, а также фосфорилируется (к нему присоединяются остатки фосфорной кислоты). Некоторые белки становятся гликопротеинами, присоединяя к себе углеводную часть. По каналам эндоплазматического ретикулума белки транспортируются к комплексу Гольджи, он уже отвечает за их вывод за пределы клетки.

Белки, синтезируемые рибосомами, расположенными на ЭПС, обычно секретируются клеткой во вне. Белки, синтезируемые свободными рибосомами, находящимися в цитоплазме, обычно используются самой клеткой на свои нужды.

Основная функция гладкой эндоплазматической сети — это синтез жиров (липидов). Поэтому у животных гладкая ЭПС хорошо развита в клетках эпителия кишечника, а также в клетках, секретирующих стероидные гормоны. Однако это не единственная функция гладкой ЭПС. Здесь также синтезируется ряд углеводов. Синтез жиров и углеводов происходит на мембранах ЭПС, где локализованы соответствующие ферменты.

В мышечных клетках присутствует саркоплазматический ретикулум, представляющий собой видоизмененную гладкую ЭПС. Он отвечает за изменение концентрации ионов кальция в цитоплазме. Благодаря этому происходят мышечные сокращения.

Обе ЭПС в клетках печени отвечают за детоксикацию вредных веществ.

Мембраны эндоплазматической сети делят клетку на отсеки, в каждом из которых функционируют свои ферментативные системы.

В процессе клеточного деления ЭПС принимает участие в построении оболочки новых ядер.

Источник: scienceland.info

Какую функцию выполняет гладкая эпсУченых давно заинтересовала эндоплазматическая сеть — строение и функции этого органоида. Еще в 1945 году ее открыл американский ученый К. Портер, рассмотрев ЭПС через электронный микроскоп.

Эндоплазматическая сеть — это сложнейшая система полостей и каналов в цитоплазме эукариотических клеток. Особенно много таких каналов и полостей содержится в клетках, имеющих интенсивный обмен веществ. Эндоплазматическая сеть занимает от 30 до 50 процентов полости эукариотической клетки. Данная органелла бывает двух видов: агранулярная и гранулярная сеть.

Читайте также: Клеточный центр .

Строение эндоплазматической сети

Система полостей и каналов окружена мембраной, которая обеспечивает активную транспортировку элементов против градиента концентрации. Нити, которые образуют эндоплазматическую сеть, имеют ширину в разрезе от 0,05 до 0,1 микрометров, в редких случаях до 0,03. Толщина двухслойной мембраны, составляющей стенку канальцев, равна 50 ангстрем. Эндоплазматическая сеть содержит ненасыщенные фосфолипиды, холестерин, белки и сфинголипиды. Диаметр полостей может быть разный — от 0,1 до 0,3 микрометров. Полость заполнена гомогенным содержимым, осуществляющим коммуникацию между ядром, внешней средой и содержимым пузырьков эндоплазматической сети.

Функции агранулярной эндоплазматической сети

Агранулярная эндоплазматическая сеть учавствует во всех процессах метаболизма, играет важнейшую роль в запасании кальция, углеводном обмене, а также нейтрализации ядов. В гладкой ЭПС образуются половые гормоны позвоночных животных и стероиды надпочечников. Один из ферментов гладкой ЭПС способствует повышению уровня сахара в крови, помогая глюкозе покинуть клетку. Ферменты способствуют повышению растворимости токсичных веществ в моче и крови, присоединяя гидрофильные радикалы к вредным веществам. В клетках мышц имеется специальная разновидность ЭПС — саркоплазматический ретикулум. Он регулирует процессы покоя и активности клеток.

Функции гранулярной эндоплазматической сети

Гранулярная (шероховатая) эндоплазматическая сеть обеспечивает синтез белков. Это основная ее функция. Белки синтезируются на рибосомах, которые находятся на поверхности ЭПС. В большинстве случаев создаются молекулы, которые потом перемещаются в комплекс Гольджи. Там происходит модификация и распределение белков. Также в полости ЭПС происходит присоединение к молекулам белка углеводного компонента.


Источник: biologylife.ru