Каждая женщина – это не просто загадка, а мозаика, состоящая из клеток с разными наборами активных хромосом. У человека 23 пары хромосом, и хромосомы одной пары несут одни и те же наборы генов. Исключение составляет пара половых хромосом. У мужчин одна из них называется X, а другая – Y, и они существенно отличаются своими наборами генов. X-хромосома значительно крупнее, чем Y, и содержит больше генов. Обе половые хромосомы женщин – Х, и они отличаются между собой также, как хромосомы внутри других 22 пар. У каждой женщины по две X-хромосомы, а у каждого мужчины – только по одной, и чтобы они были одинаково активны у женщин и мужчин, организм регулирует их работу. Для этого во всех клетках тела женщины одна из X-хромосом инактивируется. Какая именно из двух половых хромосом будет отключена, для каждой клетки решает случай, так что в части клеток тела женщины работает одна X-хромосома, а в оставшихся – другая.

Как следствие такой мозаичности у женщин редко проявляются болезни, связанные с повреждениями X-хромосом.


же если у женщины оказывается X-хромосома с дефектом какого-либо гена, другая хромосома пары, работающая в половине клеток, спасает положение и не дает болезни проявиться. Чтобы болезнь, связанная с повреждением X-хромосомы «разыгралась» на полную мощь, женщине должны достаться целых две копии этой хромосомы с дефектом одного и того же гена. Это маловероятное событие. В то же время, если мужчина получает дефектную X-хромосому (она приходит от матери), у нее не будет пары, чтобы скомпенсировать ущерб, и заболевание покажет себя.

X-хромосома, к несчастью для мужчин, несет множество жизненно важных генов, так что ее поломка чревата печальными последствиями. Дальтонизм, гемофилия, миопатия Дюшена, синдром ломкой X-хромосомы, X-сцепленный иммунодефицит – это только самые известные генетические заболевания, от которых страдают почти исключительно мужчины.

Цветовая слепота

Распространено заблуждение, что дальтониками могут быть только мужчины. Это неверно, однако, женщины-дальтоники встречаются намного реже. Сложности с различением некоторых цветов испытывают лишь 0,4 процента женщин и около 5 процентов мужчин. Дальтонизм – это потеря или нарушение работы одного из пигментов, связанных с распознаванием света определенного цвета. Всего таких пигментов три, и они чувствительны к волнам красного, зеленого и синего цвета. Любой сложный цвет можно представить как комбинацию этих трех. В каждой клетке-колбочке, которые находятся в сетчатке и отвечают за распознавание цвета, находится лишь один тип пигмента. По неизвестным пока причинам, неполадки с работой пигментов, с помощью которых мы различаем красный и зеленый цвета, встречаются чаще, чем дефекты пигмента, необходимого, чтобы правильно узнавать синий цвет.


За синтез пигментов отвечают гены, находящиеся на X-хромосоме. Если мужчине досталась хромосома с дефектным геном, определяющим за узнавание, к примеру, красного цвета, то во всех колбочках его сетчатки будет активна лишь эта дефектная X-хромосома – другой у него просто нет. Поэтому у такого мужчины не будет колбочек, способных правильно распознать красный цвет. Сетчатка женщины имеет мозаичное строение, и если даже одна из X-хромосом несет поврежденный ген, эта хромосома будет активна лишь в части колбочек, отвечающих за распознавание соответствующего цвета. В других колбочках будет активна вторая хромосома, которая несет нормальный ген. Восприятие цвета у такой женщины будет немного измененным, но все же она будет способна различать все цвета, которые обычно различают люди.

Гемофилия

Другое известное заболевание, связанное с дефектами генов X-хромосомы – это гемофилия, нарушение свертывания крови. После травмы в крови здорового человека запускается сложная система реакций, приводящая к образованию нитей белка фибрина. Благодаря накоплению этих нитей, в месте повреждения кровь становится более густой и закупоривает рану. Если любая из стадий процесса нарушается, кровь не свертывается вовсе или делает это слишком медленно, так что больной может умереть от кровопотери даже после удаления зуба. Кроме того, больные с гемофилией страдают от спонтанных внутренних кровоизлияний из-за уязвимости стенок сосудов.


Каскад реакций, приводящий с итоге к образованию нитей фибрина и загустению крови, очень сложен, а чем сложнее система, тем больше мест, где она может сломаться. Известно три типа гемофилии, связанных с дефектами трех генов, кодирующих белки-участники каскада. Два из этих генов располагаются на X-хромосоме, поэтому гемофилией страдает один мужчина из 5000, а случаев заболеваний женщин за всю историю было зафиксировано лишь 60.

Миопатия Дюшена

Еще один важный ген, располагающийся на X-хромосоме – ген белка дистрофина, необходимого для поддержания целостности мембран мышечных клеток. При миопатии Дюшена работа этого гена нарушается, и дистрофин не образуется. У мужчин, которым досталась X-хромосома с таким поврежденным геном, развивается прогрессирующая мышечная слабость, в результате чего мальчики с такой болезнью уже к 12 годам не могут самостоятельно ходить. Как правило, больные погибают в возрасте около 20 лет из-за связанных со слабостью мышц нарушений дыхания. У девочек, получивших X-хромосому с неисправным геном дистрофина, из-за мозаичности белок отсутствует лишь в половине клеток тела. Поэтому женщины-носительницы дефектного гена дистрофина страдают лишь легкой мышечной слабостью, и то не всегда.

iv>

X-сцепленный тяжелый иммунодефицит

Больные с тяжелыми иммунодефицитами вынуждены жить в полностью стерильной среде, потому что они  крайне уязвимы перед инфекционными заболеваниями. X-сцепленный тяжелый иммунодефицит возникает из-за мутации в гене, который кодирует общий компонент нескольких рецепторов, необходимых для взаимодействия клеток иммунной системы. Как очевидно из названия болезни, этот ген тоже располагается в X-хромосоме. Из-за неработающих рецепторов иммунная система с самого начала развивается неправильно, ее клетки малочислены, плохо функционируют и не могут координировать свои действия. К счастью, это тяжелое заболевание встречается редко: им страдает один мальчик из 100000. У девочек появление этой болезни можно считать практически невероятным.

Синдром ломкой X-хромосомы

Еще один важный ген, расположенный на X-хромосоме – ген FMR1, необходимый для нормального развития нервной системы. Работа этого гена может быть нарушена из-за патологического процесса, при котором в гене увеличивается число повторяющихся фрагментов ДНК. Дело в том, что точное копирование повторяющегося числа единиц всегда представляет собой трудность. Представим себе, что нам нужно аккуратно переписать длинное число, в котором есть много одинаковых цифр подряд – легко ошибиться и написать на несколько цифер больше или меньше.


чно так и в ДНК. При делении клеток, когда ДНК удваивается, число повторов может случайно измениться. Именно из-за увеличения числа повторов в коротком фрагменте ДНК на X-хромосоме может появиться «ломкий» участок, который легко рвется при делении клеток. Ген FMR1 находится рядом с «ломким» участком, и его работа нарушается. В результате такой патологии возникает умственная отсталость, которая проявляется у мужчин с «ломкой» X-хромосомой более явственно, чем у женщин.

Всегда ли лучше иметь две X-хромосомы, чем одну?

Кажется, что иметь две X-хромосомы выгоднее, чем одну: меньше риск заболеваний из-за неудачных генов. Как насчет самцов, имеющих такой состав половых хромосом: XXY? Можно ли ожидать, что они будут иметь преимущество перед самцами с обычным составом половых хромосом XY? Оказывается, состав хромосом XXY – не благо, а совсем наоборот. Мужчины с таким набором хромосом страдают от синдрома Клайнфельтера, при котором наблюдается множество патологии, но нет никаких преимуществ.

Более того, известны заболевания, для которых характерны еще большие количества X-хромосом, вплоть до пяти на генотип. Такие патологии встречаются как у женщин, так и у мужчин. При наличии избыточных X-хромосом все они, кроме одной, инактивируются. Однако, пусть лишние X-хромосомы и не работают, чем их больше, тем тяжелее заболевание. Интересно, что особенно страдает от наличия избыточных X-хромосом интеллект – каждая лишняя хромосома этого типа ведет к понижению IQв среднем примерно на 15 пунктов. Получается, что иметь запасной вариант X-хромосомы хорошо, но не всегда (мужчинам от дополнительной X-хромосомы лучше не становится). Иметь много запасных вариантов этой половой хромосомы – не выгодно ни для женщин, ни для мужчин.

>

Чем же дополнительные неактивные X-хромосомы вредны, и почему каждая лишняя хромосома усугубляет тяжесть заболевания? Во-первых, лишние X-хромосомы выключаются далеко не сразу, а только спустя первые 16 суток развития эмбриона. А чем раньше во время развития возникает нарушение, тем более разнообразными и многочисленными будут его проявления. Поэтому лишние хромосомы могут успеть «навредить» достаточно фундаментально, так, что патологии будут проявляться в совершенно разных сферах.

Во-вторых, некоторые гены на инактивированных X-хромосомах каким-то образом избегают отключения. Хотя Xи Y-хромосомы очень непохожи, все же они образуют пару и имеют небольшое количество одинаковых генов. Если половых хромосом слишком много, и на всех них эти гены останутся активными, в клетках нарушается генный баланс. Поэтому чем больше лишних хромосом, тем тяжелее болезнь.

X-хромосома несет на себе множество жизненно важных генов, и неудивительно, что ее дефекты имеют крайне неприятные проявления. Женщинам от природы дана возможность «подстраховаться» за счет дополнительной копии хромосомы, которая может уменьшить тяжесть заболевания. Однако такая «запаска» хороша только в единственном числе, а все дополнительные X-хромосомы ведут к развитию тяжелых патологий. Ну а мужчинам, у которых нет второй X-хромосомы, с самого их зачатия достается больше риска. Увы.

Источник: medportal.ru

Классификация: виды кариотипов при синдроме Клайнфельтера


По количеству дополнительных Х-хромосом различают следующие варианты синдрома Клайнфельтера:

  • 47,ХХY — наиболее часто встречающийся
  • 48,ХХХY
  • 49,ХХХХY

Кроме того, к синдрому Клайнфельтера также относят мужские кариотипы, включающие, помимо дополнительных Х-хромосом, дополнительную Y-хромосому — 48,ХХYY. И, наконец, среди пациентов с этим синдромом встречаются лица с мозаичным кариотипом 46,ХY/47,ХХY (то есть часть клеток имеет нормальный хромосомный набор).

История открытия синдрома

Синдром получил свое название в честь Гарри Клайнфельтера — врача, в 1942 году впервые описавшего клиническую картину болезни. Клайнфельтер с коллегами опубликовали отчет об обследовании 9 мужчин, объединенных общими симптомами, такими как слабое оволосение тела, евнухоидный тип телосложения, высокий рост и уменьшенные в размерах яички. Позднее, в 1956 г., генетики Планкетт и Барр (Е. R. Plankett, М. L. Barr) обнаружили у мужчин с синдромом Клайнфельтера тельца полового хроматина в ядрах клеток слизистой оболочки полости рта, а в 1959 году Полани и Форд (P. E. Polanyi, S. E. Ford) с сотрудниками показали, что у больных в хромосомном наборе имеется лишняя Х-хромосома.


Активные исследования данной патологии велись в 70‑х годах в США. Тогда всех новорожденных мальчиков подвергали кариотипированию, в результате чего удалось достоверно выявить распространенность и генетические особенности синдрома Клайнфельтера.

Распространенность заболевания

Синдром Клайнфельтера является одним из наиболее распространенных генетических заболеваний: на каждые 500 новорождённых мальчиков приходится 1 ребёнок с данной патологией.

Кроме того, синдром Клайнфельтера — третья по распространенности эндокринная патология у мужчин (после сахарного диабета и патологии щитовидной железы) и наиболее частая причина врожденного нарушения репродуктивной функции у мужчин.

Этиология и причины нарушения

Синдром Клайнфельтера относится к генетическим заболеваниям, не передающимся по наследству, поскольку больные, за редким исключением, бесплодны. Патология, как правило, возникает в результате нарушения расхождения хромосом на ранних стадиях формирования яйцеклеток и сперматозоидов. При этом синдром Клайнфельтера, возникающий за счет нарушения в женских половых клетках, встречается в три раза чаще. Мозаичные формы обусловлены патологией деления клеток на ранних стадиях эмбриогенеза, поэтому часть клеток у таких пациентов имеет нормальный кариотип. Причины нерасхождения половых хромосом и нарушения деления клеток на самых ранних стадиях эмбриогенеза до сих пор малоизучены. В отличие от других хромосомных заболеваний, влияние возраста родителей отсутствует или выражено незначительно.

Ранние признаки


В отличие от большинства заболеваний, связанных с нарушением количества хромосом, внутриутробное развитие детей с синдромом Клайнфельтера проходит нормально, склонности к преждевременному прерыванию беременности не наблюдается. Так что в младенческом и раннем детском возрасте заподозрить патологию практически невозможно. Более того, клинические признаки классического синдрома Клайнфельтера проявляются, как правило, только в подростковом периоде. Однако есть симптомы, которые позволяют заподозрить наличие синдрома Клайнфельтера в препубертатном периоде:

  • высокий рост (пик прибавки роста приходится на период между 5–8 годами);
  • длинные ноги (непропорциональное телосложение);
  • высокая талия.

У части пациентов наблюдается некоторая задержка в развитии речи.

В подростковом возрасте синдром часто проявляется гинекомастией, которая при данной патологии имеет вид двустороннего симметричного безболезненного увеличения грудных желез. Так как такого рода гинекомастия часто наблюдается у совершенно здоровых подростков, этот симптом часто остается без внимания. В норме подростковая гинекомастия бесследно исчезает в течение нескольких лет, у пациентов же с синдромом Клайнфельтера обратной инволюции грудных желез не происходит. В некоторых случаях гинекомастия может не развиваться вовсе, и тогда патология проявляется признаками андрогенной недостаточности уже в постпубертатный период.

Симптомы андрогенной недостаточности при синдроме Клайнфельтера


Андрогенная недостаточность при синдроме Клайнфельтера связана с постепенной атрофией яичек, что приводит к снижению синтеза тестостерона. Степень недостаточности андрогенов резко варьирует.

В первую очередь обращают на себя внимание внешние признаки гипогонадизма:

  • скудная растительность на лице или же полное ее отсутствие;
  • рост волос на лобке по женскому типу;
  • волосы на груди и других частях тела отсутствуют;
  • маленький объем яичек (2–4 мл) и их плотная консистенция (патогномоничный признак).

Поскольку дегенерация половых желез, как правило, развивается в постпубертатный период, у большинства пациентов размеры мужских половых органов, за исключением яичек, соответствуют возрастным нормам.

Пациенты могут жаловаться на ослабление либидо и снижение потенции. У многих мужчин с синдромом Клайнфельтера половое влечение вовсе не возникает, а некоторые — напротив, заводят семью и живут нормальной половой жизнью. Наиболее постоянный признак патологии — бесплодие, именно оно чаще всего становится причиной обращения таких пациентов к врачу. У 10 % мужчин с азооспемией обнаруживают синдром Клайнфельтера.

Недостаток андрогенов приводит к развитию остеопороза, анемии и слабости скелетной мускулатуры. У трети больных можно наблюдать варикозное расширение вен голеней.

Андрогены влияют на обмен веществ, поэтому больные с синдромом Клайнфельтера склонны к ожирению, нарушению толерантности к глюкозе и сахарному диабету второго типа.

Доказана предрасположенность таких пациентов к аутоиммунным заболеваниям (ревматоидный артрит, системная красная волчанка, аутоиммунные заболевания щитовидной железы и другие).

Психологические особенности

Коэффициент интеллекта у больных с классическим синдромом Клайнфельтера варьирует от значений ниже среднего до показателей, значительно превышающих средний уровень. Однако во всех случаях отмечается диспропорция между общим уровнем интеллекта и вербальными способностями, так что нередко пациенты с достаточно высоким IQ испытывают трудности при восприятии больших объемов материала на слух, а также при построении фраз, содержащих сложные грамматические конструкции. Такие особенности причиняют пациентам много неприятностей в период обучения и нередко продолжают сказываться на профессиональной деятельности.

Данные о психологических особенностях больных с синдромом Клайнфельтера достаточно противоречивы, однако большинство специалистов оценивают пациентов как скромных, робких людей с несколько заниженной самооценкой и повышенной чувствительностью. Есть данные, свидетельствующие о склонности пациентов с синдромом Клайнфельтера к гомосексуализму, алкоголизму и наркомании. Сложно сказать, вызваны ли особенности психики у таких больных непосредственным влиянием хромосомной аномалии, или же это реакция на проблемы в сексуальной сфере.

В отношении разных цитогенетических вариантов синдрома Клайнфельтера справедливо правило, что с увеличением количества дополнительных Х-хромосом увеличивается количество и выраженность патологических симптомов.

Диагностика синдрома Клайнфельтера

Во многих странах синдром Клайнфельтера часто диагностируется ещё до рождения ребёнка, так как многие женщины позднего детородного возраста, в связи с высоким риском генетических дефектов у будущего потомства, используют пренатальную генетическую диагностику плода. Нередко пренатальное выявление синдрома Клайнфельтера является поводом для прерывания беременности, в том числе и по рекомендации врачей. В России анализ кариотипа будущего ребёнка проводится крайне редко.

При подозрении на синдром Клайнфельтера проводят лабораторный анализ крови для определения уровня мужских половых гормонов. Необходима дифференциальная диагностика с другими заболеваниями, протекающими с проявлениями андрогенной недостаточности. Точный диагноз синдрома Клайнфельтера ставят на основании изучения кариотипа (набора хромосом) больного.

Синдром Клайнфельтера необходимо дифференцировать от других форм первичного гипогонадизма. В любом случае при повышении уровня ФСГ в крови необходимо определение кариотипа для исключения в первую очередь синдрома Клайнфельтера.

Лечение

Цели лечения синдрома Клайнфельтера:

  • Восстановление нормального содержания тестостерона
  • Восстановление сексуальной функции
  • Ликвидация метаболических нарушений

При клинически выраженной патологии необходима пожизненная заместительная терапия препаратами тестостерона. Адекватная терапия позволяет не только улучшить внешний вид и общее самочувствие больного, но и вернуть способность к нормальной половой жизни. Кроме того, заместительная терапия предупреждает развитие остеопороза, купирует мышечную слабость. В юном возрасте лечение необходимо начинать сразу же после постановки диагноза. При синдроме Клайнфельтера лучше использовать препараты тестостерона длительного действия:

  • смесь эфиров тестостерона в виде масляного раствора, инъекции которого необходимо делать 2–3 раза в месяц;
  • тестостерона ундеканоат в виде масляного раствора — препарат-депо с замедленным высвобождением действующего вещества — инъекции 1 раз в 3 месяца.

Гормонолечение при наличии Х хромосомы у мужчин должно носить постоянный характер. Дозу препарата подбирают индивидуально под контролем уровня тестостерона и ЛГ в сыворотке крови.

Уже развившаяся гинекомастия при синдроме Клайнфельтера не подвергается инволюции даже в случае адекватного лечения, поэтому часто приходится прибегать к хирургической коррекции (мастэктомии).

Для профилактики таких сопутствующих заболеваний, как ожирение и сахарный диабет второго типа, больным рекомендуют придерживаться диеты и следить за собственным весом.

Мониторинг пациентов с синдромом Клайнфельтера следует осуществлять не реже 1 раза в 6–12 месяцев. Он должен включать следующие исследования:

  • общий анализ крови для оценки уровня гемоглобина и гематокрита;
  • гормональный анализ крови, включающий определение тестостерона и ЛГ (проводится на фоне лекарственной терапии за 1–2 дня до очередной инъекции тестостерона);
  • денситометрию (всем пациентам, у которых на момент постановки диагноза были обнаружены остеопения или остеопороз).

Внедрение интрацитоплазматической инъекции сперматозоида в яйцеклетку (ИКСИ) и данные о возможности присутствия зародышевых клеток в яичках у пациентов с синдромом Клайнфельтера предопределили применение метода искусственного оплодотворения для данной категории пациентов, некоторые попытки были удачными.

Прогноз

Прогноз для жизни и трудовой деятельности у пациентов с классическим синдромом Клайнфельтера — в целом благоприятен. Ранняя заместительная терапия, психологическая работа с пациентами и их родителями позволяют больным полностью адаптироваться в современном обществе.

Источник: www.katrenstyle.ru

Неоднократно в обсуждениях речь заходила о генетической разнице между мужчинами и женщинами. Посмотрим на общеизвестные факты еще раз?
Итак, то, что все мы знаем из биологии:

Сочетание половых хромосом между собой определяет пол организма. Клетки женского организма содержат две Х-хромосомы (ХХ). Мужские клетки содержат одну Х и одну Y-хромосомы (ХY).
Сочетание двух Y-хромосом (YY) не жизнеспособно.

Женская Х—хромосома
Количество генов — более 1400
Количество оснований — более 150 млн., из которых более 95% — определены
У женщин две Х-хромосомы, у мужчин одна Х-хромосома и одна Y-хромосома. Одна Х-хромосома наследуется от матери, а вторая (только у женщин) от бабушки по отцовской линии.

Хотя у женщин две X-хромосомы, в соматических клетках одна из них деактивирована и образует тельце Барра из Вики

Мужская Y-хромосома
Количество генов — более 200
Количество оснований — более 50 млн., из которых более 50% — определены
Y-хромосома содержит ген SRY, который определяет мужской пол и отвечает за регулирование деятельности яичек.
У женщин две Х-хромосомы, у мужчин одна Х-хромосома и одна Y-хромосома.

Правда, относительно количества генов в мужской и женской хромосоме числа в разных источниках несколько разнятся, но все сходятся на том, что мужская хромосома генами не обременена, и за наследственность, как таковую, ответственности не несет:
вариант: "Теперь мы знаем, что Y-хромосома содержит около двух дюжин генов, (сравните с 2000 генов в X-хромосоме). Большинство этих генов вовлечены в производство спермы или помогают клетке синтезировать белки"

Ну, а теперь про то, что на уроках биологии рассказывают не столь подробно и куда реже:

"…Триста миллионов лет тому назад в природе не существовало Y-хромосомы. У большинство животных была пара X-хромосом и пол определялся другими факторами, такими как температура. (У некоторых амфибий, таких как черепахи и крокодилы, и в настоящее время из одного и того же яйца может вылупиться как самец, так и самка, в зависимости от температуры). Затем в организме некого отдельного млекопитающего произошла мутация, и появившейся при этом новый ген стал определять "мужской путь развития" для тел — носителей этого гена…"

"… Ведущий научный журнал, Nature Genetics, предложил новую версию генеалогического древа человечества, основанную на до сих пор неизвестных вариациях — "гаплотипах", Y-хромосомы. Эти данные подтвердили, что предки современных людей мигрировали из Африки. Но судя по этим данным получалось, что генетическая Ева, прародительница всего человечества, на 84 тысячи лет старше генетического Адама, если измерять возраст по Y-хромосоме.
Женский эквивалент Y-хромосомы, т.е. генетическая информация, передаваемая от матери к дочери, известна как m-ДНК. Это ДНК митохондрий, которые являются источником энергии в клетке. В течение последних нескольких лет было общепринято, что "митахондриальная Ева" жила около 143 тысяч лет назад, что никак не согласовывалось с предполагаемым возрастом "Y -Адама", — 59 тысяч лет…"

отсюда

Встает резонный вопрос — как же происходило размножение все эти 84 тысячи лет? И как вообще женщины выжили все это время без мужчин в те суровые доисторические времена? В статье ответ дается размытый, мол, мужская хромосома все это время тоже совершенствовалась (хотя эзотерические источники недвусмысленно говорят о том, что мужской пол на этой планете появился на 80 тыс. лет позже, а до этого женщины преспокойно обходились без них):

"…На самом деле противоречия здесь нет. Эти данные говорят лишь о том, что различные хромосомы, найденные в человеческом геноме, появились в разное время. Около 143 тысяч лет назад в генофонде наших предков появилась новая разновидность m-ДНК. Она, как всякая удачная мутация распространялась во все большем количестве тел, пока не вытеснила все прочие разновидности из генофонда. Вот почему в настоящее время все женщины несут в себе эту новую, улучшенную версию m-ДНК. Это же произошло с Y-хромосомой у мужчин, только эволюции понадобилось еще 84 тысячи лет, чтобы создать супер-успешную версию, которая смогла вытеснить всех конкурентов". отсюда

Как говорится, выводы отсюда могут быть любыми.
Но когда кто-нибудь типа Малышевой начнет нести пургу о том, что женский мозг, мол, не столь совершенен как мужской, или что женщина генетически не приспособлена к чему-то (типа интеллектуального труда или социальных достижений), или тому подобные псевдонаучные сентенции, то, думаю, будет нелишним периодически напоминать себе все вышеизложенное. Потому что генетические исследования указывают на прямо противоположные факты.

Источник: leto-kat.livejournal.com

Что определяет пол ребенка?

В каждой соматической клетке человека содержится 23 пары хромосом, которые несут в себе генетическую информацию – такой набор хромосом называется диплоидным (46 хромосом). 22 пары называются аутосомами и не зависят от пола человека, следовательно, они одинаковы у мужчин и у женщин.

Хромосомы 23-й пары называются половыми, так как именно они определяют половую принадлежность. Эти хромосомы могут отличаться по форме, и их принято обозначать буквами X или Y. Если у человека в 23-й паре наблюдается сочетание Х- и Y-хромосомы, это особь мужского пола, если это две одинаковые Х-хромосомы – женского. Следовательно, клетки женского организма имеют набор 46ХХ (46 хромосом; одинаковые половые Х-хромосомы), а мужского – 46XY (46 хромосом; разные половые Х- и Y-хромосомы).

Половые клетки человека, сперматозоиды и яйцеклетки, содержат 23 хромосомы вместо 46-ти – такой набор называется гаплоидным. Такой набор хромосом необходим для образования уже диплоидной зиготы – клетки, образуемой при слиянии сперматозоида и яйцеклетки, которая является первой стадией развития эмбриона. Но всё же пол ребенка зависит от мужчины. Почему? Сейчас разберемся.

От кого зависит больше – от женщины или мужчины?

Многие все еще задаются вопросом «От кого зависит пол ребенка: от женщины или мужчины?» Ответ очевиден, если разобраться с тем, какие половые хромосомы несут половые клетки.

Яйцеклетка всегда имеет половую Х-хромосому, сперматозоид же может содержать как Х-, так и Y-хромосому. Если яйцеклетку оплодотворяет сперматозоид с Х-хромосомой, пол малыша будет женским (23Х+23Х=46ХХ). В случае, когда с яйцеклеткой сливается сперматозоид с Y-хромосомой, пол ребенка будет мужским (23Х+23Y=46XY). Так от кого зависит пол ребенка?

От чего зависит пол ребенка при зачатии? Это рандомный процесс, когда вероятность оплодотворения яйцеклетки тем или иным сперматозоидом примерно одинакова. То, что малыш будет мальчиком или девочкой – случайное стечение обстоятельств.

Женщинам с феминистичными склонностями придется или принять тот факт, что пол ребенка зависит от мужчины, или женщины будут долго и нудно пытаться повлиять на себя, модифицируя свой рацион, частоту половых актов и время сна, никаким образом при этом не повышая вероятность рождения мальчика или девочки.

Отчего именно сперматозоид с Y-хромосомой оплодотворяет яйцеклетку?

оплодотворение яйцеклеткиВо время овуляторной фазы менструального цикла яйцеклетка выходит в маточную трубу. Если в это время женщина имеет половой контакт с мужчиной, сперматозоиды в составе спермы поступают во влагалище, цервикальный канал, а затем – в матку и маточные трубы.

На пути к яйцеклетке у сперматозоидов есть множество преград:

  • кислая среда влагалища;
  • густая слизь в цервикальном канале;
  • обратный ток жидкости в маточных трубах;
  • иммунная система женщины;
  • лучистый венец и блестящая оболочка яйцеклетки.

Оплодотворить яйцеклетку может только один сперматозоид, и этим сперматозоидом может быть как носитель Х-хромосомы, так и Y-хромосомы. То, в какой позе происходит половой акт, какой диеты придерживался мужчина и т.д. не влияет на то, какой из сперматозоидов будет «победителем».

Почему народные способы и приметы не стоит воспринимать серьезно?

беременная женщина в синем платьеА потому, что если включить логику и здравый смысл, они не имеют никакого обоснования. Какие это методы?

  1. Древние календарные методы, например:
    • китайский метод планирования пола в зависимости от возраста женщины и месяца зачатия;
    • японский метод, где пол малыша зависит уже от месяца рождения матери и отца;
  2. Методы, связанные с половым актом: воздержание (для появления девочки) и безудержность (для появления мальчика), разнообразные позы как предиктор мужского или женского пола малыша;
  3. Диетические методы:
    • для получения ребенка-девочки – продукты с кальцием (яйца, молоко, орехи, свекла, мед, яблоки…);
    • для получения ребенка-мальчика – продукты с калием (грибы, картофель, апельсины, бананы, горох…).

А теперь разложим всё по полочкам. Можно ли есть имбирь при беременности.

Китайские и японские методы предполагают использование специальных таблиц для прогнозирования пола малыша. От кого зависит пол ребенка при зачатии? От сперматозоида, который оплодотворит яйцеклетку. Китайцы же упорно считали, что пол малыша зависит именно от матери, следовательно, этот метод уже лишается какой-либо логической подоплеки.

Ориентироваться на японский метод можно, если свято верить, что совместимость пар определяет исключительно гороскопом, потому что суть этого варианта определения пола такая же. Помним, от чего зависит пол будущего ребенка при зачатии, изучая этот метод!

Разве могут даты рождения двух партнеров повлиять на то, что через много лет из спермы мужчины самым ловким и сильным окажется именно Х- или Y-сперматозоид? Особенно учитывая рандомность последнего. Сюда же можно отнести всевозможные методы, обещающие рождение ребенка того или иного пола в зависимости от дня менструального цикла.

Темпы половой жизни, равно как и диета, могут повлиять на качество спермы и на вероятность оплодотворения, но никак не на пол потенциального малыша. Модификации половой жизни не входят в число тех факторов, от чего зависит пол будущего ребенка, так как не может ускорить передвижение или увеличить выносливость «того самого» сперматозоида.

Да и Х-, и Y-сперматозоиды отличаются не количеством кальция и калия, а всего лишь фрагментом хромосомы, содержащей ДНК. А про влияние женщины вообще не стоит говорить – мы все помним, от кого из родителей зависит пол ребенка.

Следовательно, народные методы планирования пола малыша основаны на мифах и незнании особенностей процесса оплодотворения, потому серьезно к ним относиться нельзя. А вот о том, какими способами можно воспользоваться для определения беременности в домашних условиях, найдете здесь.

Влияет ли пол плода на появление токсикоза?

То, что раньше называли токсикозом, сейчас называют гестозом. Гестоз – результат патологической адаптации женского организма к беременности. К причинам гестозов относят нарушение гормонального регулирования беременности, иммунологические изменения, наследственную предрасположенность, особенности прикрепления плаценты и множество других факторов.

Проявляются гестозы в виде гемодинамических нарушений (например, увеличение артериального давления), ухудшении функции мочевыделительной системы (нефропатия беременности, проявляющаяся в виде отеков, появления белка в моче и т.д.), в тяжелых случаях наблюдается патология свертываемости крови.

Все первые признаки беременности подробно описаны в этой статье. А тут — расписано, на каком сроке и на какой неделе с помощью УЗИ можно достоверно узнать пол будущего ребенка.

Полезное видео

Известно, что пол будущего ребенка определяется в момент зачатия и зависит от того, какой сперматозоид оплодотворит яйцеклетку. Является ли это соединение случайным, или можно на него каким-то образом воздействовать:

Заключение

  1. Сперматозоиды продуцируются половыми железами мужчины, что предполагает то, от кого зависит пол будущего ребенка.
  2. Факт того, что яйцеклетку может оплодотворить сперматозоид как с Х-, так и с Y-хромосомой, отвечает на вопрос, почему половая принадлежность ребенка зависит от отца, а не от матери.

Источник: bvk.news

Что говорят ученые?

По мнению исследователей, мужские хромосомы пропадут в ближайшие десять миллионов лет. Конечно, уверенности в этом быть не может, но прогнозы подтверждены довольно достоверными расчетами. Произойдет это по причине утери элементом структуры ДНК функциональности.

Уже сегодня достоверно известно, что мужские хромосомы существенно отличаются от прочих, включая Х, так как не могут вступать в обмен генетической информацией во время репродуктивного процесса. Это привело к утере наследственного материала и накоплению разнообразных мутаций, передаваемых между поколениями. Впрочем, ученые обращают внимание: наличие именно этой хромосомы, а точнее, ее отсутствие, не станет препятствием для заведения потомства.

Новейшие исследования

Зачастую после этого идет довольно неправдоподобная информация о космических пришельцах, но не в нашем случае. Ученые и в самом деле выяснили, когда именно сформировались хромосомы как инструмент определения половой принадлежности плода. Ранее бытовало мнение, что такое произошло впервые три миллиона столетий тому назад. Проведенные в недавнем прошлом исследовательские работы показали: за 166 миллионов лет до нашего времени и мужские хромосомы, и женские в генофонде нашего рода отсутствовали.

Многие придерживаются теории, гласящей, что половые (мужские, женские) хромосомы в качестве источника имеют один и тот же генный набор. В древности эволюция млекопитающих привела к появлению гена, аллель которого стала основанием для мужского типа организма. Аллель в современной науке называется Y, вторую же стали обозначать Х. То есть фактически в начале были практически идентичные хромосомы, отличие – в одном гене. Со временем Y стал носителем генной информации, более полезной для мужской половины рода, но не имеющей важности или вредной для женского.

Некоторые особенности человеческого организма

Исследователи, выясняя специфические характеристики мужских и женских хромосом, обнаружили, что Y не способен рекомбинировать с Х в период гаметогенеза, то есть в тот момент, когда половые клетки вызревают. Следовательно, возможные изменения провоцируются исключительно мутациями. Генетическая информация, формируемая в ходе такого процесса, не может оцениваться природными механизмами как брак, не происходит и разбавления генными вариациями. Следовательно, отец передает сыну полный набор – и так раз за разом, поколение за поколением. Постепенно количество видоизменений накапливается.

Процесс вызревания половых клеток сопряжен с делением, характерным сперматозоидам. Каждое такое деление – еще одна возможность дополнительных мутаций, скапливающихся в мужской половой хромосоме. Свою роль играет и кислотность среды, в которой происходит этот процесс – этот фактор дополнительно провоцирует незапланированные мутации. Ученые выяснили, что статистически именно Y — наиболее часто повреждаемая хромосома из всего генного набора.

Было, стало, будет

В настоящее время количество генов в Y-хромосоме, как говорят ученые, не менее 45, но и не более 90. Конкретные оценки несколько отличаются, это зависит от используемых исследователями методов. А вот в женской половой хромосоме содержится едва ли не полторы тысячи генов. Такая разница обусловлена эволюционными процессами, приведшими к утере генных сведений.

В прежние времена ученые, изучая динамику Y-хромосомы, оценили, что в среднем за один миллион лет теряется около 4,6 гена. Если такая прогрессия сохранится в будущем, полностью генетическая информация через этот объект перестанет переноситься уже в ближайшие десять миллионов лет.

Альтернативный подход

Конечно, X и Y – хромосомы, исследование которых в принципе стало доступно человечеству совсем недавно, поэтому преимущественно ученые располагают только теоретическими выкладками, не имея подтвержденных практическими наблюдениями данных, что всегда связано с небольшой вероятностью ошибки и разночтений. Уже сейчас некоторые убеждены, что озвученное выше мнение некорректное.

Специализированные исследования проводились в институте Уайтхеда. Ученые, исследуя мужской набор хромосом, пришли к выводу, что генетический распад полностью прекратился. Это был лишь эволюционный этап, связанный с особенностями человеческого организма, и в настоящее время достигнуто стабильное состояние, которое таким и сохранится не менее чем на десять миллионов лет.

Как это происходило

Упомянутое альтернативное исследование, посвященное X и Y хромосомам, предполагало секвенирование 11000000 пар оснований мужской хромосомы. В качестве экспериментальных образцов брали генетические данные макак-резусов. Последовательность, которую получили в ходе работы, сравнили с соответствующим участком мужской хромосомы шимпанзе, а в качестве контрольного взяли образец человеческой генетической информации. На основании полученных данных удалось подтвердить предположение о постоянстве генетического наполнения хромосом мужчин вот уже 25 миллионов лет.

Один из авторов этого исследования – Дженнифер Хьюз, объяснившая, что Y (обозначение мужской хромосомы) потерял всего лишь один ген, что разительно отличается от подопытных образцов, полученных от макак. Это свидетельствует, что в ближайшее (впрочем, называть так временные промежутки, измеряемые миллионами лет, можно лишь условно) время никакой потери хромосомы человечеству не грозит.

Страшно ли это?

В настоящее время ученые знают точно, какая хромосома отвечает за пол будущего ребенка: это зависит как раз от этой самой 23-ей пары, которая в мужском организме представлена вовсе даже и не одинаковой парой, ведь для женщин характерны ХХ, а для мужчин — XY. Поэтому теории о возможном исчезновении Y у многих вызывают опасения: не вымрет ли тогда человечество? Не станем ли мы однополыми?

Ученые заверяют: никаких поводов для беспокойства нет. Не так давно исследования, организованные в научном институте на Гавайях, наглядно показали, что здоровое потомство вполне возможно при наличии двух генов мужской хромосомы – и это применительно к мышам. Значит, в будущем удастся и вовсе обойти эту хромосому, успешно размножаясь без нее. Касается это в том числе и человека. Ученые обращают внимание: такие результаты исследования важны не только для тех, кто опасается за судьбу человечества в далеком будущем. Вполне возможно, они помогут найти ответ на вопросы об устранении мужского бесплодия.

Как проводился эксперимент

Рабочий процесс исследователей предполагал взаимодействие с репродуктивными клетками мышей мужского пола. Над ними провели работу, оставили от мужской хромосомы только два гена. Один из них отвечает за формирование мужского строения организма, в том числе гормональное развитие, сперматогенез, а второй — за фактор пролиферации.

В ходе исследований стало ясно, что обуславливающий пролиферацию спермогониев ген – единственный, в котором репродуктивная система мышей по-настоящему нуждается для формирования потомства.

Что происходило дальше?

Чтобы проверить результаты своих теоретических выводов, в лабораторных условиях ученые оплодотворили мышиные яйцеклетки с использованием усовершенствованных мужских хромосом. Для этого использовали высокоточный способ интрацитоплазматической инъекции. Эмбрионы, которые развились, были имплантированы в организм женских особей – в матку.

Статистика показала: 9% всех случаев беременности оказались успешными, а потомство родилось полностью здоровым. А вот если репродуктивный процесс происходит с участием такого самца мыши, чья хромосома не подвергалась изменению, процент успешных беременностей без отклонений в развитии потомства – всего лишь 26%. Это наглядно свидетельствует, что мужская половая хромосома в будущем, возможно, станет лишь пережитком прошедших тысячелетий. Вероятно, удастся найти на других хромосомах такие ответственные за генную информацию элементы, которые имеют соответствие с мужской хромосомой. Если активировать их функциональность, рассматриваемый объект и вовсе станет лишним.

Онкология и генетика

Некоторое время назад были опубликованы исследования, из которых следует зависимость вероятности развития злокачественных новообразований и потеря мужской хромосомы. Такое иногда наблюдается в пожилом возрасте. Страдают в первую очередь лейкоциты. Ученые также выяснили, что это является одной из причин ранней смертности: мужчины с генными изменениями обычно умирают раньше, а вот женщины живут дольше.

Впервые указанное явление описали еще около полувека тому назад, но последствия, равно как и причины, и по сей день остаются для общественности тайной за семью печатями. В рамках исследования в Швеции были взяты образцы крови 1153 человек в возрасте 70-84 лет. Исследовались только образцы крови мужчин, причем выборка была по людям, регулярно наблюдавшимся в клиниках державы как минимум с сорокалетнего возраста. Собранные сведения наглядно показали, что утрата мужской хромосомы характерна тем, чья продолжительность жизни приблизительно на 5,5 лет меньше в сравнении с мужчинами, не столкнувшимися с таким изменением. Если количество лейкоцитов с измененной генной информацией увеличивалось, повышалась вероятность летального исхода, спровоцированного злокачественными процессами.

Стереотипы и достоверная информация

Принято думать, что Y – хромосома, которая определяет половую принадлежность ребенка, и этим ее функции исчерпаны. На самом деле генетическая информация, хранимая ею, важна для многих функций. Ученые надеятся, что именно благодаря изучению особенностей этой хромосомы можно будет изобрести эффективное лекарство против опухолей. Врачи предполагают, что потеря хромосомы с возрастом приводит к ослаблению иммунной системы. Это, в свою очередь, создает условия для роста злокачественных клеток.

Источник: www.syl.ru