Цитоскелет выполняет три главные функции.

1. Служит клетке механическим каркасом, который придаёт клетке типичную форму и обеспечивает связь между мембранной и органеллами. Каркас представляет собой динамичную структуру, которая постоянно обновляется по мере изменения внешних условий и состояния клетки.

2. Действует как «мотор» для клеточного движения. Двигательные (сократительные) белки содержатся не только в мышечных клетках, но и в других тканях. Компоненты цитоскелета определяют направление и координируют движение, деление, изменение формы клеток в процессе роста, перемещение органелл, движение цитоплазмы.

3. Служит в качестве «рельсов» для транспорта органелл и других крупных комплексов внутри клетки.

Микрофиламенты и промежуточные волокна.

Микрофиламенты построенные из F-актина пронизывают микроворсинки, образуя узлы. Эти микроволокна удерживаются вместе с помощью актинсвязывающих белков, наиболее важными из которых являются фимбрин и виллин. Кальмодулин и миозиноподобная АТФ – аза соединяют крайние микроволокна с плазматической мембраной. .


Клетка может менять набор синтезируемых белков цитоскелета в зависимости от условий, но процесс этот медленный. Конструкция цитоскелета способна быстро меняться даже без синтеза новых молекул, за счет полимеризации и деполимеризации нитей. В клетке все время идет обмен между нитями и раствором белков-мономеров в цитоплазме. Во многих клетках примерно половина молекул актина и тубулина находится в виде мономеров в цитоплазме и половина входит в состав нитей микрофиламентов. Клетка регулирует стабильность нитей цитоскелета, присоединяя к ним специальные белки, изменяющие скорость полимеризации. Общий принцип функционирования цитоскелета – динамическая нестабильность. Например, форму эритроцита в виде двояковогнутого диска поддерживает примембранный цитоскелет из волокон, образованных белком спектрином. Спектрин связан с белком анкерином (anchor – якорь), который соединяется с белком цитоплазматической мембраны, ответственным за транспорт анионов (Cl, HCO3). Дефекты белков спектрина и анкирина вызывают необычную форму эритроцитов. Такие эритроциты очень быстро разрушаются в селезенке. Болезни, вызываемые такими нарушениями, называют наследственным сфероцитозом или наследственным эллиптоцитозом.


Функции цитоскелета в клетке

Рис. Цитоскелет эукариот. Актиновые микрофиламенты окрашены в красный, микротрубочки — в зеленый, ядра клеток — в голубой цвет.

Функции цитоскелета в клетке

Кератиновые промежуточные филаменты в клетке.

Таким образом, эукариотические клетки обладают своего рода каркасом, который с одной стороны придает им определенную форму, а с другой допускает возможность её изменения, позволяя клеткам двигаться и перемещать свои органеллы с одной части клетки в другую. Кроме основных компонентов цитоскелета важную роль в его организации и функциональной интеграции играют вспомогательные белки. Эти белки отвечают за прикрепление органелл к цитоскелету, обеспечение направленного движения органелл, координацию функций цитоскелета.

Нарушения цитоскелета. Цитоскелет не является пассивной клеточной структурой, обеспечивающей только клеточную морфологию. Доказана роль цитоскелета в двигательной функции клеток, в структуре плазматической мембраны и, что очень важно, в рецепторной функции клеток.
мечено, что изменения цитоскелета нарушают процесс высвобождения активного вещества (гормона, медиатора и т.д.), а также изменяют рецепторную функцию клеток-мишеней. В результате нарушается рецепция клетками (в частности, нервными) различных стимулирующих веществ. Кроме того, отмечается нарушение двигательной активности клеток (например, бета-клеток поджелудочной железы), в результате возникает недостаточность инсулина. Поэтому проявления диабета довольно постоянны при хромосомных синдромах (Тернера, Клайнфельтера, Дауна и т.п.). Другим примером заболеваний с нарушением цитоскелета являются мышечная дистрофия Дюшенна и мышечная дистрофия Беккера. Обе формы являются результатом мутаций гена, кодирующего белок дистрофин. Дистрофин, в свою очередь, входит в состав цитоскелета. В результате при биопсии мышц выявляют характерные изменения – перерождение мышц и некроз волокон.

Органеллы, содержащие триплеты микротрубочек

Центриоли. Центриоль имеет цилиндрическую форму, диаметр 150 нм и длину 500 нм; стенка образована 9 триплетами (триплетный – состоящий из трёх) микротрубочек. Центриоль – центр организации митотического веретена – участвует в делении клетки. В ходе фазы S клеточного цикла центриоли удваиваются. Образовавшаяся новая центриоль расположена под прямым углом к первоначальной центриоли. При митозе пары центриолей, каждая из которых состоит из первоначальной и вновь образованной, расходятся к полюсам клетки и участвуют в образовании митотического веретена.


Базальное тельце состоит из 9 триплетов микротрубочек, расположенных в основании реснички или жгутика; служит матрицей при организации аксонемы.

Аксонема состоит из 9 периферических пар микротрубочек и двух расположенных центрально одиночных микротрубочек. В каждой периферической паре микротрубочек различают субфибриллу А и субфибриллу В. С субфибриллой А связаны так называемые наружные и внутренние ручки. В их состав входит белок динеин, обладающий способностью расщеплять АТФ. Аксонема – основной структурный элемент реснички и жгутика.

Ресничка – вырост клетки длиной 5-10мкм и толщиной 0,2 мкм, содержащий аксонему. Реснички присутствуют в эпителиальных клетках воздухопроводящих и половых путей; перемещают слизь с инородными частицами и остатками отмерших клеток и создают ток жидкости около клеточной поверхности. Под влиянием табачного дыма реснички воздухоносных путей разрушаются, что способствует задержке секрета в бронхах.

Функции цитоскелета в клетке

Рис. Схема поперечного сечения реснички. (Из кн. Б. Албертс и др. «Молекулярная биология клетки», том 3.)


Функции цитоскелета в клетке

Схема строения эукариотической эпителиальной клетки

Рисунок В.П. Андреева

Внутриклеточное пространство внутри клетки – это зона цитозоля неструктурированного мембранами внутриклеточного содержимого. Цитозоль является жидкой частью цитоплазмы и составляет около половины объема клетки. Здесь синтезируются белки, часть которых собирается на полисомах и остается в цитозоле. Цитозоль непосредственно сообщается через крупные ядерные поры с содержимым ядра. В ядре идут процессы транскрипции РНК с ДНК, причем синтезируются как нормальные клеточные, так и вирусные при вирусных инфекциях клеток. РНК из ядра транспортируется для синтеза белка в цитозоль на полирибосомы. Синтезированные белки под контролем шаперонов («катализаторов» принятия полипептидной цепью биологически значимой конформации) направляются в специальные участки эндоплазматического ретикулума. Лишние, испорченные, а также вирусные белки расщепляются в цитозоле так называемыми протеасомами. «Протеасомы» представляют собой мультипротеазные комплексы, состоящие из 28 субъединиц. Протеасомы расщепляют вирусные белки до пептидов- антигенов. Образовавшиеся пептиды- антигены вступают в связь с молекулами главного комплекса гистосовместимости (ГКГ – I), и направляются для экспрессии на клеточную мембрану. Комплексы антиген – ГКГ- I, расположенные на клеточной мембране, узнаются СД8+ Т- лимфоцитами, которые при этом активируются и обеспечивают противовирусную защиту, а также защиту от цитозольных внутриклеточных инфекций.


Внеклеточное пространство внутри клетки – это пространство (зона, компартмент) связанное с внешней внеклеточной средой и ограниченное мембранами структур и везикул, включающее в себя аппарат Гольджи, эндоплазматический ретикулум, лизосомы, эндосомы, фагосомы и фаголизосомы. Особое значение эта зона имеет в структуре антигенпредставляющих клеток, к которым относятся макрофаги и дендритные клетки (вариант лимфоцитов). На рибосомах эндоплазматической сети этих клеток синтезируются цепи молекул главного комплекса гистосовместимости (ГКГ- III). Конформация этих молекул произойдет только в том случае, если они соединятся с пептидами, образующимися в результате протеолиза (расщепления) белков – антигенов, захваченных клеткой посредством эндоцитоза или фагоцитоза. Это происходит тогда, когда фаголизосомы сливаются с везикулами, содержащими несконформированные молекулы ГКГ- II. С участием пептида молекула ГКГ- II принимает правильную конформацию, продвигается к мембране и экспрессируется на ней. Комплексы антигенов-пептидов с молекулами ГКГ- II распознают СД4+ Т – лимфоциты, которые играют главную роль в защитных реакциях от внеклеточных инфекций.


Концепции современной цитологии

Для разных клеточных типов у различных организмов характерны универсальные процессы. Это передача сигналов внутри клетки, регуляция клеточного цикла, апоптоз, тепловой шок, деградация внутриклеточных белков.

Апоптоз – биологический механизм гибели клетки по тому или иному сигналу извне или изнутри, который активирует внутри клетки определенные системы ферментов, обеспечивающих повреждение митохондрий, фрагментацию ДНК и затем фрагментацию ядра и цитоплазмы клетки. В результате клетка распадается на окруженные мембраной апоптозные тельца, которые могут фагоцитироваться соседними эпителиальными клетками и макрофагами. Содержимое погибающей клетки не попадает во внеклеточную среду. В ткани не развивается воспаление. Жизнь многоклеточных организмов невозможна без запрограммированной клеточной гибели, которая регулирует развитие, тканевый гомеостаз, клеточный ответ на повреждение ДНК и старение.

Тепловой шок

Тепловой шок может вызываться не только слишком высокой, но и слишком низкой температурой, ядами и множеством других воздействий, например, сбоем цикла суточной активности. Под воздействием этих факторов в клетке появляются белки с «неправильной» третичной структурой. Многие белки теплового шока как раз и помогают переводить в раствор и вновь сворачивать денатурированные или неправильно свернутые белки.


Реакция теплового шока сопровождается прекращением синтеза обычных для клетки белков и ускоренным синтезом различных защитных белков. Эти белки защищают от повреждений ДНК, матричные РНК, предшественники рибосом, и прочие важные для клетки структуры. Реакция теплового шока необычайно древняя и консервативная. Некоторые белки теплового шока обнаруживают гомологию у бактерий и человека.

К N-концу поврежденных, изношенных, недостроенных и функционально неактивных белков присоединяются молекулы белка-убиквитина, делая их мишенью для ферментов класса протеаз. Ассоциированный с убиквитином белок разрушается в особых мультикомпонентных комплексах, называемых протеасомами. Убиквитин – пример белка теплового шока, функционирующий в клетке и в нормальных условиях. В некоторых клетках, синтезируется до 30% аномальных белков. За открытие роли убиквитина в деградации белков была присуждена в 2004 году Нобелевская премия по химии.

Шапероны (от англ. букв.- пожилая дама, сопровождающая молодую девушку на балах) – семейство специализированных внутриклеточных белков, обеспечивающих быстрое и правильное сворачивание (фолдинг) вновь синтезированных молекул белка.

Кроме этого известны и другие белки шапероны.
пример, шаперон HSP 70. Его синтез активируется при многих стрессах, в частности при тепловом шоке (отсюда и название Heart shook protein 70 – белок теплового шока). Цифра 70 означает молекулярную массу в килодальтонах. Основная функция этого белка – предотвращение денатурации других белков при повышении температуры. Шапероны – одни из самых жизненно важных белков всех живых существ. Они возникли на самых ранних стадиях эволюции, возможно еще до разделения организмов на прокариоты и эукариоты

Передача внешнего сигнала в клетку

Клетки не могут сами принять решение о том, что нужно организму. Они должны получить сигнал извне и лишь после этого внутриклеточная регуляция включится в поддержание необходимых процессов. Известные биохимики Вильям Эллиот и Дафна Эллиот приводят аналогию с мореплаванием. «Каждый корабль представляет собой организационную единицу «клетку», где поддерживается порядок и дисциплина, упорядоченно работают все механизмы и т.д. Вместе с тем, цели и маршруты плавания для кораблей определяются внешними сигналами (гормонами) высшего руководства (эндокринные железы и мозг).

Клетка обычно принимает сигнал о «состоянии дел» вокруг нее с помощью рецепторов. Н.Н. Мушкамбаров и С.Л. Кузнецов выделяют несколько механизмов действия сигнальных веществ.

1) Вещество взаимодействует с рецептором плазмолеммы, что индуцирует передачу сигнала внутрь клетки и при этом происходит химическая модификация (фосфорилирование, дефосфорилирование) определенных белков. (Фосфорильная группа несет сильный отрицательный заряд, что способствует изменению конформации белковой молекулы).


2) Вещество взаимодействует с рецептором плазмолеммы, который является одновременно и ионным каналом, открывающимся при связывании регулятора.

3) Внеклеточный регулятор проникает внутрь клетки мишени, связывается с цитоплазматическим или ядерным белком-рецептором и, выступая после этого как транскрипционный фактор, влияет на экспрессию определенных генов. Так действуют гормоны стероидной природы (например, мужские и женские половые гормоны).

В качестве сигнальных молекул иногда выступают простагландины и NO (оксид азота). Они проникают в клетку-мишень и влияют на активность регуляторных ферментов. Конечный результат – модификация определенных белков.

Наиболее часто используемым является механизм первого типа. При этом конкретные способы его реализации весьма разнообразны.

Передача сигналов внутри клетки

Водорастворимые сигнальные молекулы, в том числе известные нейромедиаторы, пептидные гормоны и факторы роста, присоединяются к специфическим белковым рецепторам на поверхности клеток-мишеней. Поверхностные рецепторы связывают сигнальную молекулу (лиганд), проявляя большое сродство к ней, и это внеклеточное событие порождает внутриклеточный сигнал, изменяющий поведение клетки.

Рецепторы являются интегральными мембранными белками.

Существует множество сигнальных путей, начинающихся от мембранного рецептора.

(Изменение мембранных рецепторов сопровождается возникновением различных болезней. Так, например, дефект в рецепторе мужского полового гормона тестостерона приводит к тому, что особи с мужским генотипом (2А+ХУ) выглядят как самки; все млекопитающие, не подвергнувшиеся в эмбриональный период воздействию тестостерона, развиваются по женскому пути. Мутантные самцы имеют нормальные семенники, вырабатывающие тестостерон, но ткани этих самцов не реагируют на гормон из-за дефектности соответствующих рецепторов. В результате у таких самцов развиваются все вторичные половые признаки самок и их семенники не опускаются в мошонку, а остаются в брюшной полости. Этот синдром (тестикулярной феминизации или сидром Морриса) встречается у мышей, крыс, крупного рогатого скота, а также у человека. Хотя изменен только ген, кодирующий рецептор тестостерона, затронутыми оказываются все разнообразные типы клеток, в норме реагирующие на этот гормон. Таким образом, один внешний сигнал может включать различные наборы генов в клетках разного типа.

Подавляющее большинство поверхностных рецепторов для гидрофильных сигнальных молекул, связав лиганд на внешней стороне мембраны, претерпевает конформационное изменение. Это изменение создает внутриклеточный сигнал, изменяющий поведение клетки-мишени. Внутриклеточные сигнальные молекулы часто называют вторыми посредниками (мессенджерами, англ. messenger – посыльный), считая «первым посредником» внеклеточный лиганд. К вторичным (внутриклеточным) посредникам относят циклический аденозинмонофосфат (цАМФ), циклический гуанозин 3΄,5΄ — монофосфат (цГМФ), катионы кальция, инозит-1,4,5-трифосфат, диацилглицерин. Кроме этого, известны сигнальные пути опосредованные белками, липидами, в том числе свободными жирными кислотами, оксидом азота (NO), а также пути не содержащие вторичного посредника. Примером последнего варианта является влияние γ-интерферона на транскрипцию определенных генов, с антивирусной направленностью. Внутриклеточные сигнальные пути регуляции клеточной активности очень сложны, до конца не изучены и многие открытия еще впереди. Достаточно сказать, что внутриклеточный сигнальный путь с участием инсулина, несмотря на многолетние исследования, еще не расшифрован.

Источник: studfile.net

Строение цитоскелета

Все клетки имеют цитоскелет, но обычно речь идет о цитоскелете эукариотических клеток при обсуждении цитоскелета. Эукариотические клетки представляют собой сложные клетки, которые имеют ядро ​​и органеллы. Растения, животные, грибы и протисты имеют эукариотические клетки. Прокариотические клетки менее сложны, без настоящих ядер или органелл, кроме рибосом, и они обнаружены в одноклеточных организмах. бактерии и археи. Первоначально считалось, что цитоскелет прокариотических клеток не существует; это не было обнаружено до начала 1990-х годов.

Эукариотический цитоскелет состоит из трех типов филаментов, представляющих собой удлиненные цепочки белков: микрофиламенты, промежуточные филаменты и микротрубочки.

Функции цитоскелета в клетке

микрофиламентов

Микрофиламенты также называют актиновыми нитями, потому что они в основном состоят из белка актина; их структура состоит из двух нитей актина, намотанных по спирали. Они имеют толщину около 7 нанометров, что делает их самыми тонкими нитями в цитоскелете. Микрофиламенты имеют много функций. Они помогают в цитокинез, который является делением цитоплазмы клетки, когда она делится на две части дочерние клетки, Они помогают в клетку подвижность и позволяют одноклеточным организмам, таким как амебы, двигаться. Они также участвуют в цитоплазматическом потоке, который является потоком цитозоль (жидкая часть цитоплазмы) по всей клетке. Цитоплазматический поток транспортирует питательные вещества и клеточные органеллы. Микрофиламенты также являются частью мускул клетки и позволяют этим клеткам сокращаться вместе с миозином. Актин и миозин являются двумя основными компонентами сокращения мышц.

Промежуточные нити

Промежуточные нити имеют ширину около 8-12 нм; их называют промежуточными, потому что они находятся между размерами микрофиламентов и микротрубочек. Промежуточные нити состоят из различных белков, таких как кератин (содержится в волосах и ногтях, а также у животных с чешуей, рогами или копытами), виментина, десмина и ламина. Все промежуточные филаменты находятся в цитоплазме, за исключением ламинов, которые находятся в ядре и помогают поддерживать ядерную оболочку, окружающую ядро. Промежуточные филаменты в цитоплазме поддерживают форму клетки, несут напряжение и обеспечивают структурную поддержку клетки.

Микротрубочки

Микротрубочки являются самым большим из волокон цитоскелета при длине волны около 23 нм. Это полые трубки из альфа и бета тубулина. Микротрубочки образуют структуры, подобные жгутикам, которые представляют собой «хвосты», которые продвигают клетку вперед. Они также обнаружены в структурах, таких как реснички, которые являются придатками, которые увеличивают площадь поверхности клетки и в некоторых случаях позволяют клетке двигаться. Большинство микротрубочек в клетка животного родом из клетки органеллы называется центросома, который является микротрубочек организационный центр (МТЦ). Центросома находится около середины клетки, и микротрубочки выходят из нее наружу. Микротрубочки важны для формирования веретенообразного аппарата (или митотического веретена), который отделяет сестринские хроматиды так что одна копия может попасть в каждую дочернюю клетку во время деления клетки. Они также участвуют в транспортировке молекул внутри клетки и в формировании клеточная стенка в растение клетки.

Функция цитоскелета

Как описано выше, цитоскелет имеет несколько функций. Во-первых, это дает форму клетки. Это особенно важно в клетках без клеточных стенок, таких как клетки животных, которые не получают свою форму из толстого внешнего слоя. Это также может дать движение клетки. Микрофиламенты и микротрубочки могут разбирать, повторно собирать и сжиматься, позволяя клеткам ползать и мигрировать, а микротрубочки помогают формировать такие структуры, как реснички и жгутики, которые обеспечивают движение клеток.

Цитоскелет организует клетку и удерживает на месте ее органеллы, но также способствует перемещению органелл по всей клетке. Например, во время эндоцитоз когда клетка поглощает молекулу, микрофиламенты вытягивают везикул содержащий поглощенные частицы в клетку. Точно так же цитоскелет помогает перемещать хромосомы во время деления клетки.

Одной аналогией для цитоскелета является каркас здания. Подобно каркасу здания, цитоскелет является «каркасом» клетки, сохраняя структуры на месте, обеспечивая опору и придавая клетке определенную форму.

  • органелл – Специализированная структура внутри клетки, которая выполняет определенную функцию.
  • цитоплазма – все содержимое клетки, кроме ядра.
  • Шпиндельный аппарат – Структура, образованная в основном микротрубочками, которая разделяет хромосомы во время деления клеток.
  • Белки – Молекулы, состоящие из аминокислоты которые имеют много разных ролей в организме, в том числе формирование цитоскелета.

викторина

1. Какая клеточная органелла является центром организации микротрубочек?A. хлоропластов B. центросомаC. ядроD. рибосома

Ответ на вопрос № 1

В верно. Центросома представляет собой органеллу, расположенную в середине клетки, которая организует микротрубочки, которые излучают наружу из нее. Он содержится только в клетках животных, но не в других эукариотических клетках, таких как клетки растений или грибов.

2. Какой тип цитоскелетной нити является самым толстым в диаметре?A. МикротрубочкиB. микрофиламентовC. Промежуточные нити

Ответ на вопрос № 2

верно. Микротрубочки – самый толстый компонент цитоскелета, а микрофиламенты – самые тонкие. Промежуточные филаменты, как следует из их названия, находятся между микротрубочками и микрофиламентами по толщине.

3. Какая функция цитоскелета?A. Обеспечить структурную поддержку клеткиB. Чтобы помочь в делении клетокC. Чтобы помочь клетке двигатьсяD. Все вышеперечисленное

Ответ на вопрос № 3

D верно. Цитоскелет имеет множество функций, в том числе все эти варианты. Кроме того, он играет роль в передаче сигналов клетками, транспорте материалов и организации клеточных органелл.

Источник: fissi.ru

Функция цитоскелета

Цитоскелет распространяется по всей цитоплазме клетки и выполняет ряд важных функций:

  • Придает клеткам форму и обеспечивает структурную поддержку.
  • Удерживает клеточные органеллы рядом.
  • Помогает в образовании вакуолей.
  • Цитоскелет не является статической структурой, и способен разбирать и собирать свои внутренние части, чтобы обеспечить внутреннюю и общую подвижность клеток. Типы внутриклеточного движения, поддерживаемые цитоскелетом, включают транспортировку везикул в клетку и из нее, манипуляцию хромосомами во время митоза или мейоза и миграцию органелл. Цитоскелет делает возможной миграцию клеток, поскольку мобильность клеток необходима для создания и восстановления тканей, цитокинеза (деление цитоплазмы) при образовании дочерних клеток и в ответах иммунных клеток на микробы.
  • Цитоскелет помогает в транспортировке сигналов связи между клетками.
  • Он образует клеточные придаточные выступы, такие как реснички и жгутики (в некоторых клетках).

Структура цитоскелета

Цитоскелет состоит по меньшей мере из трех различных типов волокон: микротрубочек, микрофиламентов и промежуточных волокон. Эти волокна отличаются своим размером, причем микротрубочки являются самыми толстыми, а микроволокна являются самыми тонкими.

Протеиновые волокна

  • Микротрубочки представляют собой полые стержни, функционирующие прежде всего для поддержки или формирования клетки и выступают в роли «маршрутов», вдоль которых могут перемещаться органеллы. Микротрубочки обычно встречаются во всех эукариотических клетках. Они различаются по длине и составляют около 25 нм (нанометров) в диаметре.
  • Микрофиламенты или актиновые нити представляют собой тонкие твердые стержни, которые активны при мышечном сокращении. Они особенно распространены в мышечных клетках. Подобно микротрубочкам, они обычно встречаются во всех эукариотических клетках. Микрофиламенты состоят в основном из сократительного белкового актина и имеют диаметр до 8 нм.
  • Промежуточные нити могут быть многочисленными во многих клетках и обеспечивать поддержку микрофиламентов и микротрубочек, удерживая их на месте. Эти нити образуют кератины, обнаруженные в эпителиальных клетках и нейрофиламентах в нейронах. Они имеют диаметр около 10 нм.

Источник: NatWorld.info

Общее понятие

Прежде чем говорить на эту тему, следует дать понятие цитоплазмы. Это внутренняя полужидкая среда клетки, которая ограничена цитоплазматической мембраной. В эту внутреннюю среду не входят ядро и вакуоли клетки.

А цитоскелет — это каркас клетки, который находится в цитоплазме клетки. Он есть в клетках эукариот (живые организмы, содержащие в клетках ядро). Является динамичной структурой, которая способна изменяться.

В некоторых источниках, рассматриваемых строение и функции цитоскелета, дается несколько иное, сформулированное другими словами определение. Он является опорно-двигательной системой клеток, которая образована белковыми нитчатыми структурами. Участвует в движении клетки.

Строение

Рассмотрим строение данной структуры, далее узнаем, какие функции выполняет цитоскелет.

Цитоскелет образовался за счет белков. В его структуре выделяется несколько систем, название которых происходит от основных структурных элементов, либо от основных белков, которые входят в состав данных систем.

Поскольку цитоскелет — это структура, то в ней выделяют три основные составляющие. Они играют важную роль в жизни и движении клеток.

Цитоскелет состоит из микротрубочек, промежуточных филаментов и микрофиламентов. Последние иначе называют актиновыми филаментами. Все они по своей природе нестабильны: постоянно собираются и разбираются. Таким образом, все компоненты имеют динамическое равновесие с белками, им соответствующими.

Микротрубочки цитоскелета, представляющие собой жесткую структуру, присутствуют в цитоплазме эукариотов, а также в ее выростах, которые называются жгутиками и ресничками. Их длина может варьироваться, некоторые достигают несколько микрометров в длину. Иногда микротрубочки объединяются с помощью ручек или мостиков.

Микрофиламенты состоят из актина — белка, похожего на тот, что входит в состав мышц. В их строении в малом количестве есть и другие белки. Главное отличие актиновых филаментов от микротрубочек состоит в том, что некоторых из них нельзя увидеть в световом микроскопе. В животных клетках они объединяются в сплетение под мембраной и, таким образом, связаны с ее белками.

Микрофиламенты животных и растительных клеток также взаимодействуют с белком миозином. При этом их система имеет способность к сокращению.

Промежуточные филаменты состоят из различных белков. Данный структурный компонент достаточно не изучен. Есть вероятность, что у растений он вообще отсутствует. Также некоторые ученые считают, что промежуточные филаменты являются дополнением к микротрубочкам. Точно доказано то, что при рзрушении системы микротрубочек филаменты перестраиваются, а при обратной процедуре влияние филаментов практически не сказывается на микротрубочках.

Функции

Говоря о строении и функциях цитоскелета, перечислим, каким именно образом он влияет на клетку.

Благодаря микрофиламентам, происходит движение белков вдоль мембраны цитоплазмы. Актин, содержащийся в них, принимает участие в мышечных сокращениях, фагоцитозе, движениях клетки, а также в процессе слияния сперматозоидов и яйцеклеток.

Микротрубочки активно участвуют в поддержании клеточной формы. Еще одна их функция — транспортная. Они переносят органеллы. Они могут выполнять механическую работу, куда входит перемещение митохондрий и ресничек. Особо важная роль принадлежит микротрубочкам в процессе клеточного деления.

Они направлены на создание или сохранение определенной клеточной асимметрии. Под определенным воздействием микротрубочки разрушаются. Это может привести к утрате данной асимметрии.

К функциям цитоскелета также относятся адаптация клетки ко внешнему воздействию, процессы эндо- и экзоцитоза.

Таким образом, мы рассмотрели, какие функции выполняет цитоскелет в живом организме.

Эукариоты

Между эукариотами и прокариотами существует определенная разница. Поэтому важно рассмотреть цитоскелет данных животных. Эукариоты (животные, имеющие в клетке ядро) имеют три типа филаментов.

Актиновые филаменты (иначе говоря, микрофиламенты) размещаются у мембраны клетки. Они принимают участие в межклеточном взаимодействии, а также передают сигналы.

Промежуточные филаменты — это наименее динамичная часть цитоскелета.

Микротрубочки являются полыми цилиндрами, они — очень динамичная структура.

Прокариоты

К прокариотам относятся одноклеточные организмы — бактерии и археи, которые не имеют сформированного ядра. Считалось, что прокариоты не имеют цитоскелета. Но с 2001-го года начались активные исследования их клеток. Были найдены гомологи (схожие, подобные) всех элементов эукариотного цитоскелета.

Ученые установили, что одна из белковых групп бактериального клеточного скелета не имеет аналогов среди эукариотов.

Заключение

Таким образом, мы рассмотрели строение и функции цитоскелета. Он играет исключительно важную роль в жизнедеятельности клетки, обеспечивая важнейшие ее процессы.

Все цитоскелетные компоненты взаимодействуют. Это подтверждается существованием прямых контактов микрофиламентов, промежуточных филаментов и микротрубочек.

Согласно современным представлениям, важнейшим звеном, которое объединяет различные клеточные части и осуществляет передачу данных, является именно цитоскелет.

Источник: FB.ru

Функции цитоскелета в клетке

-Совокупность нитевидных белковых структур – микротрубочек и микрофиламентов, составляющих опорно-двигательную систему клетки.

Цитоскелет — высокодинамичная система цитоплазмы. Многие структуры цитоскелета могут легко разрушаться и вновь возникать, меняя свое расположение или морфологию. В основе этих особенностей цитоскелета лежат реакции полимеризации-деполимеризации основных структурных цитоскелетных белков и их взаимодействие с другими белками, как структурными, так и регуляторными.

Цитоскелетом обладают только эукариотические клетки, в клетках прокариот (бактерий) его нет, что является важным различием этих двух типов клеток. Цитоскелет придаёт клетке определённую форму даже при отсутствии жёсткой клеточной стенки. Он организует движение органоидов в цитоплазме (т. н. течение протоплазмы), лежащее в основе амёбоидного движения. Цитоскелет легко перестраивается, обеспечивая в случае необходимости изменение формы клеток. Способность клеток изменять форму обусловливает перемещение клеточных пластов на ранних стадиях зародышевого развития. При делении клетки (митозе) цитоскелет «разбирается» (диссоциирует), а в дочерних клетках вновь происходит его самосборка.

Функции цитоскелета многообразны. Он способствует поддержанию формы клетки, осуществляет все типы клеточных движений . Кроме того, цитоскелет может принимать участие в регуляции метаболической активности клетки .

Цитоскелет образован белками. В цитоскелете выделяют несколько основных систем, называемых либо по основным структурным элементам, заметным при электронно-микроскопических исследованиях (Микрофиламенты, промежуточные филаменты, микротрубочки), либо по основным белкам, входящим в их состав (актин-миозиновая система, кератины, тубулин-динеиновая система).

Промежуточные филаменты являются наименее понятной структурой среди основных компонентов цитоскелета в отношении их сборки, динамики и функций. Их свойства и динамика сильно отличаются от соответствующих характеристик как микротрубочек, так и актиновых филаментов. Функции же промежуточных филаментов до сих пор остаются в области гипотез.

Цитоплазматические промежуточные филаменты обнаружены в подавляющем большинстве эукариотических клеток, как у позвоночных, так и беспозвоночных животных, у высших растений. Редкие примеры клеток животных, у которых не обнаружены промежуточные филаменты, не могут считаться окончательными, так как белки промежуточных филаментов могут образовывать необычные структуры.

Морфологические микротрубочки представляют собой полые цилиндры диаметром около 25 нм с толщиной стенки около 5 нм. Стенка цилиндра состоит их протофиламентов — линейных полимеров тубулина с продольно ориентированными гетеродимерами. В составе микротрубочек протофиламенты идут вдоль их длинной оси с небольшим сдвигом друг относительно друга, так что субъединицы тубулина образуют трехстартовую спираль. В состав микротрубочек большинства животных входит 13 протофиламентов

Актиновые филаменты играют ключевую роль в сократительном аппарате мышечных и немышечных клеток , а также принимают участие во многих других клеточных процессах, таких как подвижность , поддержание формы клетки , цитокинез

Актиновые филаменты или фибриллярный актин ( F-актин ) представляют собой тонкие фибриллы диаметром 6-8 нм. Они являются результатом полимеризации глобулярного актина — G-актина . В клетке актиновые филаменты с помощью других белков могут образовывать множество разнообразных структур.

Источник: biology623.blogspot.com