Интерфаза

Прежде чем делящаяся клетка попадает в митоз, она подвергается периоду роста, называемому интерфазой. Около 90% времени клетки при нормальном клеточном цикле могут быть потрачены на интерфазу, которая осуществляется в три основные фазы:

  • Фаза G1: период до синтеза ДНК. В этой фазе клетка увеличивается в массе, подготавливаясь к делению.
  • S-фаза: период, в течение которого происходит синтез ДНК. В большинстве клеток эта стадия происходит за очень короткий промежуток времени.
  • Фаза G2: клетка продолжает синтез дополнительных белков увеличиваться в размерах.

В последней части интерфазы, клетка все еще имеет нуклеолы. Ядро ограничено ядерной оболочкой, а хромосомы дублируются, но находятся в форме хроматина. В клетках животных две пары центриолей, образованных из репликации одной пары, расположены за пределами ядра.

После фазы G2 наступает митоз, который в свою очередь состоит из нескольких стадий и завершается цитокинезом (делением клетки).

Читайте также: Основные сходства и отличия митоза от мейоза.


Фазы митоза:

Препрофаза (в клетках растений)

Фаза деления клетки профаза» data-layzr=»https://natworld.info/wp-content/uploads/2017/07/-e1549541566396-300×183.jpg» alt=»» width=»300″ height=»183″ />

Препрофаза является дополнительной фазой во время митоза в клетках растений, которая не встречается у других эукариот, таких как животные или грибы. Она предшествует профазе и характеризуется двумя различными событиями.

Изменения, которые происходят в препрофазе:

  • Образование полосы препрофазы — плотного микротрубочного кольца под плазматической мембраной.
  • Начало зарождения микротрубочек в ядерной оболочке.

Профаза

Фаза деления клетки профаза» data-layzr=»https://natworld.info/wp-content/uploads/2017/07/-e1549541591644-300×238.jpg» alt=»» width=»300″ height=»238″ />

В профазе хроматин конденсируется в дискретные хромосомы. Ядерная оболочка ломается, а веретено деления образуются на противоположных полюсах клетки. Профаза (по сравнению с интерфазой) является первым истинным шагом митотического процесса.

Изменения, которые происходят в профазе:


  • Хроматиновые волокна превращаются в хромосомы, имеющие по две хроматиды, соединенные в центромер. Волокна деления, состоящие из микротрубочек и белков, образуется в цитоплазме.
  • В клетках животных волокна деления первоначально появляется как структуры, называемые астерами, которые окружают каждую пару центриолей.
  • Две пары центриолей (сформированных из репликации одной пары в интерфазе) отходят друг от друга к противоположным полюсам клетки из-за удлинения микротрубочек, образующихся между ними.

Прометафаза

Фаза деления клетки профаза» data-layzr=»https://natworld.info/wp-content/uploads/2017/07/-e1549541613473-300×273.png» alt=»» width=»300″ height=»273″ />

Прометафаза — фаза митоза после профазы и предшествующая метафазе в эукариотических соматических клетках. Некоторые источники относят процессы протекающие в прометафазе к поздней профазе и начальной стадии метафазы.

Изменения, которые происходят в прометафазе:

  • Ядерная оболочка распадается.
  • Полярные волокна, которые представляют собой микротрубочки, составляющие волокна веретена, перемещаются от каждого полюса до экватора клетки.
  • Кинетохоры, которые являются специализированными областями в центромерах хромосом, прикрепляются к типу микротрубочек, называемых кинетохорными нитями.
  • Нити кинетохора «взаимодействуют» с веретеном деления.
  • Хромосомы начинают мигрировать к центру клетки.

Метафаза

Фаза деления клетки профаза» data-layzr=»https://natworld.info/wp-content/uploads/2017/07/-e1549541652260-300×251.png» alt=»» width=»300″ height=»251″ />

В метафазе полностью развиваются волокна деления, а хромосомы выравниваются на метафазной (экваториальной) пластине (плоскость, которая одинаково удалена от двух полюсов).

Изменения, которые происходят в метафазе:

  • Ядерная мембрана полностью исчезает.
  • В клетках животных две пары центриолей расходятся в противоположных направлениях к полюсам клетки.
  • Полярные волокна (микротрубочки, составляющие волокна веретена) продолжают распространяться от полюсов к центру. Хромосомы перемещаются случайным образом, пока не присоединяют (при помощи своих кинетохор) к полярным волокнам с обеих сторон центромеров.
  • Хромосомы выравниваются на метафазной пластине под прямым углом к ​​полюсам веретена.
  • Хромосомы удерживаются на метафазной пластине равными силами полярных волокон, которые нажимают на их центромеры.

Анафаза

Фаза деления клетки профаза» data-layzr=»https://natworld.info/wp-content/uploads/2017/07/-e1549541696782-300×195.png» alt=»» width=»300″ height=»195″ />

В анафазе парные хромосомы (сестринские хроматиды) отделяются и начинают двигаться к противоположным концам (полюсам) клетки. Волокна веретена, не связанные с хроматидами, вытягиваются и удлиняют клетку. В конце анафазы каждый полюс содержит полную компиляцию хромосом.

Изменения, которые происходят в анафазе:

iv>
  • Парные центромеры в каждой отдельной хромосоме начинают раздвигаться.
  • Как только парные сестринские хроматиды отделены друг от друга, каждая из них считается «полной» хромосомой. Они называются дочерними хромосомами.
  • При помощи веретена деления, дочерние хромосомы перемещаются к полюсам на противоположные концы клетки.
  • Дочерние хромосомы сначала мигрируют в центромер, а кинетохорные нити становятся короче, чем хромосомы вблизи полюсов.
  • При подготовке к телофазе два полюса клетки также отдаляются друг от друга во время анафазы. В конце анафазы каждый полюс содержит полную компиляцию хромосом.
  • Начинается процесс цитокинеза (разделение цитоплазмы исходной клетки), который завершается после телофазы.

Телофаза

Фаза деления клетки профаза» data-layzr=»https://natworld.info/wp-content/uploads/2017/07/-e1549541761576-300×186.png» alt=»» width=»300″ height=»186″ />

В телофазе хромосомы достигают ядер новых дочерних клеток.

Изменения, которые происходят в телофазе:


  • Полярные волокна продолжают удлиняться.
  • Ядра начинают формироваться на противоположных полюсах.
  • Ядерные оболочки новых ядер образовываются из остатков ядерной оболочки материнской клетки и кусочков эндомембранной системы.
  • Появляются ядрышка.
  • Разматываются хроматиновые волокна хромосом.
  • После этих изменений телофаза и митоз в основном завершены, а генетическое содержание одной клетки поделено на две части.

Цитокинез

Фаза деления клетки профаза» data-layzr=»https://natworld.info/wp-content/uploads/2017/07/-e1549541792302-300×184.png» alt=»» width=»300″ height=»184″ />

Цитокинез — это разделение цитоплазмы клетки. Он начинается до конца митоза в анафазе и заканчивается вскоре после телофазы. В конце цитокинеза образуются две генетически идентичные дочерние клетки.

Дочерние клетки

Фаза деления клетки профаза» data-layzr=»https://natworld.info/wp-content/uploads/2017/07/дочерние-клетки-300×171.jpg» alt=»» width=»300″ height=»171″ data-layzr-srcset=»https://natworld.info/wp-content/uploads/2017/07/дочерние-клетки-300×171.jpg 300w, https://natworld.info/wp-content/uploads/2017/07/дочерние-клетки.jpg 500w, https://natworld.info/wp-content/uploads/2017/07/дочерние-клетки-437×250.jpg 437w» sizes=»(max-width: 300px) 100vw, 300px» />

>

В конце митоза и цитокинеза хромосомы распределены поровну между двумя дочерними клетками. Эти клетки являются идентичными диплоидными клетками, причем каждая из которых содержит полный набор хромосом.

Клетки, продуцируемые через митоз, отличаются от клеток, продуцируемых через мейоз. В мейозе образуются четыре дочерние клетки. Эти клетки представляют собой гаплоидные клетки, содержащие половину числа хромосом от исходной клетки. Половые клетки подвергаются мейозу. При делении половых клеток во время оплодотворения, гаплоидные клетки становятся диплоидной клеткой.

Понравилась статья? Поделись с друзьями:

Источник: NatWorld.info

Биологическое значение и роль митоза

Для митоза типично копирование информации, содержащейся в ядре в виде молекул ДНК, причем в генетический код не вносится никаких изменений, в отличие от мейоза, поэтому из материнской клетки образуются две дочерние, абсолютно идентичные ей, обладающие такими же свойствами.

Фаза деления клетки профаза

Таким образом, биологический смысл митоза содержится в поддержании генетической неизменности и постоянства свойств клеток.


Клетки, прошедшие через митотическое деление, имеют в себе генетическую информацию о строении всего организма, поэтому его развитие вполне возможно из одной-единственной клетки. Это является основой вегетативного размножения растений: если взять клубень картофеля или лист, сорванный с фиалки, и поместить в подходящие условия, удастся вырастить целое растение.

В сельском хозяйстве важно сохранять постоянную урожайность, плодовитость, устойчивость к вредителям и условиям среды, потому понятно, почему по возможности используется именно вегетативный способ размножения растений.

Также с помощью митоза происходит процесс регенерации – замены клеток и тканей. При повреждении или утрате части тела клетки начинают активно делиться, заменяя собой утраченные.

Особо впечатляет регенерация у гидры – небольшого кишечнополостного животного, обитающего в пресной воде.

Фаза деления клетки профаза

Длина гидры – несколько сантиметров, на одном конце тела у неё располагается подошва, с помощью которой она прикрепляется к субстрату, а на другом — щупальца, служащие для захватывания пищи.

Если разрезать тело на несколько частей, каждая из них будет способна восстановить недостающую, причем с сохранением пропорций и формы.

К сожалению, чем сложнее устроен организм, тем слабее у него выражена регенерация, потому более развитые животные, в том числе и люди, могут о подобном и не мечтать.

Стадии и схема митоза


Всю жизнь клетки можно уложить в шесть фаз в следующей последовательности:

Причем сам процесс деления состоит из последних пяти.

Кратко митоз можно описать так: клетка создает и копит вещества, происходит удвоение ДНК в ядре, хромосомы выходят в цитоплазму, чему предшествует их спирализация, размещаются на экваторе клетки и растаскиваются в виде дочерних хромосом к полюсам с помощью нитей веретена деления.

После все органоиды материнской клетки делятся примерно пополам, образуются две дочерних. Их генетический набор остается прежним:

  • 2n, если исходная была диплоидной;
  • n, если исходная была гаплоидной.

Гаплоидный митоз присущ растительным клеткам, в частности, гаметофитам, например, ростку папоротника в виде сердцевидной пластинки, листостебельному растению у мхов.

Общую схему митоза можно изобразить следующим образом:

Фаза деления клетки профаза

Интерфаза

Самому митозу предшествует длительная подготовка (интерфаза), и именно поэтому такое деление называется непрямым.

В эту фазу происходит собственно жизнь клетки. Она синтезирует белки, жиры и АТФ, копит их, растёт, увеличивает количество органоидов для последующего деления.


Она состоит из трех этапов в следующей очередности: пресинтетический (или G1), синтетический (S) и постсинтетический (G2).

В пресинтетический период происходит основной рост клетки и накопление энергии в АТФ для будущего деления, хромосомный набор составляет 2n2c (где n – количество хромосом, а c – число молекул ДНК). Важнейшее событие синтетического периода – удвоение (или репликация, или редупликация) ДНК.

Это происходит следующим образом: связи между соответственными друг другу азотистыми основаниями (аденин – тимин и гуанин – цитозин) разрываются с помощью специального фермента, а затем каждая из одинарных цепей достраивается до двойной по правилу комплементарности. Этот процесс изображен на следующей схеме:

Фаза деления клетки профаза

Таким образом хромосомный набор становится 2n4c, то есть появляются пары двухроматидных хромосом.

В постсинтетический период интерфазы происходит окончательная подготовка к митотическому делению: количество органоидов увеличивается, также удваиваются центриоли.

Профаза

Главный процесс, с которого начинается профаза – это спирализация (или скручивание) хромосом. Они становятся более компактными, уплотняются, и в конце концов их возможно разглядеть в самый обычный микроскоп.


Фаза деления клетки профаза

Затем образуется веретено деления, состоящее из двух центриолей с микротрубочками, расположенными на разных полюсах клетки. Генетический набор, несмотря на изменение формы материала, остаётся прежним – 2n4c.

Прометафаза

Прометафаза является продолжением профазы. Её главное событие – это разрушение оболочки ядра, в результате которого хромосомы выходят в цитоплазму, располагаются в зоне бывшего ядра. Затем они размещаются в линию в экваториальной плоскости веретена деления, на чем прометафаза завершается. Набор хромосом не изменяется.

Метафаза

В метафазу хромосомы спирализуются окончательно, потому обычно их изучение и подсчет ведется именно в эту фазу.

Фаза деления клетки профаза

Затем к хромосомам, расположенным на экваторе клетки, с её полюсов «тянутся» микротрубочки и присоединяются к ним, готовые растащить в разные стороны.

Анафаза

После прикрепления к хромосоме концов микротрубочек с разных сторон, происходит их одновременное расхождение. Каждая хромосома «разрывается» на две хроматиды, и с этого момента они называются дочерними хромосомами.

Нити веретена укорачиваются и тянут дочерние хромосомы к полюсам клетки, при этом хромосомный набор составляет в сумме 4n4c, а у каждого полюса – 2n2c.

Телофаза

Телофаза завершает митотическое деление клетки. Происходит деспирализация – раскручивание хромосом, приведение их в вид, в котором с них возможно считывать информацию. Ядерные оболочки заново образуются, а веретено деления разрушается за ненадобностью.

Фаза деления клетки профаза

Завершается телофаза разделением цитоплазмы и органоидов, отделением дочерних клеток друг от друга, формированием у каждой из них клеточных оболочек. Теперь эти клетки вполне самостоятельны, и каждая из них вступает заново в первую фазу жизни – интерфазу.

Источник: 1001student.ru

Фазы деления клетки

Важнейшим компонентом клеточного цикла является митотический (пролиферативный) цикл. Он представляет собой комплекс взаимосвязанных и согласованных явлений во время деления клетки, а также до и после него. Митотический цикл — это совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток следующей генерации. Кроме этого, в понятие жизненного цикла входят также период выполнения клеткой своих функций и периоды покоя. В это время дальнейшая клеточная судьба неопределенна: клетка может начать делиться (вступает в митоз) либо начать готовиться к выполнению специфических функций.

Основные стадии митоза

1. Редупликация (самоудвоение) генетической информации материнской клетки и равномерное распределение ее между дочерними клетками. Это сопровождается изменениями структуры и морфологии хромосом, в которых сосредоточено более 90% информации эукариотической клетки.
2. Митотический цикл состоит из четырех последовательных периодов: пресинтетического (или постмитотического) G1, синтетического S, постсинтетического (или премитотического) G2 и собственно митоза. Они составляют автокаталитическую интерфазу (подготовительный период).

Фазы клеточного цикла:

1) пресинтетическая (G1). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления: белки (гистоны, структурные белки, ферменты), РНК, молекулы АТФ. Происходит деление митохондрий и хлоропластов (т. е. структур, способных к ауторепродукции). Восстанавливаются черты организации интерфазной клетки после предшествующего деления;

2) синтетическая (S). Происходит удвоение генетического материала путем репликации ДНК. Она происходит полуконсервативным способом, когда двойная спираль молекулы ДНК расходится на две цепи и на каждой из них синтезируется комплементарная цепочка.
В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков. Также репликации подвергается небольшая часть митохонд-риальной ДНК (основная же ее часть реплицируется в G2 период);

3) постсинтетическая (G2). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация). Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных).

S и G2 непосредственно связаны с митозом, поэтому их иногда выделяют в отдельный период — препрофазу.
После этого наступает собственно митоз, который состоит из четырех фаз. Процесс деления включает в себя несколько последовательных фаз и представляет собой цикл. Его продолжительность различна и составляет у большинства клеток от 10 до 50 ч. При этом у клеток тела человека продолжительность самого митоза составляет 1—1,5 ч, G2-периода интерфазы — 2—3 ч, S-периода интерфазы — 6—10 ч.
Длительность отдельных стадий различна и варьируется в зависимости от типа ткани, физиологического состояния организма, внешних факторов. Наиболее продолжительны стадии сопряженные с процессами внутриклеточного синтеза: профаза и телофаза. Наиболее быстротечны фазы митоза, в ходе которых происходит движение хромосом: метафаза и анафаза. Непосредственно процесс расхождения хромосом к полюсам обычно не превышает 10 минут.

Профаза

К основным событиям профазы относят конденсацию хромосом внутри ядра и образование веретена деления в цитоплазме клетки. Распад ядрышка в профазе является характерной, но не обязательной для всех клеток особенностью.
Условно за начало профазы принимается момент возникновения микроскопически видимых хромосом вследствие конденсации внутриядерного хроматина. Уплотнение хромосом происходит за счёт многоуровневой спирализации ДНК. Данные изменения сопровождаются повышением активности фосфорилаз, модифицирующих гистоны, непосредственно участвующие в компоновке ДНК. Как следствие, резко снижается транскрипционная активность хроматина, инактивируются ядрышковые гены, большая часть ядрышковых белков диссоциирует. Конденсирующиеся сестринские хроматиды в ранней профазе остаются спаренными по всей своей длине с помощью белков-когезинов, однако к началу прометафазы связь между хроматидами сохраняется лишь в области центромер. К поздней профазе на каждой центромере сестринских хроматид формируются зрелые кинетохоры необходимые хромосомам для присоединения к микротрубочкам веретена деления в прометафазе.

Наряду с процессами внутриядерной конденсации хромосом в цитоплазме начинает формироваться митотическое веретено — одна из главных структур аппарата клеточного деления, ответственная за распределение хромосом между дочерними клетками. В образовании веретена деления у всех эукариотических клеток принимают участие полярные тельца, микротрубочки и кинетохоры хромосом.

С началом формирования митотического веретена в профазе сопряжены разительные изменения динамических свойств микротрубочек. Время полужизни средней микротрубочки уменьшается примерно в 20 раз от 5 минут до 15 секунд. Однако скорость их роста увеличивается примерно в 2 раза по сравнению с теми же интерфазными микротрубочками. Полимеризующиеся плюс-концы являются «динамически нестабильными» и резко переходят от равномерного роста к быстрому укорочению, при котором часто деполимеризуется вся микротрубочка. Примечательно, что для правильного функционирования митотического веретена необходим определенный баланс между процессами сборки и деполимеризации микротрубочек, так как ни стабилизированные, ни деполимеризованные микротрубочки веретена не в состоянии перемещать хромосомы.

Наряду с наблюдаемыми изменениями динамических свойств микротрубочек, слагающих нити веретена, в профазе закладываются полюса деления. Реплицированные в S-фазе центросомы расходятся в противоположных направлениях за счёт взаимодействия полюсных микротрубочек, растущих навстречу друг другу. Своими минус-концами микротрубочки погружены в аморфное вещество центросом, а процессы полимеризации протекают со стороны плюс-концов, обращенных к экваториальной плоскости клетки. При этом вероятный механизм расхождения полюсов объясняется следующим образом: динеино-подобные белки ориентируют в параллельном направлении полимеризующиеся плюс-концы полюсных микротрубочек, а кинезино-подобные белки в свою очередь расталкивают их в направлении к полюсам деления.

Параллельно конденсации хромосом и формированию митотического веретена, во время профазы происходит фрагментация эндоплазматического ретикулума, который распадается на мелкие вакуоли, расходящиеся затем к периферии клетки. Одновременно рибосомы теряют связи с мембранами ЭПР. Цистерны аппарата Гольджи также меняют свою околоядерную локализацию, распадаясь на отдельные диктиосомы, без особого порядка распределенные в цитоплазме.

Прометафаза

Окончание профазы и наступление прометафазы, как правило, знаменуется распадом ядерной мембраны. Целый ряд белков ламины фосфорилируется, вследствие чего ядерная оболочка фрагментируется на мелкие вакуоли, а поровые комплексы исчезают. После разрушения ядерной мембраны хромосомы без особого порядка располагаются в области ядра. Однако вскоре все они приходят в движение.

В прометафазе наблюдается интенсивное, но беспорядочное перемещение хромосом. Поначалу отдельные хромосомы стремительно дрейфуют к ближайшему полюсу митотического веретена со скоростью, достигающей 25 мкм/мин. Вблизи полюсов деления повышается вероятность взаимодействия новосинтезированных плюс-концов микротрубочек веретена с кинетохорами хромосом. В результате такого взаимодействия кинетохорные микротрубочки стабилизируются от спонтанной деполимеризации, а их рост отчасти обеспечивает отдаление соединенной с ними хромосомы в направлении от полюса к экваториальной плоскости веретена. С другой стороны хромосому настигают тяжи микротрубочек, идущие от противоположного полюса митотического веретена. Взаимодействуя с кинетохором, они также участвуют в движении хромосомы. В результате сестринские хроматиды оказываются связанными с противоположными полюсами веретена. Усилие, развиваемое микротрубочками от разных полюсов, не только стабилизирует взаимодействие этих микротрубочек с кинетохорами, но также, в конечном счёте, приводит каждую хромосому в плоскость метафазной пластинки.

В клетках млекопитающих прометафаза протекает, как правило, в течение 10—20 минут. В нейробластах кузнечика данная стадия занимает всего 4 минуты, а в эндосперме Haemanthus и в фибробластах тритона — около 30 минут.

Метафаза

В завершении прометафазы хромосомы располагаются в экваториальной плоскости веретена примерно на равном расстоянии от обоих полюсов деления, образуя метафазную пластинку. Морфология метафазной пластинки в клетках животных, как правило, отличается упорядоченным расположением хромосом: центромерные участки обращены к центру веретена, а плечи — к периферии клетки. В растительных клетках хромосомы зачастую лежат в экваториальной плоскости веретена без строгого порядка.

Метафаза занимает значительную часть периода митоза, и отличается относительно стабильным состоянием. Все это время хромосомы удерживаются в экваториальной плоскости веретена за счёт сбалансированных сил натяжения кинетохорных микротрубочек, совершая колебательные движения с незначительной амплитудой в плоскости метафазной пластинки.

В метафазе, также как и в течение других фаз митоза, продолжается активное обновление микротрубочек веретена путём интенсивной сборки и деполимеризации молекул тубулина. Несмотря на некоторую стабилизацию пучков кинетохорных микротрубочек, происходит постоянная переборка межполюсных микротрубочек, численность которых в метафазе достигает максимума.
К окончанию метафазы наблюдается чёткое обособление сестринских хроматид, соединение между которыми сохраняется лишь в центромерных участках. Плечи хроматид располагаются параллельно друг другу, и становится отчетливо заметной разделяющая их щель.

Анафаза

Анафаза — самая короткая стадия митоза, которая начинается внезапным разделением и последующим расхождением сестринских хроматид в направлении противоположных полюсов клетки. Хроматиды расходятся с равномерной скоростью достигающей 0,5—2 мкм/мин., при этом они часто принимают V-образную форму. Их движение обусловлено воздействием значительных сил, оценочно 10 дин на хромосому, что в 10 000 раз превышает усилие, необходимое для простого продвижения хромосомы через цитоплазму с наблюдаемой скоростью.
Как правило, расхождение хромосом в анафазе состоит из двух относительно независимых процессов называемых анафазой А и анафазой В.
Анафаза А характеризуется расхождением сестринских хроматид к противоположным полюсам деления клетки. За их движение при этом отвечают те же силы, что ранее удерживали хромосомы в плоскости метафазной пластинки. Процесс расхождения хроматид сопровождается сокращением длины деполимеризующихся кинетохорных микротрубочек. Причем их распад наблюдается преимущественно в области кинетохоров, со стороны плюс-концов. Вероятно, деполимеризация микротрубочек у кинетохоров либо в области полюсов деления является необходимым условием для перемещения сестринских хроматид, так как их движение прекращается при добавлении таксола или тяжёлой воды, оказывающих стабилизирующее воздействие на микротрубочки. Механизм, лежащий в основе расхождения хромосом в анафазе А, пока остается неизвестным.

Во время анафазы В расходятся сами полюса деления клетки, и, в отличии от анафазы А, данный процесс происходит за счёт сборки полюсных микротрубочек со стороны плюс-концов. Полимеризующиеся антипараллельные нити веретена при взаимодействии отчасти и создают расталкивающее полюса усилие. Величина относительного перемещения полюсов при этом, также как и степень перекрывания полюсных микротрубочек в экваториальной зоне клетки сильно варьирует у особей разных видов. Помимо расталкивающих сил, на полюса деления воздействуют тянущие силы со стороны астральных микротрубочек, которые создаются в результате взаимодействия с динеино-подобными белками на плазматической мембране клетки.
Последовательность, продолжительность и относительный вклад каждого из двух процессов, слагающих анафазу, могут быть крайне различны. Так в клетках млекопитающих анафаза В начинается сразу вслед за началом расхождения хроматид к противоположным полюсам и продолжается вплоть до удлинения митотического веретена в 1,5—2 раза по сравнению с метафазным. В некоторых других клетках анафаза В начинается только после того как хроматиды достигают полюсов деления. У некоторых простейших в процессе анафазы В веретено удлиняется в 15 раз по сравнению с метафазным. В растительных клетках анафаза В отсутствует.

Телофаза

Телофаза рассматривается как заключительная стадия митоза; за её начало принимается момент остановки разделённых сестринских хроматид у противоположных полюсов деления клетки. В ранней телофазе наблюдается деконденсация хромосом и, следовательно, увеличение их в объёме. Вблизи сгруппированных индивидуальных хромосом начинается слияние мембранных пузырьков, что дает начало реконструкции ядерной оболочки. Материалом для построения мембран новообразованных дочерних ядер служат фрагменты изначально распавшейся ядерной мембраны материнской клетки, а также элементы эндоплазматического ретикулума. При этом отдельные пузырьки связываются с поверхностью хромосом и сливаются воедино. Постепенно восстанавливается наружная и внутренняя ядерные мембраны, восстанавливаются ядерная ламина и ядерные поры. В процессе восстановления ядерной оболочки дискретные мембранные пузырьки, вероятно, соединяются с поверхностью хромосом без распознавания специфических последовательностей нуклеотидов, так как в результате проведенных экспериментов было выявлено, что восстановление ядерной мембраны происходит вокруг молекул ДНК, заимствованных у любого организма, даже у бактериального вируса. Внутри заново сформировавшихся клеточных ядер хроматин переходит в дисперсное состояние, возобновляется синтез РНК, и становятся различимыми ядрышки.

Параллельно с процессами образования ядер дочерних клеток в телофазе начинается и заканчивается разборка микротрубочек веретена деления. Деполимеризация протекает в направлении от полюсов деления к экваториальной плоскости клетки, от минус-концов к плюс-концам. При этом дольше всего сохраняются микротрубочки в средней части веретена деления, которые образуют остаточное тельце Флеминга.

Окончание телофазы преимущественно совпадает с разделением тела материнской клетки — цитокинезом. При этом образуются две или более дочерние клетки. Процессы, ведущие к разделению цитоплазмы, берут свое начало еще в середине анафазы и могут продолжаться после завершения телофазы. Митоз не всегда сопровождается разделением цитоплазмы, поэтому цитокинез не классифицируется в качестве отдельной фазы митотического деления и обычно рассматривается в составе телофазы.
Различают два основных типа цитокинеза: деление поперечной перетяжкой клетки и деление путём образования клеточной пластинки. Плоскость деления клетки детерминируется положением митотического веретена и проходит под прямым углом к длинной оси веретена.

При делении поперечной перетяжкой клетки место разделения цитоплазмы закладывается предварительно ещё в период анафазы, когда в плоскости метафазной пластинки под мембраной клетки возникает сократимое кольцо из актиновых и миозиновых филаментов. В дальнейшем, вследствие активности сократимого кольца, образуется борозда деления, которая постепенно углубляется вплоть до полного разделения клетки. По окончании цитокинеза сократимое кольцо полностью распадается, а плазматическая мембрана стягивается вокруг остаточного тельца Флеминга, состоящего из скопления остатков двух групп полюсных микротрубочек, тесно упакованных вместе с материалом плотного матрикса.
Деление путём образования клеточной пластинки начинается с перемещения мелких ограниченных мембраной пузырьков по направлению к экваториальной плоскости клетки. Здесь они сливаются, образуя дисковидную, окружённую мембраной структуру — раннюю клеточную пластинку. Мелкие пузырьки происходят в основном из аппарата Гольджи и перемещаются к экваториальной плоскости вдоль остаточных полюсных микротрубочек веретена деления, образующих цилиндрическую структуру, называемую фрагмопластом. По мере расширения клеточной пластинки микротрубочки раннего фрагмопласта попутно перемещаются к периферии клетки, где за счёт новых мембранных пузырьков продолжается рост клеточной пластинки вплоть до её окончательного слияния с мембраной материнской клетки. После окончательного разделения дочерних клеток в клеточной пластинке откладываются микрофибриллы целлюлозы, завершая образование жёсткой клеточной стенки.

Для определения завершения каждой фазы клеточного цикла необходимо наличие в нем контрольных точек. Если клетка «проходит» контрольную точку то она продолжается «двигаться» по клеточному циклу. Если же какие-либо обстоятельства, например повреждение ДНК, мешают клетке пройти через контрольную точку, которую можно сравнить со своего рода контрольным пунктом, то клетка останавливается и другой фазы клеточного цикла не наступает по крайней мере до тех пор, пока не будут устранены препятствия, не позволявшие клетке пройти через контрольный пункт.



Клетка в своей жизни проходит разные состояния: фазу роста и фазы подготовки к делению и деления.

Фазы деления клетки

Клеточный цикл — переход от деления к синтезу веществ, составляющих клетку, а затем опять к делению — можно представить на схеме в виде цикла, в котором выделяют несколько фаз.

После деления клетка вступает в фазу синтеза белков и роста, эту фазу называют G1. Часть клеток из этой фазы переходит в фазу G0, эти клетки функционируют и потом погибают без деления (например, эритроциты) . Но большинство клеток, накопив необходимые вещества и восстановив свой размер, а иногда и без изменения размеров после предыдущего деления, начинают подготовку к следующему делению.

Эта фаза называется фаза S — фаза синтеза ДНК, затем, когда хромосомы удвоились, клетка переходит в фазу G2 — фазу подготовки в митозу.

Затем происходит митоз (деление клетки) , и цикл повторяется заново. Фазы G1, G2, S вместе называются интерфазой (т. е. фазой между делениями клетки) .

Жизнь клетки и переход от одной фазы клеточного цикла к другой регулируется изменением концентраций белков циклинов, как это показано на рисунке.

При подготовке к делению происходит репликация ДНК, на каждой хромосоме синтезируется ее копия.

Пока эти хромосомы после удвоения не расходятся, каждая хромосома в этой паре называется хроматидой. После репликации ДНК конденсируется, хромосомы приобретают более компактную укладку, и в таком состоянии их можно увидеть в световом микроскопе.

Между делениями эти хромосомы не столь конденсированы и в большей степени расплетены. Понятно, что в конденсированном состоянии им трудно функционировать. Хромосома имеет вид в виде буквы Х только во время одной из стадий митоза. Раньше считалось, что между делениями клетки хромосомная ДНК ( хроматин ) находится в полностью расплетенном состоянии, но сейчас выясняется, что структура хромосом достаточно сложная и степень деконденсации хроматина между делениями не очень велика.

Процесс деления, при котором исходно диплоидная клетка дает две дочерние, также диплоидные, клетки, называется митозом. Имеющиеся в клетке хромосомы удваиваются, выстраиваются в клетке, образуя митотическую пластинку, к ним прикреплены нити веретена деления, которые растягиваются к полюсам клетки и клетка делится, образуя две копии исходного набора.

При образовании гамет, т. е. половых клеток — сперматозоидов и яйцеклеток — происходит деление клетки, называемое мейозом.

Исходная клетка имеет диплоидный набор хромосом, которые затем удваиваются. Но, если при митозе в каждой хромосоме хроматиды просто расходятся, то при мейозе хромосома (состоящая из двух хроматид) тесно переплетается своими частями с другой, гомологичной ей хромосомой (также состоящей из двух хроматид) , и происходит кроссинговер — обмен гомологичными участками хромосом.

Затем уже новые хромосомы с перемешанными мамиными и папиными генами расходятся и образуются клетки с диплоидным набором хромосом, но состав этих хромосом уже отличается от исходного, в них произошла рекомбинация. Завершается первое деление мейоза, и второе деление мейоза происходит без синтеза ДНК, поэтому при этом делении количество ДНК уменьшается вдвое. Из исходных клеток с диплоидным набором хромосом возникают гаметы с гаплоидным набором.

При мейозе фазы называются также, но указывается к какому делению мейоза она относится.

Кроссинговер — обмен частями между гомологичными хромосомами — происходит в профазе первого деления мейоза (профаза I), которая включает следующие этапы: лептонема, зигонема, пахинема, диплонема, диакинез.

Деление клетки

— биологический процесс, лежащий в основе размножения и индивидуального развития всех живых организмов.

Наиболее широко распространенная форма воспроизведения клеток у живых организмов — непрямое деление, или (от греч.

«митос» — нить). Митоз состоит из четырех последовательных фаз. Благодаря митозу обеспечивается равномерное распределение генетической информации родительской клетки между дочерними клетками.

Период жизни клетки между двумя митозами называют интерфазой. Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков, удваивается каждая хромосома, образуя две сестринские хроматиды, скрепленные общей центромерой, увеличивается число основных органоидов клетки.

Митоз

Фаза деления клетки профаза

В процессе митоза различают четыре фазы: профазу, метафазу, анафазу и телофазу.

  • I.

    Профаза — самая продолжительная фаза митоза. В ней спирализируются и вследствие этого утолщаются хромосомы, состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рассредоточиваются по всей клетке.

    В цитоплазме к концу профазы центриоли отходят к полосам и образуют веретено деления.

  • II. Метафаза — хромосомы продолжают спирализацию, их центромеры располагаются по экватору (в этой фазе они наиболее видны). К ним прикрепляются нити веретена деления.
  • III. Анафаза — делятся центромеры, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.
  • IV.

    Телофаза — делится цитоплазма, хромосомы раскручиваются, вновь образуются ядрышки и ядерные мембраны. После этого образуется перетяжка в экваториальной зоне клетки, разделяющая две сестринские клетки.

Так из одной исходной клетки (материнской) образуются две новые — дочерние, имеющие хромосомный набор, который по количеству и качеству, по содержанию наследственной информации, морфологическим, анатомическим и физиологическим особенностям полностью идентичен родительским.

Рост, индивидуальное развитие, постоянное обновление тканей многоклеточных организмов определяется процессами митотического деления клеток.

Все изменения, происходящие в процессе митоза, контролируются системой нейрорегуляции, т.

е. нервной системой, гормонами надпочечников, гипофиза, щитовидной железы и др.

Мейоз

Фаза деления клетки профаза

(от греч. «мейоз». — уменьшение) — это деление в зоне созревания половых клеток, сопровождающееся уменьшением числа хромосом вдвое. Он состоит и двух последовательно идущих делений, имеющих те же фазы, что и митоз.

Однако продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих в митозе.

Эти отличия в основном состоят в следующем.

В мейозе профаза I более продолжительна. В ней происходит конъюгация (соединение) хромосом и обмен генетической информацией.

Лекция № 13. Способы деления эукариотических клеток: митоз, мейоз, амитоз

(На рисунек вверху профаза отмечена цифрами 1, 2, 3, конъюгация показана под цифрой 3). В метафазе происходят те же изменения, что и в метафазе митоза, но при гаплоидном наборе хромосом (4).

В анафазе I центромеры, скрепляющие хроматиды, не делятся, а к полюсам отходит одна из гомологичных хромосом (5). В телофазе II образуются четыре клетки с гаплоидным набором хромосом (6).

Интерфаза перед вторым делением у мейоза очень короткая, в ней ДНК не синтезируется. Клетки (гаметы), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом.

Полный набор хромосом — диплоидный 2n — восстанавливается в организме при оплодотворении яйцеклетки, при половом размножении.

Половое размножение характеризуется обменом генетической информации между женскими и мужскими особями.

Оно связано с образованием и слиянием особых гаплоидных половых клеток — гамет, образующихся в результате мейоза. Оплодотворение представляет собой процесс слияния яйцеклетки и сперматозоида (женской и мужской гамет), при котором восстанавливается диплоидный набор хромосом. Оплодотворенную яйцеклетку называют зиготой.

В процессе оплодотворения можно наблюдать различные варианты соединения гамет. Например, при слиянии обеих гамет, имеющих одинаковые аллели одного или нескольких генов, образуется гомозигота, в потомстве которой сохраняются все признаки в чистом виде.

Если же в гаметах гены представлены различными аллелями — образуется гетерозигота. В ее потомстве обнаруживаются наследственные зачатки, соответствующие различным генам. У человека гомозиготность бывает лишь частичной, по отдельным генам.

Основные закономерности передачи наследственных свойств от родителей к потомкам были установлены Г.

Менделем во второй половине XIX в. С этого времени в генетике (науке о закономерностях наследственности и изменчивости организмов) прочно утвердились такие понятия, как доминантные и рецессивные признаки, генотип и фенотип и др. Доминантные признаки — преобладающие, рецессивные — уступающие, или исчезающие в последующих поколениях. В генетике эти признаки обозначаются буквами латинского алфавита: доминантные обозначаются заглавными буквами, рецессивные— строчными.

В случае гомозиготности каждая из пары генов (аллелей) отражает либо доминантные, либо рецессивные признаки, которые в обоих случаях проявляют свое действие.

У гетерозиготных организмов доминантная аллель находится в одной хромосоме, а рецессивная, подавляемая доминантом, в соответствующем участке другой гомологичной хромосомы.

При оплодотворении образуется новая комбинация диплоидного набора. Следовательно, образование нового организма начинается со слияния двух половых клеток (гамет), образующихся в результате мейоза. Во время мейоза происходит перераспределение генетического материала (рекомбинация генов) у потомков или обмен аллелями и их соединение в новых вариациях, что и определяет появление нового индивида.

Вскоре после оплодотворения происходит синтез ДНК, хромосомы удваиваются, и наступает первое деление ядра зиготы, которое осуществляется путем митоза и представляет собой начало развития нового организма.

Запись опубликована в рубрике Биология человека с метками молекулярная биология.

Добавьте в закладки постоянную ссылку.

Клетка размножается путем деления. Существуют два способа деления: митоз и мейоз.

Митоз (от греч. митос — нитка), или непрямое деление клетки, представляет собой непрерывный процесс, в результате которого происходит сначала удвоение, а затем равномерное распределение наследственного материала, содержащегося в хромосомах, между двумя образующимися клетками.

В этом его биологическое значение. Деление ядра влечет за собой деление всей клетки. Этот процесс называется цитокинезом (от греч. цитос — клетка).

Состояние клетки между двумя митозами называют интерфазой, или интеркинезом, а все происходящие в ней во время подготовки к митозу и в период деления изменения — митотическим, или клеточным, циклом.

У разных клеток митотические циклы имеют разную продолжительность. Большую часть времени клетка находится в состоянии интеркинеза, митоз длится сравнительно недолго.

В общем митотическом цикле собственно митоз занимает 1/25—1/20 времени, и у большинства клеток он продолжается от 0,5 до 2 ч.

Толщина хромосом столь мала, что при рассмотрении интерфазного ядра в световой микроскоп они не видны, удается лишь различить гранулы хроматина в узлах их скручивания.

Электронный микроскоп позволил обнаруживать хромосомы и в неделящемся ядре, хотя они в это время очень длинны и состоят из двух нитей хроматид, диаметр каждой из которых составляет всего 0,01 мкм. Следовательно, хромосомы в ядре не исчезают, а принимают форму длинных и тонких нитей, которые почти не видны.

Во время митоза ядро проходит четыре последовательные фазы: профазу, метафазу, анафазу и телофазу.

Профаза (от греч.

про — раньше, фазис — проявление). Это первая фаза деления ядра, во время которой внутри ядра появляются структурные элементы, имеющие вид тонких двойных нитей, что и обусловило название этого типа деления — митоз. В результате спирализации хромонем хромосомы в профазе уплотняются, укорачиваются и становятся отчетливо видимыми. К концу профазы можно хорошо наблюдать, что каждая хромосома состоит из двух тесно соприкасающихся одна с другой хроматид.

В дальнейшем обе хроматиды соединяются общим участком — центромерой и начинают постепенно передвигаться к клеточному экватору.

В середине или в конце профазы ядерная оболочка и ядрышки исчезают, центриоли удваиваются и отходят к полюсам. Из материала цитоплазмы и ядра начинает формироваться веретено деления. Оно состоит из двух видов нитей: опорных и тянущих (хромосомных). Опорные нити составляют основу веретена, они тянутся от одного полюса клетки к другому.

Тянущие нити соединяют центромеры хроматид с полюсами клетки и обеспечивают в последующем движение к ним хромосом. Митотический аппарат клетки очень чувствителен к различным внешним воздействиям.

При действии радиации, химических веществ и высокой температуры клеточное веретено может разрушаться, возникают всевозможные неправильности в делении клетки.

Метафаза (от греч.

мета — после, фазис — проявление). В метафазе хромосомы сильно уплотняются и приобретают определенную, характерную для данного вида форму.

Дочерние хроматиды в каждой паре разъединены хорошо видимой продольной щелью. Большинство хромосом становится двуплечими. Местом перегиба — центромерой — они прикрепляются к нити веретена. Все хромосомы располагаются в экваториальной плоскости клетки, свободные концы их направлены к центру клетки. В это время хромосомы лучше всего наблюдать и подсчитывать. Очень отчетливо видно и клеточное веретено.

Анафаза (от греч. ана — вверх, фазис — проявление).

Деление клетки

В анафазе вслед за делением центромер начинается расхождение хроматид, ставших теперь отдельными хромосомами, к противоположным полюсам. При этом хромосомы имеют вид разнообразных крючков, обращенных своими концами к центру клетки. Так как из каждой хромосомы возникли две совершенно одинаковые хроматиды, то в обеих образовавшихся дочерних клетках число хромосом будет равно диплоидному числу исходной материнской клетки.

Процесс деления центромер и движения к разным полюсам всех вновь образовавшихся парных хромосом отличается исключительной синхронностью.

В конце анафазы начинается раскручивание хромонемных нитей, и хромосомы, отошедшие к полюсам, видны уже не так четко.

Телофаза (от греч.

телос — конец, фазис — проявление). В телофазе продолжается деспирализация хромосомных нитей, и хромосомы постепенно становятся более тонкими и длинными, приближаясь к тому состоянию, в котором они были в профазе. Вокруг каждой группы хромосом образуется ядерная оболочка, формируется ядрышко. В это же время завершается деление цитоплазмы и возникает клеточная перегородка.

Обе новые дочерние клетки вступают в период интерфазы.

Весь процесс митоза, как уже отмечалось, занимает не более 2 ч. Продолжительность его зависит от вида и возраста клеток, а также от внешних условий, в которых они находятся (температура, освещенность, влажность воздуха и т.

д.). Отрицательно сказываются на нормальном ходе деления клеток высокие температуры, радиация, различные наркотики и растительные яды (колхицин, аценафтен и др.).

Митотическое деление клеток отличается высокой степенью точности и совершенства. Механизм митоза создавался и совершенствовался на протяжении многих миллионов лет эволюционного развития организмов.

В митозе находит свое проявление одно из важнейших свойств клетки как самоуправляемой и, самовоспроизводящейся живой биологической системы.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Вконтакте

Google+

Одноклассники

Источник: ekoshka.ru