Число (диплоидный набор) хромосом у некоторых видов растений и животных

Пшеница твёрдая 28 Гидра 32
Пшеница мягкая 42 Дождевой червь 36
Рожь 14 Таракан 48
Кукуруза 20 Пчела 16
Подсолнечник 34 Дрозофила 8
Картофель 48 Кролик 44
Огурец 14 Шимпанзе 48
Яблоня 34 Человек 46

Соматические клетки обычно диплоидны (содержат двойной набор хромосом — 2n). В этих клетках хромосомы представлены парами. Диплоидный набор хромосом клеток конкретного вида живых организмов, характеризующийся числом, размером и формой хромосом, называют кариотипом. Хромосомы, принадлежащие к одной паре, называются гомологичными.
на из них унаследована от отцовского организма, другая — от материнского. Хромосомы разных пар называются негомологичными. Они отличаются друг от друга размерами, формой, местами расположения первичных и вторичных перетяжек. Хромосомы, одинаковые у обоих полов, называются аутосомами. Хромосомы, по которым мужской и женский пол отличаются друг от друга, называются половыми, или гетерохромосомами. В клетке человека содержится 46 хромосом или 23 пары: 22 пары аутосом и 1 пара половых хромосом. Половые хромосомы обозначают как X- и Y-хромосомы. Женщины имеют две X-хромосомы, а мужчины одну Х- и одну Y-хромосому.
Половые клетки гаплоидны (содержат одинарный набор хромосом — n). В этих клетках хромосомы представлены в единственном числе и не имеют пары в виде гомологичной хромосомы.

Деление клеток

Хромосомный набор

Хромосомный набор — совокупность хромосом, содержащихся в ядре. В зависимости от хромосомного набора клетки бывают соматическими и половыми.

Соматические и половые клетки

Тип Хромосомный набор Характеристика
Соматические 2n Диплоидны — содержат двойной набор хромосом. В этих клетках хромосомы представлены парами. Хромосомы, принадлежащие к одной паре, называются гомологичными.
Половые 1n Гаплоидны — содержат одинарный набор хромосом. В этих клетках хромосомы представлены в единственном числе и не имеют пары в виде гомологичной хромосомы.

Клеточный цикл

Клеточный цикл (жизненный цикл клетки) — существование клетки от момента её возникновения в результате деления материнской клетки до её собственного деления или смерти. Продолжительность клеточного цикла зависит от типа клетки, её функционального состояния и условий среды. Клеточный цикл включает митотический цикл и период покоя.
В период покоя (G0) клетка выполняет свойственные ей функции и избирает дальнейшую судьбу — погибает либо возвращается в митотический цикл. В непрерывно размножающихся клетках клеточный цикл совпадает с митотическим циклом, а период покоя отсутствует.
Митотический цикл состоит из четырёх периодов: пресинтетического (постмитотического) — G1, синтетического — S, постсинтетического (премитотического) — G2, митоза — М. Первые три периода — это подготовка клетки к делению (интерфаза), четвёртый период — само деление (митоз).

Интерфаза — подготовка клетки к делению — состоит из трёх периодов.

Периоды интерфазы


Периоды Число хромосом и хроматид Процессы
Пресинтетический (G1) 2n2c Увеличивается объем цитоплазмы и количество органоидов, происходит рост клетки после предыдущего деления.
Синтетический (S) 2n4c Происходит удвоение генетического материала (репликация ДНК), синтез белковых молекул, с которыми связывается ДНК, и превращение каждой хромосомы в две хроматиды.
Постсинтетический (G2) 2n4c Усиливаются процессы биосинтеза, происходит деление митохондрий и хлоропластов, удваиваются центриоли.

Деление эукариотических клеток

Основой размножения и индивидуального развития организмов является деление клетки.
Эукариотические клетки имеют три способа деления:

  • амитоз (прямое деление),
  • митоз (непрямое деление),
  • мейоз (редукционное деление).

Амитоз — редкий способ деления клетки, характерный для стареющих или опухолевых клеток. При амитозе ядро делится путём перетяжки и равномерное распределение наследственного материала не обеспечивается. После амитоза клетка не способна вступать в митотическое деление.

Митоз

Митоз состоит из четырёх фаз.

Фазы митоза


Фазы Число хромосом и хроматид Процессы
Профаза 2n4c Хромосомы спирализуются, центриоли (у животных клеток) расходятся к полюсам клетки, распадается ядерная оболочка, исчезают ядрышки, и начинает формироваться веретено деления.
Метафаза 2n4c Хромосомы, состоящие из двух хроматид, прикрепляются своими центромерами (первичными перетяжками) к нитям веретена деления. При этом все они располагаются в экваториальной плоскости. Эта структура называется метафазной пластинкой.
Анафаза 2n2c Центромеры делятся, и нити веретена деления растягивают отделившиеся друг от друга хроматиды к противоположным полюсам. Теперь разделённые хроматиды называются дочерними хромосомами.
Телофаза 2n2c Дочерние хромосомы достигают полюсов клетки, деспирализуются, нити веретена деления разрушаются, вокруг хромосом образуется ядерная оболочка, ядрышки восстанавливаются. Два образовавшихся ядра генетически идентичны. После этого следует цитокинез (деление цитоплазмы), в результате которого образуются две дочерние клетки. Органоиды распределяются между ними более или менее равномерно.

Биологическое значение митоза:

  • достигается генетическая стабильность;
  • увеличивается число клеток в организме;
  • происходит рост организма;
  • возможны явления регенерации и бесполого размножения у некоторых организмов.

Мейоз

Как и митоз, каждое из мейотических делений состоит из четырёх фаз.

Фазы мейоза

Фазы Число хромосом и хроматид Процессы
Профаза I 2n4c Происходят процессы, аналогичные процессам профазы митоза. Кроме того, гомологичные хромосомы, представленные двумя хроматидами, сближаются и «слипаются» друг с другом. Этот процесс называется конъюгацией. При этом происходит обмен участков гомологичных хромосом — кроссинговер (перекрест хромосом), то есть обмен наследственной информацией. После конъюгации гомологичные хромосомы отделяются друг от друга.
Метафаза I 2n4c Происходят процессы, аналогичные процессам метафазы митоза.
Анафаза I 1n2c В отличие от анафазы митоза, центромеры не делятся и к полюсам клетки отходит не по одной хроматиде от каждой хромосомы, а по одной хромосоме, состоящей из двух хроматид и скреплённой общей центромерой.
Телофаза I 1n2c Образуются две клетки с гаплоидным набором.
Интерфаза 1n2c Короткая. Репликации (удвоения) ДНК не происходит и, следовательно, диплоидность не восстанавливается.
Профаза II 1n2c Аналогичны процессам во время митоза.
Метафаза II 1n2c Аналогичны процессам во время митоза.
Анафаза II 1n1c Аналогичны процессам во время митоза.
Телофаза II 1n1c Аналогичны процессам во время митоза.

Биологическое значение мейоза:

  • основа полового размножения;
  • основа комбинативной изменчивости.

Деление прокариотических клеток

У прокариот митоза и мейоза нет. Бактерии размножаются бесполым путём — делением клетки при помощи перетяжек или перегородок, реже почкованием. Этим процессам предшествует удвоение кольцевой молекулы ДНК.
Кроме того, для бактерий характерен половой процесс — конъюгация. При конъюгации по специальному каналу, образующемуся между двумя клетками, фрагмент ДНК одной клетки передаётся другой клетке, то есть изменяется наследственная информация, содержащаяся в ДНК обоих клеток. Поскольку количество бактерий при этом не увеличивается, для корректности используют понятие «половой процесс», но не «половое размножение».

Источник: examer.ru



1. Какова роль ядра в клетке?

В ядре хранится наследственная информация о данной клетке и об организме в целом.

2. Приведите примеры безъядерных, одноядерных и многоядерных клеток.

Безъядерной является клетка любой бактерии; красные кровяные тельца человека — эритроциты.

Одноядерная клетка – нервная клетка человека(нейрон); клетка листа капусты.

Многоядерная клетка – клетка поперечно-полосатой мускулатуры; клетка гриба мукора.


Вопросы

1. Каковы функции ядра клетки?

Клеточное ядро содержит ДНК — вещество наследственности, в котором зашифрованы все свойства клетки. Ядро осуществляет регуляцию важнейших функций клетки. Во-первых, это деление, при котором образуются новые клетки. Во-вторых, ядро регулирует все процессы белкового синтеза, обмена веществ и энергии, идущие в клетке.

2. Какие организмы относятся к прокариотам?

Не имеют ядра и древнейшие одноклеточные существа на Земле — бактерии, поэтому их и называют прокариотами (от лат. рго — перед, раньше и греч. кагуоп — ядро).

3. Как устроена ядерная оболочка?

От цитоплазмы ядро отделено ядерной оболочкой, состоящей из двух мембран. Внутренняя мембрана гладкая, а наружная имеет многочисленные выступы. В оболочке ядра имеются многочисленные поры для того, чтобы различные вещества могли попадать из цитоплазмы в ядро, и наоборот.

4. Что собой представляет хроматин?

Хроматин представляет собой нити ДНК. Если же посмотреть в микроскоп на клетку между делениями, то окажется, что хромосомы раскручены до тончайших нитей ДНК. Дело в том, что гены — участки ДНК, в которых зашифрована структура какого-либо белка, — могут функционировать только в деспирализованном виде. Таким образом, в зависимости от того, в каком состоянии находится клетка, которую мы рассматриваем в микроскоп, хроматин будет иметь вид или хромосом, или тончайших деспирализованных нитей.


5. Каковы функции ядрышек?

Функция ядрышек — синтез РНК и белков, из которых формируются особые органоиды — рибосомы.

6. Из чего состоит хромосома?

Хромосомы скручены из нитей ДНК. В интерфазе клеточного цикла каждая хромосома удваивается и состоит из двух хроматид.

7. Где располагаются хромосомы у бактерий?

Хромосомы у бактерий располагаются в цитоплазме.

8. Что такое кариотип?

Набор хромосом, содержащийся в клетках того или иного вида организмов, получил название кариотипа.

9. Как называется набор хромосом в соматических клетках?

Ядра соматических клеток содержат, как правило, двойной, или диплоидный, набор хромосом, т. е. по две хромосомы каждого вида. Исходно половина хромосом досталась каждой клетке от материнской яйцеклетки и точно такие же хромосомы — от сперматозоида отца.

10. Какой набор хромосом в гаметах?

Гаплоидный набор содержится в ядрах половых клеток (гамет).

11. Может ли диплоидный набор содержать нечётное число хромосом?

Нет, т.к. в диплоидном наборе каждой хромосомы — по две.

Задания

Подсчитайте, каким должен быть гаплоидный набор хромосом в клетках рака, если диплоидный равен 118.

118 : 2 = 59

Ответ: гаплоидный набор у рака включает 59 хромосом.

Источник: resheba.me

Диплоидное число


Диплоидный организм содержит в клетке» data-layzr=»https://natworld.info/wp-content/uploads/2017/07/наборы-хромосом-в-гаплоидных-и-диплоидных-клетках-300×189.png» alt=»» width=»300″ height=»189″ data-layzr-srcset=»https://natworld.info/wp-content/uploads/2017/07/наборы-хромосом-в-гаплоидных-и-диплоидных-клетках-300×189.png 300w, https://natworld.info/wp-content/uploads/2017/07/наборы-хромосом-в-гаплоидных-и-диплоидных-клетках.png 500w, https://natworld.info/wp-content/uploads/2017/07/наборы-хромосом-в-гаплоидных-и-диплоидных-клетках-183×116.png 183w» sizes=»(max-width: 300px) 100vw, 300px» />

Диплоидным числом клетки является количество хромосом в ядре клетки. Это число обычно обозначается как 2n , где n равно количеству хромосом. Для человека это уравнение имеет следующий вид 2n=46 . У людей есть 2 набора из 23 хромосом, в общей сложности 46 хромосом:

  • Неполовые хромосомы: 22 пары аутосом.

Различие между гаплоидными и диплоидными клетками

Основное различие между гаплоидной и диплоидной клетками — это количество наборов хромосом, содержащихся в ядре. Плоидность — биологический термин, который характеризует число хромосом в клетке. Поэтому клетки с двумя наборами диплоидны, а клетки с одним набором гаплоидны.


В диплоидных организмах, таких как люди, гаплоидные клетки используются только для размножения, тогда как остальные клетки диплоидны. Другое различие между гаплоидной и диплоидной клетками заключается в том, как они делятся. Гаплоидные клетки воспроизводятся с помощью мейоза, тогда как диплоидные клетки проходят через митоз.

Понравилась статья? Поделись с друзьями:

Источник: NatWorld.info

Кариотнп — диплоидный набор хромосом, определяемый их числом, величиной и формой.[ …]

Гаплоидные растения (греч. haplos — единый, простой) имеют одинарный набор хромосом, в котором каждая представлена в единственном числе и не имеет гомолога. Гаплоидный набор хромосом называется также непарным, или неполным, в отличие ют двойного, или диплоидного, набора в обычных соматических клетках, содержащего пары гомологичных хромосом.[ …]

Мейотическое деление осуществляется в клетках с диплоидным набором хромосом, возникшим в результате оплодотворения, откуда следует, что каждая хромосома в них имеет своего гомолога. При зтом совмещаются процессы, обеспечивающие, с одной стороны, превращение диплоидного ядра (2п) в гаплоидное (п), с другой — рекомбинации генетического материала, обмен участками между гомологичными хромосомами (кроссинговер).[ …]

В результате оплодотворения в оплодотворенной яйцеклетке восстанавливается диплоидный набор хромосом. Яйцеклетки способны к оплодотворению в течение примерно 24 часов после овуляции, тогда как оплодотворяющая способность сперматозоидов сохраняется до 48 часов.[ …]

Биологическое значение оплодотворения состоит в том, что при слиянии гамет восстанавливается диплоидный набор хромосом, а новый организм несет наследственную информацию и признаки двух родителей. Это увеличивает разнообразие признаков организмов, повышает их жизнестойкость.[ …]

Поскольку у эукариотов ДНК содержится в каждой хромосоме, а каждая хромосома представлена в двух (диплоидных) или более (полиплоидных) копиях, то количество ДНК в хромосомах зависит от их плоидности. Например, гаплоидный набор хромосом половых клеток человека содержит ДНК длиной 1000 мм, причем метр этой ДНК разделяется между 23 хромосомами, для которых характерны разные размеры и формы. Следовательно, в каждой хромосоме содержится ДНК длиной от 15 до 85 мм ДНК. Напротив, диплоидный набор хромосом содержит ДНК длиной около 2000 мм.[ …]

Проблема возникновения полиплоидов в природе была разрешена путем их экспериментального получения. Чаще всего они образуются при переопылении двух разных диплоидных видов с последующим удвоением числа хромосом у спонтанных гибридов (аллополиплоидия . В подобных случаях, как правило, поли-плоидизация происходит вследствие образования нередуцированных гамет; при этом вновь возникший аллополиплоид содержит диплоидный набор отцовских и материнских хромосом.[ …]

Оплодотворение — это процесс объединения мужской и женской гамет, который приводит к формированию зиготы и последующему развитию нового организма. В процессе оплодотворения происходит установление диплоидного набора хромосом в зиготе, что определяет выдающееся биологическое значение этого процесса.[ …]

В момент оплодотворения мужская и женская гаметы сливаются, образуя одну клетку — зиготу, имеющую одно ядро — результат слияния ядер обеих гамет. От каждой из гамет ядро зиготы получает по гаплоидному набору хромосом, и в результате оно имеет двойной, диплоидный набор их. Из зиготы развивается организм, каждая клетка которого имеет диплоидный набор хромосом.[ …]

Как правило, мутации количества хромосом происходят в гаметах одного из родителей. Поэтому, все клетки организма, в зачатии которого принимала участие одна из мутантных гамет, будут содержать аномальный хромосомный набор. Однако иногда количественные хромосомные мутации могут случаться в процессе первых делений зиготы, образованной нормальными гаметами. Из такой зиготы разовьется организм, часть клеток которого будет иметь нормальный диплоидный набор, другая же часть — аномальный. Это явление называют хромосомным мозаицизмом, а индивидов, обладающих мозаицизмом — хромосомными мозаиками. Мозаицизм более част по половым хромосомам. Такие мозаики имеют генотип Х/ХХ, Х/ХУ, ХХ/ХУ, ХХУ/ХХ.[ …]

Хромосомы имеют различную форму. Это либо прямые или изогнутые палочки, либо разнообразные крючки, овальные тельца, шарики (рис. 36). Сильно варьируют они и по размерам. Каждая клетка растений данного вида содержит в своем ядре одинаковый набор (или наборы) хромосом из строго определенного числа разных, но строго определенных хромосом. У всех высших и некоторых низших растений в течение их жизненного цикла чередуются два поколения: с клетками, содержащими в ядрах однократный (гаплоидный, п) набор хромосом, и с клетками, ядра которых имеют двойной (диплоидный, 2 п) набор хромосом. Гаплоидный набор состоит из п разных хромосом, по одной каждого типа. Численная величина строго постоянна для всех гаплоидных клеток всех растений данного вида. Так, для лесной земляники это число составляет 7, для гороха — тоже 7, но для фасоли — 11, для яблони — 17, для земляной груши — 51, для сахарного тростника — 60. Диплоидный набор — это два гаплоидных, сложенных вместе. В нем по две хромосомы каждого типа. Если у гороха в гаплоидном Наборе 7 разных хромосом, то в диплоидном 7 разных пар хромосом, причем две хромосомы в пределах каждой пары одинаковы. Легко сосчитать, что для перечисленных растений диплоидный набор (2п) составляет для земляники 14, для гороха — 14, для фасоли — 22, для яблони — 34, для земляной груши — 102, а для сахарного тростника — 120 хромосом.[ …]

ГАМЕТА [гр. gametes супруг, gamete супруга] — половая клетка, репродуктивная клетка животных и растений. Гаметы обеспечивают передачу наследственной информации от родителей потомкам. Две гаметы различных полов, сливаясь при оплодртворении, образуют зиготу с диплоидным набором хромосом, которая дает начало новому организму.[ …]

В развитии мхов характерно чередование полового (гаметофи-та) и бесполого (спорофита) поколений. На растениях полового поколения образуются споры разных размеров. После оплодотворения женских половых клеток мужскими развивается спорофит (спорангий со спорами), клетки которого имеют диплоидный набор хромосом. Образующиеся в результате мейоза в спорангии споры имеют гаплоидный набор хромосом. Высыпаясь на почву, споры прорастают, давая начало растению, гаметофиту, имеющему в размножающихся митозом клетках гаплоидный набор хромосом. Гаплоидный гаметофит доминирует в цикле развития. На гаметофите вновь образуются половые клетки, и процесс повторяется. Специфической особенностью этих растений является не только доминирование гаплоидного гаметофита, но также и то, что гаметофит (половое поколение) и спорофит (бесполое поколение) представляют собой одно растение.[ …]

Считают, что человек является самым гетерозиготным видом. В соответствии с законами расщепления и независимого перераспределения генов, открытыми Г. Менделем, одиночная половая клетка человека содержит лишь половину (гаплоидное число) хромосом и генов, представленных в соматических клетках организма в диплоидном наборе. Если, например, какой-либо индивидуум является гетерозиготным организмом по трем парам генов Аа, Вв и Сс, то его половые клетки несут лишь половину таких генов (А, В, С или а, в, с). Следовательно, потомству такого индивида будет передана также половина генов родительского организма, например, генов А, В и С. Между тем разные половые клетки одного и того же родителя несут разные наборы хромосом, а оплодотворение той или иной клетки является делом случая. Поэтому от одних и тех же родителей дети наследуют разные наборы генов как от одного, так и от другого родителя, вследствие чего братья и сестры всегда имеют разные генотипы, а следовательно и разные фенотипы. Одинаковые генотипы и фенотипы, как уже отмечено выше, присущи лишь монозиготным близнецам.[ …]

Половое размножение — это образование нового организма при участии двух родительских особей. При половом размножении происходит слияние половых клеток — гамет мужского и женского организма. Новый организм несет наследственную информацию от обоих родителей. Половые клетки формируются в результате особого типа деления. В этом случае в отличие от клеток взрослого организма, которые несут диплоидный (двойной) набор хромосом, образующиеся гаметы имеют гаплоидный (одинарный) набор. В результате оплодотворения парный, диплоидный набор хромосом восстанавливается. Одна хромосома из пары является отцовской, а другая — материнской. Гаметы образуются в половых железах или в специализированных клетках в процессе мейоза.[ …]

Изучение политенных хромосом и явления полиплоидии тесно связано с исследованиями эндомитоза. Однако в тех случаях, когда самовоспроизведение хроматид идет интенсивно,.гомологичные хромосомы не спирализуются, а спариваются между собой, сохраняя вытянутую форму. Таким путем образуются пучки хроматид, причем число хроматид в одном пучке всегда соответствует диплоидному набору хромосом изучаемого объекта.[ …]

У млекопитающих зигота образуется в результате оплодотворения, начинающегося с того, что одна из мужских половых клеток достигает яйцеклетки и инициирует ее развитие. В активированной мужской половой клеткой яйцеклетке происходит ряд физических и химических процессов, включая перемещение протоплазмы, что ведет к установлению билатеральной симметрии яйцеклетки, а также перестройку плазматической мембраны, что исключает слияние с яйцеклеткой других (дополнительных) мужских половых клеток. Затем следует слияние плазматических мембран яйцеклетки и спермия с последующим разрушением ядерных мембран, что обеспечивает слияние ядер двух клеток. Ядра клеток сливаются, при этом восстанавливается диплоидный набор хромосом. Оплодотворение яйцеклетки сопровождается активированием в ней синтеза белков. Таким образом, образуется по существу одноклеточный организм.[ …]

Различают первичное и вторичное чередование поколений. Первичное чередование поколений отмечается у организмов, развивших в ходе эволюции половой прогресс, но сохранивших способность к бесполому размножению, и заключается в регулярном чередовании полового и бесполого поколений (рис. 87). Оно встречается у животных (простейших), у водорослей и у всех высших растений. У простейших классическим .примером первичного чередования поколений является бесполое размножение малярийного плазмодия в организме человека (шизогония) и половое — в организме малярийного комара. У растений половое поколение представлено гаметофитом, бесполое — спорофитом. Механизм первичного чередования заключается в том, что на растениях спорофитного поколения развиваются споры, которые на основе мейоза дают гаплоидные мужские и женские гаметофиты. На последних развиваются спермии и яйцеклетки. Оплодотворение яйцеклетки дает начало диплоидному спорофиту. Таким образом, клетки гаметофита содержат гаплоидный набор хромосом, а спорофита — диплоидный набор, т. е. у растений чередование поколений связано со сменой гаплоидного и диплоидного состояний.[ …]

Источник: ru-ecology.info