Хромосомы — самовоспроизводящиеся структуры клеточного ядра. Как у прокариотических, так и у эукариотических организмов гены располагаются группами на отдельных молекулах ДНК, которые при участии белков и других макромолекул клеток организуются в хромосомы. Зрелые клетки зародышевой линии (гаметы — яйцеклетки, спермии) многоклеточных организмов содержат по одному (гаплоидному) набору хромосом организма.

После того как к полюсам отойдут полные наборы хроматид, их называют хромосомами. Хромосомы — это структуры в ядре клеток эукариот, которые пространственно и функционально организовывают ДНК в геноме индивидуумов.

Химический состав хромосом. Хромосома представляет собой дезоксирибонуклеопротеид (ДНП), то есть комплекс, образованный из одной непрерывной двухцепочечной молекулы ДНК и белков (гистонов и негистонов). В состав хромосом входят также липиды и минеральные вещества (например, ионы Ca2+, Mg2+).


Каждая хромосома – сложное надмолекулярное образование, сформированное в результате компактизации хроматина.

Строение хромосом. В большинстве случаев хромосомы хорошо видны лишь в делящихся клетках начиная со стадии метафазы, когда их можно видеть даже в световой микроскоп. В этот период удается определить количество хромосом в ядре, их размеры, форму и строение. Именно такие хромосомы называют метафазными. Интерфазные хромосомы часто называют просто хроматином.

Число хромосом обычно постоянно для всех клеток особи любого вида растений, животных и человека. Но у разных видов количество хромосом неодинаково (от двух до нескольких сотен). Наименьшее число хромосом имеет лошадиная аскарида, наибольшее встречается у простейших и папоротников, для которых характерны высокие уровни полиплоидии. Обычно диплоидные наборы содержат от одного до нескольких десятков хромосом.

Количество хромосом в ядре не связано с уровнем эволюционного развития живых организмов. У многих примитивных форм оно велико, например, в ядрах некоторых видов простейших содержатся сотни хромосом, тогда как у шимпанзе их всего только 48.

Каждая хромосома, образованная одной молекулой ДНК, представляет собой удлиненную палочковидную структуру – хроматиду, имеющую два «плеча», разделенных первичной перетяжкой, или центромерой. Метафазная хромосома состоит из двух соединенных центромерой сестринских хроматид, каждая из которых содержит одну молекулу ДНК, уложенную в виде спирали.


Хроматида

Центромера – это небольшое фибриллярное тельце, осуществляющее первичную перетяжку хромосомы. Она является важнейшей частью хромосомы, так как определяет ее движение. Центромеру, к которой прикрепляются нити веретена во время деления (при митозе и мейозе), называют кинетохором (от греч. kinetos – подвижный и choros – место). Он контролирует движение расходящихся хромосом при делении клетки. Хромосома, лишенная центромеры, не способна совершать упорядоченное движение и может потеряться.

Обычно центромера хромосомы занимает определенное место, и это является одним из видовых признаков, по которому различают хромосомы. Изменение положения центромеры в той или иной хромосоме служит показателем хромосомных перестроек. Плечи хромосом оканчиваются участками, не способными соединяться с другими хромосомами или их фрагментами. Эти концевые участки хромосом называют теломерами. Теломеры предохраняют концы хромосом от слипания и тем самым обеспечивают сохранение их целостности. За открытие механизма защиты хромосом теломерами и ферментом теломеразой американские ученые Э. Блекберн, К. Грейдер и Д. Шостак в 2009 году были удостоены Нобелевской премии в области медицины и физиологии. Концы хромосом нередко обогащены гетерохроматином.


Форма хромосомы

В зависимости от расположения центромеры определяют три основных вида хромосом: равноплечие (плечи равной длины), неравноплечие (с плечами разной длины) и палочковидные (с одним, очень длинным и другим, очень коротким, едва заметным плечом). Некоторые хромосомы имеют не только одну центромеру, но еще и вторичную перетяжку, не связанную с прикреплением нити веретена при делении. Этот участок – ядрышковый организатор, выполняющий функцию синтеза ядрышка в ядре.

Репликация хромосом

Важным свойством хромосом является их способность к удвоению (самовоспроизведению). Обычно удвоение хромосом предшествует делению клетки. В основе удвоения хромосом лежит процесс репликации (от лат. replicatio – повторение) макромолекул ДНК, обеспечивающий точное копирование генетической информации и передачу ее от поколения к поколению. Удвоение хромосом – это сложный процесс, включающий в себя не только репликацию гигантских молекул ДНК, но также синтез связанных с ДНК хромосомных белков. Конечным этапом является упаковка ДНК и белков в особые комплексы, образующие хромосому. В результате репликации вместо одной материнской хромосомы появляются две идентичные ей дочерние хромосомы.

Функция хромосом заключается:

iv>
  • в хранении наследственной информации. Хромосомы являются носителями генетической информации;
  • передаче наследственной информации. Наследственная информация передается путем репликации молекулы ДНК;
  • реализации наследственной информации. Благодаря воспроизводству того или иного типа и-РНК и, соответственно, того или иного типа белка осуществляется контроль над всеми процессами жизнедеятельности клетки и всего организма.

Таким образом, хромосомы с заключенными в них генами обусловливают непрерывный ряд воспроизведения.

Хромосомы осуществляют сложную координацию и регуляцию процессов в клетке вследствие заключенной в них генетической информации, обеспечивающей синтез первичной структуры белков-ферментов.

У каждого вида в клетках находится определенное количество хромосом. Они являются носителями генов, определяющих наследственные свойства клеток и организмов вида. Ген – это участок молекулы ДНК хромосомы, на котором синтезируются различные молекулы РНК (трансляторы генетической информации).


В соматических, то есть телесных, клетках обычно содержится двойной, или диплоидный, набор хромосом. Он состоит из пар (2n) практически одинаковых по форме и размеру хромосом. Такие парные, похожие друг на друга хромосомные наборы называют гомологичными (от греч. homos – равный, одинаковый, общий). Они происходят от двух организмов; один набор от материнского, а другой – от отцовского. В таком парном наборе хромосом заключена вся генетическая информация клетки и организма (особи). Гомологичные хромосомы одинаковы по форме, длине, строению, расположению центромеры и несут одни и те же гены, имеющие одинаковую локализацию. Они содержат одинаковый набор генов, хотя и могут различаться их аллелями. Таким образом, гомологичные хромосомы содержат очень близкую, но не идентичную наследственную информацию.

Совокупность признаков хромосом (их число, размеры, форма и детали микроскопического строения) в клетках тела организма того или иного вида называют кариотипом. Форма хромосом, их число, размеры, расположение центромеры, наличие вторичных перетяжек всегда специфичны для каждого вида, по ним можно сопоставлять родство организмов и устанавливать их принадлежность к тому или иному виду.

Постоянство кариотипа, свойственное каждому виду, выработалось в процессе его эволюции и обусловлено закономерностями митоза и мейоза. Однако в процессе существования вида в его кариотипе вследствие мутаций могут произойти изменения хромосом. Некоторые мутации существенно изменяют наследственные качества клетки и организма в целом.

>

Постоянные характеристики хромосомного набора – количество и морфологические особенности хромосом, определяемые главным образом расположением центромер, наличием вторичных перетяжек, чередованием эухроматиновых и гетерохроматиновых участков и пр., позволяют идентифицировать виды. Поэтому кариотип называют «паспортом» вида.

Источник: vseobiology.ru

Генетический материал, содержащийся в клетке, образует структурно дифференцированные единицы, называемые хромосомами. Хромосомы представляют собой мультимолекулярные агрегаты, образованные преимущественно молекулами ДНК и белка и содержащие небольшое количество РНК, не являющейся, строго говоря, структурной частью хромосомы.

Строение хромосом хорошо видно на стадии мета-фазы митоза. Изучение хромосом позволило установить следующие факты:

1) во всех соматических клетках любого растительного или животного организма число хромосом одинаково;

2) в половых клетках содержится всегда вдвое меньше хромосом, чем в соматических клетках данного вида организмов;

3) у всех организмов, относящихся к одному виду, число хромосом в клетках одинаково (например, у человека в соматических клетках имеется 23 пары хромосом, а у голубя – 40).

Число хромосом в соматических клетках всегда четное, так как в них находятся по две одинаковых по форме и размерам хромосомы: одна от отцовского организма, а другая – от материнского. Хромосомный набор соматической клетки, в котором каждая хромосома имеет себе пару, носит название двойного или диплоидного. В половые клетки из каждой пары хромосом попадает только одна, поэтому хромосомный набор в этом случае называется одинарным или гаплоидным.


В определении формы хромосом большое значение имеет положение так называемой первичной перетяжки, или центромеры, – области, к которой во время митоза прикрепляются трубочки веретена. Центромера делит хромосому на два плеча. Расположение центромеры определяет три основных типа хромосом:

1) равноплечие – с плечами равной или почти равной длины;

2) неравноплечие, имеющие плечи неравной длины;

3) палочковидные – с одним длинным и вторым очень коротким, иногда с трудом обнаруживаемым плечом.

ДНК

Непосредственным носителем наследственной информации в хромосомах является дезоксирибонуклеиновая кислота (ДНК) – биологический полимер, состоящий из двух полинуклеотидных цепей, соединенных друг с другом. Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие одно из четырех азотистых оснований: аденин (А), гуанин (Г), тимин (Т) или цитозин (Ц); сахар – дезоксирибозу, по имени которой получила название и сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов (рис. 1).


Что представляют собой хромосомы

Рис. 1.Схема строения нуклеотида

В каждой цепи нуклеотиды соединяются путем образования ковалентных связей между дезоксирибозой одного и остатком фосфорной кислоты последующего нуклеотида. Объединяются две цепи в одну молекулу с помощью водородных связей между азотистыми основаниями, входящими в состав нуклеотидов, образующих разные цепи. Количество таких связей между разными азотистыми основаниями неодинаково, и вследствие этого они могут соединяться только попарно: азотистое основание А одной цепи полинуклеотидов всегда связано двумя водородными связями с Т другой цепи, а Г – тремя водородными связями с азотистым основанием Ц противоположной полинуклеотидной цепочки. Такая способность к избирательному соединению нуклеотидов называется комплементарностью. Комплементарное взаимодействие нуклеотидов приводит к образованию пар нуклеотидов. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой через сахар (дезоксирибозу) и остаток фосфорной кислоты.

В 1953 году американским биофизиком Дж. Уотсоном(род. 1928) совместно с английским биофизиком и генетиком Ф. Криком(род. 1916) была предложена модель пространственной структуры ДНК в виде двойной спирали.

Таким образом, в структурной организации молекулы ДНКможно выделить первичную структуру – полинуклеотидную цепь, вторичную структуру – две комплементарные друг другу и антипараллельные по-линуклеотидные цепи, соединенные водородными связями, и третичную структуру – трехмерную спираль.


аметр спирали составляет 2 нм, длина шага – 3,4 нм. В каждый виток входит 10 пар нуклеотидов. Длина спирали молекулы ДНК зависит от организма, которому она принадлежит. ДНК простейших вирусов содержит несколько тысяч нуклеотидных пар, бактерий – несколько миллионов, а высших организмов – миллиарды. Если выстроить в одну линию все молекулы ДНК, заключенные в одной клетке человека, то получится нить длиной 2 м, т. е. ее длина в миллиард раз больше ее толщины.

РНК

Наследственная информация, записанная с помощью генетического кода, хранится в молекулах ДНК и размножается для того, чтобы обеспечить вновь образуемые клетки необходимыми «инструкциями» для их развития и функционирования. Вместе с тем непосредственного участия в жизнеобеспечении клеток ДНК не принимает. Роль посредника, функцией которого является перевод наследственной информации, хранящейся в ДНК, в рабочую форму, играют рибонуклеиновые кислоты (РНК).

В отличие от молекул ДНК рибонуклеиновые кислоты представлены одной полинуклеотидной цепью, которая состоит из четырех разновидностей нуклеотидов, содержащих сахар – рибозу (вместо дезоксирибозы), остаток фосфорной кислоты и одно из четырех азотистых оснований: аденин, гуанин, цитозин или урацил (вместо тимина). В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого. РНК синтезируются на молекулах ДНК при помощи ферментов РНК-полимераз с соблюдением принципа комплементарности, причем аденину ДНК в РНК комплементарен урацил.


В зависимости от функции и местонахождения в клетке можно выделить три вида РНК:информационные (иРНК), транспортные (тРНК) и рибосомные (рРНК). Каждая из этих РНК синтезируется на определенном участке ДНК. Процесс синтеза информационной РНК, который называют транскрипцией – переписыванием информации, начинается с обнаружения РНК-полимеразой особого участка в молекуле ДНК, указывающего место начала транскрипции – промотора. После присоединения к промотору РНК-полимераза раскручивает прилежащий виток спирали ДНК. Две цепи ДНК в этом месте расходятся, и на одной из них фермент осуществляет синтез иРНК. Размер иРНК зависит от длины участка ДНК, на котором она была синтезирована. Молекулы иРНК могут состоять из 300-30 000 нуклеотидов.

В процессе синтеза, по мере продвижения РНК-полимеразы вдоль молекулы ДНК пройденные ею одно-цепочечные участки ДНК вновь объединяются в двойную спираль. Образуемая в ходе транскрипции иРНК содержит точную копию информации, записанной в соответствующем участке ДНК. Тройки рядом стоящих нуклеотидов иРНК, шифрующие аминокислоты, называются кодонами. Последовательность кодонов иРНК шифрует последовательность аминокислот в полипептидной цепи. Кодонам иРНК соответствуют определенные аминокислоты.

Источник: studopedia.ru

Что такое хромосомы

Хромосомы представляют собой нуклеопротеидные структуры эукариотической клетки, в которых хранится большая часть наследственной информации. Благодаря своей способности к самовоспроизведению, именно хромосомы обеспечивают генетическую связь поколений. Хромосомы образуются из длинной молекулы ДНК, в которой содержится линейная группа множества генов, и вся генетическая информация будь-то о человеке, животном, растении или любом другом живом существе.

Морфология хромосом связана с уровнем их спирализации. Так, если во время стадии интерфазы хромосомы максимально развернуты, то с началом деления хромосомы активно спирализуются и укорачиваются. Своего максимального укорочения и спирализации они достигают во время стадии метафазы, когда происходит формирование новых структур. Эта фаза наиболее удобна для изучения свойств хромосом, их морфологических характеристик.

История открытия хромосом

Еще в середине позапрошлого XIX века многие биологи изучая в микроскопе строение клеток растений и животных, обратили внимание на тонкие нити и мельчайшие кольцевидные структуры в ядре некоторых клеток. И вот немецкий ученый Вальтер Флеминг применив анилиновые красители для обработки ядерных структур клетки, что называется «официально» открывает хромосомы. Точнее обнаруженное вещество было им названо «хроматид» за его способность к окрашиванию, а термин «хромосомы» в обиход чуть позже (в 1888 году) ввел еще один немецкий ученый – Генрих Вайлдер. Слово «хромосома» происходит от греческих слов «chroma» — окраска и «somo» — тело.

Хромосомы

Хромосомная теория наследственности

Разумеется, история изучения хромосом не закончилась на их открытии, так в 1901-1902 годах американские ученые Уилсон и Сатон, причем независимо друг от друга, обратили внимание на сходство в поведении хромосом и менделеевских факторов наследственности — генов. В результате ученые пришли к заключению, что гены находятся в хромосомах и именно посредством их из поколения в поколения, от родителей к детям передается генетическая информация.

В 1915-1920 годам участие хромосом в передаче генов было доказано на практике в целой серии опытов, сделанных американским ученым Морганом и сотрудниками его лаборатории. Им удалось локализировать в хромосомах мухи-дрозофилы несколько сот наследственных генов и создать генетические карты хромосом. На основе этих данных была создана хромосомная теория наследственности.

Строение хромосом

Строение хромосом разнится в зависимости от вида, так метафазная хромосома (образующаяся в стадии метафазе при митозном делении клетки) состоит из двух продольных нитей – хроматид, которые соединяются в точке, именуемой центромерой. Центромера – это участок хромосомы, который отвечает за расхождение сестринских хроматид в дочерние клетки. Она же делит хромосому на две части, названные коротким и долгим плечом, она же отвечает за деление хромосомы, так как именно в ней содержится специальное вещество – кинетохор, к которому крепятся структуры веретена деления.

строение хромосомы

Тут на картинке показано наглядное строение хромосомы: 1. хроматиды, 2. центромера, 3. короткое плечо хроматид, 4. длинное плечо хроматид. На концах хроматид располагаются теломеры, специальные элементы, которые защищают хромосому от повреждений и препятствуют слипанию фрагментов.

Формы и виды хромосом

Размеры хромосом растений и животных значительно различаются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в диапазоне от 1,5 до 10 микрон. В зависимости от вида хромосомы отличаются и ее способности к окрашиванию. В зависимости от расположения центромеры различают такие формы хромосом:

  • Метацентрические хромосомы, для которых характерно срединное расположение центромеры.
  • Субметацентрические, для них характерно неравномерное расположение хроматид, когда одно плечо более длинное, а второе более короткое.
  • Акроцентрические или палочковидные. У них центромера расположена практически в самом конце хромосомы.

Функции хромосом

Основные функции хромосом, как для животных, так и для растений и вообще всех живых существ – передача наследственной, генетической информации от родителей к детям.

Набор хромосом

Значение хромосом столь велико, что их количество в клетках, а также особенности каждой хромосомы определяют характерный признак того или иного биологического вида. Так, например, у мухи-дрозофилы в наличии 8 хромосом, у обезьян – 48, а хромосомный набор человека составляет 46 хромосом.

В природе существует два основных типа набора хромосом: одиночный или гаплоидный (содержится в половых клетках) и двойной или диплоидный. Диплоидный набор хромосом имеет парную структуру, то есть вся совокупность хромосом состоит из хромосомных пар.

Хромосомный набор человека

Как мы уже написали выше, клетки человеческого организма содержат 46 хромосом, которые объединены в 23 пары. Все вместе они и составляют хромосомный набор человека. Первые 22 пары человеческих хромосом (их называют аутосомами) являются общими как для мужчин, так и для женщин, и лишь 23 пара — половых хромосом — разнится у разных полов, она же определяет половую принадлежность человека. Совокупность всех пар хромосом также называется кариотипом.

хромосомный набор человека

Такой вид имеет хромосомный набор человека, 22 пары двойных диплоидных хромосом содержат всю нашу наследственную информацию, и последняя пара различается, у мужчин она состоит из пары условных X и Y половых хромосом, в то время как у женщин в наличии две хромосомы Х.

Аналогичную структуру хромосомного набора имеют и все животные, только количество неполовых хромосом у каждого из них свое.

Генетические болезни, связанные с хромосомами

Нарушение в работе хромосом, или даже само их неправильно количество является причиной многих генетических заболеваний. Например, синдрома Дауна появляется из-за наличия лишней хромосомы в хромосомном наборе человека. А такие генетические болезни как дальтонизм, гемофилия вызваны сбоями в работе имеющихся хромосом.

Источник: www.poznavayka.org

Строение и функции ядра

Как правило, эукариотическая клетка имеет одно ядро, но встречаются двуядерные (инфузории) и многоядерные клетки (опалина). Некоторые высоко­специализи­рованные клетки вторично утрачивают ядро (эритроциты млекопитающих, ситовидные трубки покрытосеменных).

Форма ядра — сферическая, эллипсовидная, реже лопастная, бобовидная и др. Диаметр ядра — обычно от 3 до 10 мкм.

Ядро отграничено от цитоплазмы двумя мембранами (каждая из них имеет типичное строение). Между мембранами — узкая щель, заполненная полужидким веществом. В некоторых местах мембраны сливаются друг с другом, образуя поры (3), через которые происходит обмен веществ между ядром и цитоплазмой. Наружная ядерная (1) мембрана со стороны, обращенной в цитоплазму, покрыта рибосомами, придающими ей шероховатость, внутренняя (2) мембрана гладкая. Ядерные мембраны являются частью мембранной системы клетки: выросты наружной ядерной мембраны соединяются с каналами эндоплазматической сети, образуя единую систему сообщающихся каналов.

Кариоплазма (ядерный сок, нуклеоплазма) — внутреннее содержимое ядра, в котором располагаются хроматин и одно или несколько ядрышек. В состав ядерного сока входят различные белки (в том числе ферменты ядра), свободные нуклеотиды.

Ядрышко (4) представляет собой округлое плотное тельце, погруженное в ядерный сок. Количество ядрышек зависит от функционального состояния ядра и варьирует от 1 до 7 и более. Ядрышки обнаруживаются только в неделящихся ядрах, во время митоза они исчезают. Ядрышко образуется на определенных участках хромосом, несущих информацию о структуре рРНК. Такие участки называются ядрышковым организатором и содержат многочисленные копии генов, кодирующих рРНК. Из рРНК и белков, поступающих из цитоплазмы, формируются субъединицы рибосом. Таким образом, ядрышко представляет собой скопление рРНК и рибосомальных субъединиц на разных этапах их формирования.

Хроматин — внутренние нуклеопротеидные структуры ядра, окрашивающиеся некоторыми красителями и отличающиеся по форме от ядрышка. Хроматин имеет вид глыбок, гранул и нитей. Химический состав хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%), следовательно, хроматин является дезоксирибонуклеопротеидным комплексом (ДНП). В зависимости от функционального состояния хроматина различают: гетерохроматин (5) и эухроматин (6). Эухроматин — генетически активные, гетерохроматин — генетически неактивные участки хроматина. Эухроматин при световой микроскопии не различим, слабо окрашивается и представляет собой деконденсированные (деспирализованные, раскрученные) участки хроматина. Гетерохроматин под световым микроскопом имеет вид глыбок или гранул, интенсивно окрашивается и представляет собой конденсированные (спирализованные, уплотненные) участки хроматина. Хроматин — форма существования генетического материала в интерфазных клетках. Во время деления клетки (митоз, мейоз) хроматин преобразуется в хромосомы.

Функции ядра: 1) хранение наследственной информации и передача ее дочерним клеткам в процессе деления, 2) регуляция жизнедеятельности клетки путем регуляции синтеза различных белков, 3) место образования субъединиц рибосом.

Хромосомы

Размеры хромосомы

Хромосомы — это цитологические палочковидные структуры, представляющие собой конденсированный хроматин и появляющиеся в клетке во время митоза или мейоза. Хромосомы и хроматин — различные формы пространственной организации дезоксирибонуклеопротеидного комплекса, соответствующие разным фазам жизненного цикла клетки. Химический состав хромосом такой же, как и хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%).

Основу хромосомы составляет одна непрерывная двухцепочечная молекула ДНК; длина ДНК одной хромосомы может достигать нескольких сантиметров. Понятно, что молекула такой длины не может располагаться в клетке в вытянутом виде, а подвергается укладке, приобретая определенную трехмерную структуру, или конформацию. Можно выделить следующие уровни пространственной укладки ДНК и ДНП: 1) нуклеосомный (накручивание ДНК на белковые глобулы), 2) нуклеомерный, 3) хромомерный, 4) хромонемный, 5) хромосомный.

В процессе преобразования хроматина в хромосомы ДНП образует не только спирали и суперспирали, но еще петли и суперпетли. Поэтому процесс формирования хромосом, который происходит в профазу митоза или профазу 1 мейоза, лучше называть не спирализацией, а конденсацией хромосом.

Метафазная хромосома (хромосомы изучаются в метафазу митоза) состоит из двух хроматид (8). Любая хромосома имеет первичную перетяжку (центромеру) (5), которая делит хромосому на плечи. Некоторые хромосомы имеют вторичную перетяжку (6) и спутник (7). Спутник — участок короткого плеча, отделяемый вторичной перетяжкой. Хромосомы, имеющие спутник, называются спутничными (3). Концы хромосом называются теломерами (9). В зависимости от положения центромеры выделяют: а) метацентрические (равноплечие) (1), б) субметацентрические (умеренно неравноплечие) (2), в) акроцентрические (резко неравноплечие) хромосомы (3, 4).

Соматические клетки содержат диплоидный (двойной — 2n) набор хромосом, половые клетки — гаплоидный (одинарный — n). Диплоидный набор аскариды равен 2, дрозофилы — 8, шимпанзе — 48, речного рака — 196. Хромосомы диплоидного набора разбиваются на пары; хромосомы одной пары имеют одинаковое строение, размеры, набор генов и называются гомологичными.

Кариотип — совокупность сведений о числе, размерах и строении метафазных хромосом. Идиограмма — графическое изображение кариотипа. У представителей разных видов кариотипы разные, одного вида — одинаковые. Аутосомы — хромосомы, одинаковые для мужского и женского кариотипов. Половые хромосомы — хромосомы, по которым мужской кариотип отличается от женского.

Хромосомный набор человека (2n = 46, n = 23) содержит 22 пары аутосом и 1 пару половых хромосом. Аутосомы распределены по группам и пронумерованы:

 

 Группа   Число пар  Номер Размер Форма
A 3 1, 2, 3 Крупные 1, 3 — метацентрические, 2 — субметацентрические
B 2 4, 5 Крупные Субметацентрические
C 7 6, 7, 8, 9, 10, 11, 12 Средние Субметацентрические
D 3 13, 14, 15 Средние Акроцентрические, спутничные (вторичная перетяжка в коротком плече)
E 3 16, 17, 18 Мелкие Субметацентрические
F 2 19, 20 Мелкие Метацентрические
G 2 21, 22 Мелкие Акроцентрические, спутничные (вторичная перетяжка в коротком плече)

 

Половые хромосомы не относятся ни к одной из групп и не имеют номера. Половые хромосомы женщины — ХХ, мужчины — ХУ. Х-хромосома — средняя субметацентрическая, У-хромосома — мелкая акроцентрическая.

В области вторичных перетяжек хромосом групп D и G находятся копии генов, несущих информацию о строении рРНК, поэтому хромосомы групп D и G называются ядрышкообразующими.

Функции хромосом: 1) хранение наследственной информации, 2) передача генетического материала от материнской клетки к дочерним.

 

Источник: licey.net

Ответ оставил Гость

1.
Хромосомы — особые, интенсивно ок­рашивающиеся структуры ядра, хорошо различимые в микроскоп приделении клетки, являющиеся носителями генетического материала.
2.
Это правило не соблюдается при сцепленном наследовании признаков.
3.
Перекрест хромосом (кроссинговер) происходит в профазу первого делениямейоза (деления половых клеток). Во время кроссинговера происходит обменучастками гомологичных хромосом. Значение-генетическое разнообразиеорганизмов, т. к. происходит перекомбинация генов и их новые сочетания.
4.
Полное доминирование.Этот тип взаимодействия аллельных генов сводит­ся к тому, что доминантный ген полно­стью подавляет действие рецессивного.
Неполное доминирование. Данный тип взаимодействия аллельных генов ха­рактеризуется тем, чтодоминантный ген не полностью подавляет действие рецессивного гена, врезультате у гетерозигот­ных организмов наблюдается промежу­точноепроявление признака.
Кодоминирование ( независимое проявление ). Это особый тип взаимодейст­вия аллельныхгенов, при котором в слу­чае образования гетерозиготы каждый изаллельных генов вызывает в фенотипе проявление контролируемого импризна­ка.
5.
Доминирование (полное и неполное) сводится к тому, чтовзаимодействуют два аллельных гена, один из которых — доми­нантный(например, А) — всегда в той или иной степени подавляет рецессивный ген(а). При эпистазе взаимодействуют не-аллельные гены, при этом один(напри­мер, W) подавляет проявление другого (например, Y).Пример: W — определяет белую окра­ску тыкв, w — окрашенные плоды; Y — желтую окраску, у — зеленую окраску плода. В результате скрещивания родитель­ских особей с белыми WWYY изелеными плодами все гибриды первого поколения будут иметь белые плодыWwYy, так как ген W подавляет ген Y.
6.
Физическая выносливость человека определяется множеством признаков.Физически выносливым человеком мож­но назвать того, кто способенвыдержать серьезные нагрузки, благодаря хорошо функционирующимдыхательной и сер­дечно-сосудистой системам, развитому инатренированному опорно-двигательному аппарату, уравновешенной нерв­нойсистеме, помогающей контролиро­вать физические нагрузки и распреде­лятьсилы, и многим другим признакам. Такие возможности человека определяетне один, а множество генов.

Источник: shkolniku.com