Ядро есть в любой эукариотической клетке. Ядро может быть одно, или в клетке могут быть несколько ядер. Клеточное ядро состоит из оболочки, ядерного сока, ядрышка и хроматина. Ядерная оболочка состоит из двух мембран, между которыми находится жидкость. Основные функции ядерной оболочки: обособление генетического материала (хромосом) от цитоплазмы, а также регуляция двусторонних взаимоотношений между ядром и цитоплазмой.

Ядерная оболочка пронизана порами, которые имеют диаметр около 90 нм. Количество пор зависит от функциональной активности клетки: чем она выше, тем больше пор.

Основа ядерного сока (матрикса, нуклеоплазмы) — это белки. Сок образует внутреннюю среду ядра, играет важную роль в работе генетического материала клеток. Белки: нитчатые или фибриллярные (опорная функция), гетероядерные РНК (продукты первичной транскрипции генетической информации) и мРНК (результат процессинга).

Ядрышко — это структура, где происходят образование и созревание рибосомальных РНК (р-РНК).


ны р-РНК занимаю определенные участки нескольких хромосом (у человека это 13—15 и 21—22 пары), где формируются ядрышковые организаторы, в области которых и образуются сами ядрышки. В метафазных хромосомах эти участки называются вторичными перетяжками и имеют вид сужений. Электронная микроскопия выявила нитчатый и зернистый компоненты ядрышек. Нитчатый (фибриллярный)— это комплекс белков и гигантских молекул-предшественниц р-РНК, которые дают в последующем более мелкие молекулы зрелых р-РНК. При созревании фибриллы превращаются в рибонуклеопротеиновые гранулы (зернистый компонент).

Хроматин в виде глыбок pacceян в нуклеоплазме ядра и является интерфазной формой существования хромосом. Хроматин состоит в основном из нитей ДНК (40% массы хромосомы)~и белков (около 60%),которые вместе образуют нуклеопротеидный комплекс. Выделяют гистоновые (пять классов) и негистоновые белки.

Гистонам (40%) принадлежат регуляторная (прочно соединены с ДНК и препятствуют считыванию с нее информации) и структурная функции (организация пространственной структуры молекулы ДНК). Негистоновые белки (более 100 фракций, 20 % массы хромосомы):ферменты синтеза и процессинга РНК, репарации редупликации ДНК, структурная и регуляторная функции. Кроме этого,в составе хромосом обнаружены РНК, жиры, полисахариды, молекулы металлов.

В зависимости от состояния хроматина выделяют эухроматиновые и гетерохроматиновые учасгки хромосом. Эухроматин отличается меньшей плотностью, и с него можно производить считывание генетической информации. Гетерохроматин более компактен, и в его пределах информация не считывается. Выделя­ют конститутивный (структурный) и факультативный гетерохроматин.


Хроматин и хромосомы

Хроматин – это деспирализованная форма существования хромосом. В деспирализованном состоянии хроматин находится в ядре неделящейся клетке.

Хроматин и хромосомы взаимно переходят друг в друга. По химической организации как хроматин, так и хромосомы не отличаются. Химическую основу составляет дезоксирибонуклеопротеин – комплекс ДНК с белками. С помощью белков происходит многоуровневая упаковка молекул ДНК, при этом хроматин приобретает компактную форму. Например, в деспирализованном (вытянутом) состоянии длина молекулы ДНК хромосомы человека достигает около 6 см, что примерно в 1000 раз превышает диаметр ядра клетки. Несмотря на то, что в неделящихся клетках хроматин находится в деспирализованном состоянии, тем не менее отдельные его участки спирализованы, т.е. хроматин неоднороден по структуре.

Спирализованные участки хроматина называются гетерохроматин, а деспирализованные – эухроматин. На участках эухроматина идут процессы транскрипции (синтез иРНК).

Гетерохроматин – неактивный участок хроматина, здесь не происходит транскрипции.

В начале клеточного деления хроматин скручивается (спирализуется) и образует хромосомы, которые хорошо различимы в световой микроскоп. Значит, хромосома – суперспирализованный хроматин. Спирализация достигает своего максимума в метафазе митоза. Каждая метафазная хромосома состоит из двух сестринских хроматид. Хроматиды содержат одинаковые молекулы ДНК, которые образуются при удвоении (репликации) ДНК в синтетический период интерфазы. Хроматиды соединены друг с другом в области первичной перетяжки – центромеры. Центромеры делят хромосомы на два плеча. В зависимости от места расположения центромеры различают следующие типы хромосом:


1) метацентрические (равноплечие);

2) субметацентрические (неравноплечие);

3) акроцентрические (палочковидные);

4) спутничные (имеют вторичную перетяжку, которая отделяет небольшой участок хромосомы, называемый спутником).

Число, величина и форма хромосом в ядрах клеток являются важными знаками каждого вида. Набор хромосом соматических клеток данного вида называется кариотипом.

15. Жизненный и митотический цикл клеток. Дифференциация и специализация клеток.

Жизненный и митотический циклы клетки

Жизненный цикл клетки. Клеточным циклом или жизненным циклом клетки называется совокупность процессов, происходящих в клетке от 1-го деления до следующего деления или до смерти клетки.

Митотический цикл – период подготовки клетки к делению и само деление. Митотический цикл клетки состоит из интерфазы и митоза. Интерфаза разделена на 3 периода:

1. Пресинтетический или постмитотический.(2с2n)

2. Синтетический (4c2n)

3. Постсинтетический или премитотический.(4c2n)

iv>

Митоз – это непрямое деление, основной способ деления соматических клеток. Условно делится на 4 стадии: профаза, метафаза, анафаза, телофаза. Длительность митоза 1-2 часа.

1. Профаза (4с2n). Центриоли расходятся к полюсам клетки, от центриолей начинают формироваться микротрубочки, которые тянутся от одного полюса к другому и по направлению к экватору клетки, образуя веретено деления. растворяются ядрышки, ядерная оболочка. К центромерам хромосом прикрепляются нити веретена деления, хромосомы спирализуются и устремляются к центру клетки.

2.Метафаза (4с2n). Короткая фаза, хромосомы располагаются на экваторе клетки, центромеры всех хромосом располагаются в экваториальной плоскости. Между хроматидами появляются щели. В области центромер с двух сторон имеются небольшие дисковидные структуры – кинетохоры. От кинетохор отходят микротрубочки, которые располагаются между нитями веретена деления. Это стадия наибольшей спирализации хромосом, когда их удобнее всего изучать.

3. Анафаза (у каждого полюса 2с2n ) длится 2-3 минуты, самая короткая стадия. происходит расщепление центромер и разделение хроматид. После разделения одна хроматида начинает двигаться к одному полюсу, а другая половина – к другому. В клетке находится два диплоидных набора хромосом- 4с4n .

4. Телофаза(В каждой клетке 2с 2n). Формируются ядра дочерних клеток, хромосомы деспирализуются, строятся ядерные оболочки, в ядре появляются ядрышки. Цитокинез – деление цитоплазмы, происходит в конце телофазы. В животных клетках цитоплазматическая мембрана впячивается внутрь. Клеточные мембраны смыкаются, полностью разделяя две клетки. В растительных клетках из мембран пузырьков Гольджи образуется клеточная пластинка, расположенная в экваториальной плоскости. Клеточная пластинка, разрастаясь полностью, разделяет две дочерние клетки.


Дифференциация и специализация клеток.

Дифференциация – это формирование различных типов клеток и тканей в ходе развития многоклеточного организма. Одна из гипотез связывает дифференцировку с экспрессией генов в процессе индивидуального развития. Экспрессия – процесс включения тех или иных генов в работу, который создает условия для направленного синтеза веществ. Поэтому происходит развитие и специализация тканей в том или ином направлении.

16. Регуляция митотической активности клеток, проблема клеточной пролиферации в медицине.

Регуляция митоза. В организме М. контролируются системой нейрогуморальной регуляции, которая осуществляется нервной системой, гормонами надпочечников, гипофиза, щитовидной и половых желёз, а также местными факторами (продукты тканевого распада, функциональная активность клеток). Взаимодействие различных регуляторных механизмов обеспечивает как общие, так и местные изменения митотической активности. М. опухолевых клеток выходят из-под контроля нейрогуморальной регуляции.

Выражением регуляции М. в связи с взаимодействием организма и среды служит суточный ритм деления клеток. В большинстве органов ночных животных максимум М. отмечается утром, а минимум — в ночное время. У дневных животных и человека отмечается обратная динамика суточного ритма. Суточный ритм М. — следствие цепной реакции, в которую вовлекаются ритмические изменения внешней среды (освещённость, температура, режим питания и др.), ритм функциональной активности клеток и изменения процессов обмена веществ

>

Пролиферация — разрастание ткани организма путём размножения клеток. Механизм пролиферации отличается от других механизмов изменения объёма клетки (клеток), например, отёка или апоптоза. Термин в медицине впервые ввел немецкий ученый Вирхов для обозначения новообразования клеток путем их размножения делением.

Регулировать интенсивность пролиферации можно стимуляторами и ингибиторами, которые могут вырабатываться и вдали от реагирующих клеток (например, гормонами), и внутри них. Непрерывно пролиферация происходит в раннем эмбриогенезе и по мере дифференцировки периоды между делениями удлиняются. Некоторые клетки, например, нервные, не способны к пролиферации

Интенсивно протекает в период эмбрионального развития, когда клетки развивающегося эмбриона активно и непрерывно делятся. Процессом пролиферации управляют гормоны, способные как ускорить её, так и замедлить рост клеток.

Источник: studfile.net

Может ли эукариотическая клетка сущест­вовать без ядра? В ядре хранится почти вся на­следственная информация о структуре белков. Следовательно, без ядра клетка не может раз­виваться и гибнет. Тем не менее некоторые клетки многоклеточного организма (напри­мер, эритроциты человека) утрачивают ядро в ходе роста и специализации; к моменту поте­ри ядра в них уже синтезирован весь необхо­димый набор белков. Скорость разрушения этих белков определяет срок жизни таких кле­ток (как правило, несколько недель).


Вопрос 3. Что такое ядрышко? Каковы его функции?

Ядрышко — это внутриядерная структура, где синтезируется рибосомальная РНК и фор­мируются отдельные субъединицы рибосом. Количество ядрышек в ядре может изменять­ся и определяется синтетической активно­стью клетки: чем более интенсивно идет обра­зование белка, тем больше ядрышек. Сборка рибосом из отдельных субъединиц завершает­ся в цитоплазме непосредственно перед нача­лом синтеза белка.

Вопрос 4. Дайте характеристику хроматина.

Хроматин представляет собой совокуп­ность спиралевидных двуцепочечных моле­кул ДНК, упакованных при помощи особых белков-гистонов. В ходе упаковки ДНК нама­тывается на гистоны, как нитка на катушку. В результате образуется структура — «бусы на нитке», уменьшающая длину и увеличиваю­щая прочность молекул ДНК. Хроматин мо­жет быть дополнительно спирализован с обра­зованием сверхкомпактных структур — хро­мосом. Формирование хромосом происходит непосредственно перед делением клетки.


Вопрос 5. Как соотносится число хромосом в соматических и половых клетках?

В соматических (обычных) клетках организ­ма, как правило, содержится двойной набор хромосом, т. е. каждая хромосома (молекула ДНК) присутствует в двух экземплярах. При образовании половых клеток происходит деле­ние особого типа, в результате которого набор хромосом в зрелых яйцеклетках и сперматозо­идах оказывается одинарным. Таким образом, соотношение числа хромосом в соматических и половых клетках составляет 2:1.

Вопрос 6. Что такое кариотип? Дайте определе­ние.

Кариотип — это совокупность всех при­знаков хромосомного набора, характерного для того или иного биологического вида. Важ­нейшими среди этих признаков являются ко­личество хромосом, их размер и расположение центромер. Различие кариотипа у внешне сход­ных организмов является показателем их при­надлежности к разным видам; отличие карио­типа от нормы (изменение числа хромосом, длины хроматид и т. д.) — признаком серьез­ных нарушений — мутаций.


Вопрос 7. Какие хромосомы называют гомоло­гичными?

Гомологичными называют хромосомы, одинаковые по форме, размеру и несущие оди­наковые гены. В соматических клетках содер­жится двойной хромосомный набор, т. е. для каждой хромосомы имеется ее гомологичная пара. По происхождению одна из двух гомоло­гичных хромосом является материнской, пе­реданной через яйцеклетку матери, а другая — отцовской, переданной через сперматозоид от­ца. Это означает, что, хотя представленные в гомологичных хромосомах гены одинаковы (характеризуют один и тот же белок), конкрет­ное содержание заключенной в них наследст­венной информации может не совпадать (мо­жет различаться первичная структура белка, что приводит к появлению у различных инди­видуумов одного вида разных групп крови, ок­раски шерсти, цвета глаз и т. д.).

Вопрос 8. Какой хромосомный набор называют гаплоидным? Диплоидным?

При образовании половых клеток из каж­дой пары гомологичных хромосом в яйцеклет­ку или сперматозоид попадает только одна. Поэтому половые клетки содержат одинарный (гаплоидный) набор хромосом. После слия­ния половых клеток (гамет) в образовавшейся зиготе оказываются как материнский, так и отцовский гаплоидный набор. В результате число хромосом удваивается. Набор, в кото­ром представлены пары гомологичных хромо­сом, называют диплоидным.


Источник: vsesochineniya.ru

Основные свойства хроматина

ДНК подвергается воздействию эухроматина, в связи с чем становится возможным провести репликацию и транскрипцию. Транскрипция позволяет ДНК раскрутиться и скопировать гены, кодирующие определенные белки. Тем самым репликация и транскрипция ДНК необходимы клетке для того, чтобы клетка могла активно синтезировать ДНК, белки, образовывать органеллы при подготовке процесса клеточного деления любого характера митоза или мейоза.

Небольшой процент хроматина существует в виде гетерохроматина в ходе интерфазы. Этот хроматин плотно упакован, что не дает возможности провести генетическую транскрипцию. Гетерохроматин окрашивается в более темный цвет при применении красителей, в отличие от эухроматина.

Хроматин в митозе реализуется последовательно на протяжении всех четырех фаз. Во время профазы митоза хроматиновые волокна превращаются в хромосомы, каждая из них реплицирована и состоит из двух хроматид, соединенных центромерой.

Метафаза отличается тем, что хроматин чрезвычайно сильно сжимается. Хромосомы выравниваются в ходе образования метафазной пластинки. Анафаза отличается тем, что парные хромосомы (или сестринские хроматиды) отделяются и вытягиваются в микротрубочки по веретену деления на противоположные полюса клетки. Телофаза отличается тем, что каждая новая дочерняя хромосома перемещается внутрь собственного ядра. Хроматиновые волокна разматываются и становятся менее плотными. После цитокенеза образуются две идентичные хромосомы. Хромосомы продолжают размываться и удлиняют хроматин, который образуется в конце фазы.

В науке часто возникают проблемы с трактовкой понятий хроматин, хромосома и хроматида. Все три структуры состоят из ДНК и располагаются внутри ядра. Но при этом хроматин состоит и ДНК, и гистонов, упакованных в тонкие волокна. Они не конденсируются, но существуют в компактной форме гетерохроматина или в менее компактной форме эухроматина. Все процессе, в том числе и рекомбинация ДНК встречаются в эухроматине, который конденсируется с образованием хромосом.

Хромосомы, в свою очередь, являются одноцепочными структурами, состоящими из конденсированного хроматина. Во время процессов деления клеток, а именно митоза и мейоза хромосомы реплицируются для того, чтобы гарантировать получение каждой новой дочерней клеткой нужного числа хромосом. Дублицированная хромосома имеет две цепочки ДНК и обладает привычной формой X. Две нити связаны в центромерой. Хроматидой является одна из двух нитей реплицированных хромосом. Хроматиды, соединенные центромером, называются сестринскими хроматидами. В конце клеточного деления сестринские хроматиды отделяются от дочерних хромосом в новообразованных дочерних клетках.

Таким образом, большинство генетических процессов реализуется именно на уровне эухроматина, поскольку он обладает целым рядом функциональных свойств. А именно: постоянное нахождение в конденсированном состоянии, присутствие многократных повторов небольших нетранскрибируемых участков ДНК. Также плотность расположения генов в гетерохроматине гораздо ниже, чем в эухроматине. Гены транслоцирующиеся в расположенную поблизости область инактивируются достаточно четко. Из – за плотности упаковки гетерохроматин отличается низкой частотой рекомбинации генов.

Также хроматин бывает открытым и представляет собой области ДНК, которые лишены нуклеусом и очень чувствительны к процессу обработки ДНК.

Детальное исследование хроматина показало, что гетерохроматин часто скапливается в ядрах клеток самок, но и отсутствует в летках самцов. Такой тип хроматина называется половым и присутствует внутри Х-хромосом. Многие исследователи придерживаются данных о том, что половой хроматин не активен генетически. Например, внутри эпителиальных клеток человека половой хроматин имеет вид мелкой гранулы, которая крепится к ядерной оболочке. Для исследования хроматина данного типа целесообразно использовать клетки внутренней поверхности щек. Также можно применять некоторые участки покровного эпителия или эпителия кровеносных сосудов.

Также часто применяют кровяные мазки и в этом случае хроматин имеет вид сегмента, добавленного в виде палочки внутри ядра. Существенный прогресс в ходе исследования хроматина наступил после разработки методов индукционного деления клеток. Митоз можно индуцировать фитогемагглютинином (в клеточных культурах) и остановить в метафазе колхицином.

В дальнейшем клетки погружаются в гипотонический раствор, и они набухают. Затем клетки распластывают и разрушают между предметным и покровным стеклом.

Любой метод исследования хроматина открывает актуальные возможности для пополнения базы генетических исследований и решения актуальных задач междисциплинарного знания.

Источник: spravochnick.ru