Ученые позиционируют животную клетку как основную часть организма представителя царства животных — как одноклеточных так и многоклеточных.

Они являются эукариотическими, с наличием истинного ядра и специализированных структур — органелл, выполняющих дифференцированные функции.

Растения, грибы и протисты имеют эукариотические клетки, у бактерий и архей определяются более простые прокариотические клетки.

Строение животной клетки отличается от растительной. Животная клетка не имеет стенок или хлоропластов (органелл, выполняющих фотосинтез).

  • Рисунок животной клетки с подписями
  • Основные органеллы и органоиды животной клетки
  • Как выглядит животная клетка под микроскопом
  • Функции центриоли
  • Строение клетки человека — рисунок с подписями
  • Признаки живой клетки
  • Отличительные признаки растительной и животной клетки в таблице
  • Заключение

Рисунок животной клетки с подписями

Клетка состоит из множества специализированных органелл, выполняющих различные функции.

Функция ядра в животной клетке

Чаще всего, в ней содержится большинство, иногда все существующие типы органелл.

Основные органеллы и органоиды животной клетки

Органеллы и органоиды являются «органами», ответственными за функционирование микроорганизма.

Ядро

Ядро является источником дезоксирибонуклеиновой кислоты (ДНК) — генетического материала. ДНК является источником создания белков, контролирующих состояние организма. В ядре, нити ДНК плотно обматываются вокруг узкоспециализированных белков (гистонов), формируя хромосомы.

Функция ядра в животной клетке

Ядро выбирает гены, контролируя активность и функционирование единицы ткани. В зависимости от типа клетки, в ней представлен различный набор генов. ДНК находится в нуклеоидной области ядра, где образуются рибосомы. Ядро окружено ядерной мембраной (кариолеммой), двойным липидным бислоем, отгораживающим его от остальных компонентов.


Ядро регулирует рост и деление клетки. При митозе в ядре образуются хромосомы, которые дублируются в процессе размножения, образуя две дочерние единицы. Органеллы, называемые центросомами, помогают организовать ДНК во время деления. Ядро обычно представлено в единственном числе.

Рибосомы

Рибосомы — место синтеза белка. Они обнаружены во всех единицах ткани, у растений и у животных. В ядре, последовательность ДНК, которая кодирует определенный белок, копируется в свободную мессенджерную РНК (мРНК) цепь.

Цепочка мРНК перемещается к рибосоме через передающую РНК (тРНК), и ее последовательность используется для определения системы расположения аминокислот в цепи, составляющей белок. В животной ткани рибосомы расположены свободно в цитоплазме или прикреплены к мембранам эндоплазматического ретикулума.

Эндоплазматический ретикулум

Эндоплазматический ретикулум (ER) представляет собой сеть мембранных мешочков (цистерн), отходящих от внешней ядерной мембраны. Он модифицирует и транспортирует белки, созданные рибосомами.

Функция ядра в животной клетке

Существует два вида эндоплазматического ретикулума:

  • гранулярный;
  • агранулярный.

Гранулярный ЭР содержит прикрепленные рибосомы. Агранулярный ЭР свободен от прикрепленных рибосом, участвует в создании липидов и стероидных гормонов, удалении токсичных веществ.


Везикулы

Везикулы представляют собой небольшие сферы липидного бислоя, входящие в состав наружной мембраны. Они используются для транспортировки молекул по клетке от одной органеллы к другой, участвуют в метаболизме.

Специализированные везикулы, называемые лизосомами, содержат ферменты, переваривающие большие молекулы (углеводы, липиды и белки) в более мелкие, для облегчения их использования тканью.

Аппарат Гольджи

Аппарат Гольджи (комплекс Гольджи, тело Гольджи) также состоит из не соединенных между собой цистерн (в отличие от эндоплазматического ретикулума).

Функция ядра в животной клетке

Аппарат Гольджи получает белки, сортирует и упаковывает их в везикулы.

Митохондрии

В митохондриях осуществляется процесс клеточного дыхания. Сахара и жиры разрушаются, выделяется энергия в виде аденозинтрифосфата (АТФ). АТФ управляет всеми клеточными процессами, митохондрии продуцируют АТФ клетки. Митохондрии иногда называют «генераторами».

Цитоплазма клетки

Цитоплазма – жидкостная среда клетки. Она может функционировать даже без ядра, однако, короткое время.

Цитозоль

Цитозолью называют клеточную жидкость. Цитозоль и все органеллы внутри нее, за исключением ядра, в совокупности называются цитоплазмой. Цитозоль в основном состоит из воды, а также содержит ионы (калий, белки и малые молекулы).

Цитоскелет

Цитоскелет представляет собой сеть нитей и трубочек, распространенных по всей цитоплазме.


Функция ядра в животной клетке

Он выполняет следующие функции:

  • придает форму;
  • обеспечивает прочность;
  • стабилизирует ткани;
  • закрепляет органеллы на определенных местах;
  • играет важную роль в передаче сигналов.

Существует три типа цитоскелетных нитей: микрофиламенты, микротрубочки и промежуточные филаменты. Микрофиламенты являются самыми маленькими элементами цитоскелета, а микротрубочки – самыми большими.

Клеточная мембрана

Клеточная мембрана полностью окружает животную клетку, не имеющую клеточной стенки, в отличие от растений. Клеточная мембрана представляет собой двойной слой, состоящий из фосфолипидов.

Функция ядра в животной клетке

Фосфолипиды являются молекулами, содержащими фосфаты, прикрепленные к глицерину и радикалам жирных кислот. Они спонтанно образуют двойные мембраны в воде из-за своих одновременно гидрофильных и гидрофобных свойств.


Клеточная мембрана избирательно проницаема — она способна пропускать определенные молекулы. Кислород и диоксид углерода проходят легко, в то время как большие или заряженные молекулы должны проходить через специальный канал в мембране, что поддерживает гомеостаз.

Лизосомы

Лизосомы представляют собой органеллы, осуществляющие деградацию веществ. В состав лизосомы входит около 40 расщепляющих ферментов. Интересно, что сам клеточный организм защищен от деградации в случае прорыва лизосомных ферментов в цитоплазму, разложению подвергаются закончившие выполнять свои функции митохондрии. После расщепления образуются остаточные тела, первичные лизосомы превращаются во вторичные.

Центриоль

Центриоли являются плотными телами, расположенными около ядра. Количество центриолей меняется, чаще всего их две. Центриоли соединены эндоплазматической перемычкой.

Как выглядит животная клетка под микроскопом

Под стандартным оптическим микроскопом видны основные компоненты. За счет того, что они соединены в непрерывно меняющийся организм, находящийся в движении, определить отдельные органеллы бывает сложно.

Функция ядра в животной клетке

Не вызывают сомнений следующие части:

  • ядро;
  • цитоплазма;
  • клеточная мембрана.

Подробнее изучить клетку поможет большая разрешающая способность микроскопа, тщательно подготовленный препарат и наличие некоторой практики.

Функции центриоли

Точные функции центриоли остаются неизвестными. Распространена гипотеза, что центриоли участвуют в процессе деления, образуя веретено деления и определяя его направленность, однако определенность в научном мире отсутствует.

Строение клетки человека — рисунок с подписями

Единица клеточной ткани человека имеет сложное строение. На рисунке отмечены основные структуры.

Функция ядра в животной клетке

Каждый компонент имеет свое назначение, лишь в конгломерате они обеспечивают функционирование важной части живого организма.

Признаки живой клетки

Живая клетка по своим признакам схожа с живым существом в целом. Она дышит, питается, развивается, делится, в ее структуре происходят различные процессы. Понятно, что замирание естественных для организма процессов означает гибель.

Отличительные признаки растительной и животной клетки в таблице

Растительная и животная клетки имеют как сходства, так и различия, которые кратко описаны в таблице:


Признак Растительная Животная
Получение питания Автотрофный.

Фотосинтезирует питательные вещества

Гетеротрофный. Не производит органику.
Хранение питания В вакуоли В цитоплазме
Запасной углевод крахмал гликоген
Репродуктивная система Образование перегородки в материнской единице Образование перетяжки в материнской единице
Клеточный центр и центриоли У низших растений У всех типов
Клеточная стенка Плотная, сохраняет форму Гибкая, позволяет изменяться

Основные компоненты являются сходными как для частиц растительного, так и животного мира.

Заключение

Животная клетка является сложным действующим организмом, обладающим отличительными признаками, функциями, целью существования. Все органеллы и органоиды вносят свою лепту в процесс жизнедеятельности этого микроорганизма.

Некоторые компоненты изучены учеными, функции же и особенности других еще только предстоит открыть.


Источник: 1001student.ru

Справочная таблица содержит особенности строения животной клетки, локализация и функции ее органойдов.

Клетка  — это основная структурная и функциональная единица живых организмов, которая осуществляет рост, развитие, обмен веществ и энергии, хранящей и реализующей генетическую информацию.

Клетка — это сложная система биополимеров, отделяющих от внешней среды цитолемой (плазматической мембраной) и состоящую из ядра и цитоплазмы, в которой распологаются органелы и включения.

строение животной клетки схема

1 — агранулярная (гладкая) эндоплазматическая сеть; 2 — гликокаликс; 3 — цитолемма (плазматическая мембрана); 4 — кортикальный слой цитоплазмы; 2+3+4 = поверхностный комплекс клетки; 5 — пиноцитозные пузырьки; 6 — митохондрия; 7 — промежуточные филаменты; 8 — секреторные гранулы; 9 — выделение секрета; 10 — комплекс Гольджи; 11 — транспортные пузырьки; 12 — лизосомы; 13 — фагосома; 14 — свободные рибосомы; 15 — полирибосома; 16 — гранулярная эндоплазматическая сеть; 17 — окаймленный пузырек; 18 — ядрышко; 19 — ядерная ламина; 20 — перинуклеарное пространство, ограниченное наружной и внутренней мембранами кариотеки; 21 — хроматин; 22 — поровый комплекс; 23 — клеточный центр; 24 — микротрубочка; 25 — пероксисома


Таблица строение животной клетки, особенности и функции органойдов


Органойд

Особенности строения органойдов животной клетки

Функции органойдов

Ядро животной клетки

1) оболочка (кариолемма):

— две мембраны, пронизанные порами

— между мембранами находится перенук­леарное пространство

— наружная мембрана связана с НПС

2) ядерные поры

— защита

— транспорт

— хранение генет информации

— регуляция процессов обмена веществ:

а) биосинтез

б) деление

в) активность клетки

3) ядерный сок: 

— по физическому состоянию близок к гиалоплазме

— по химическому состоянию содержит больше нуклеиновых кислот

 

4) ядрышки:

— немембранные компоненты ядра

— может быть одно или несколько

— образуются на определенных участками хромосом (ядрышковые организаторы)

— синтез рРНК

— синтез тРНК

— образование рибосом

5) хроматин – нити ДНК+белок

 

6) хромосома – сильно спирализованный хроматин, кт. содержит гены

Хромосома → 2 хроматиды (соединения в области центромеры) → 2 полухроматиды → хромонемы → микрофибриллы (30-45% ДНК+белок)

Хранение, передача и реали­зация наслед­ственной информации

7) вязкая кариоплазма

 

Эндоплазматическая сеть — ЭПС (ЭПР — ретикулум)

1) шероховатая (гранулярная) — поверхность покрыта рибосомами

синтез белка

— разграни­чительная

— транс­портная

— выведение из клетки ядовитых веществ

— синтез стероидов

2) гладкая (агранулярная) — покрыта липидами (гликоген и холестерин)

синтез и расщепление углеводов и липидов

Аппарат (комплекс) Гольджи (пластинчатый комплекс)

Уплощенные цистерны и канальца уложены в стопки (диктосомы)

— сортировка и упаковка макромолекул

— склад для хранения веществ

— образование первичных лизосом

— концентрация, освобождение и уплотнение межклеточного секрета

— синтез глико- и липопротеидов

— накопление и выведение из клетки веществ

— образование борозды деления при митозе

Видоизме­нённый аппарат Гольджи – акросома у спермато­зоидов

Хранение веществ, растворяющих оболочку яйцеклетки.

Лизосомы

Пузырек, заполне­нный пищевари­тельными (гидролити­ческими) ферментами

— перева­ривание поглощен­ного материала (клеточное пищеварение)

— распад продуктов обмена

— разрушение бактерий и вирусов

— автолиз (разрушение частей клетки и отмерших органелл)

— удаление целых клеток и межкле­точного вещества

Пероксисома

Пузырек, содержащий пероксидазу

окисление органических веществ

Сферосома

Овальный органоид, содержащий жир

синтез и накопление липидов

Вакуоль

Полость в цитоплазме, содержащая клеточный сок

Клеточный сок:

— это содержимое вакуоли – водный раствор различных органических и неорганических веществ

— основная часть Н2О – 70-90 %

— вакуольный сок имеет кислую реакцию

— химический состав клеточного сока различен. Зависит от вида растения, состояния клетки и расположения клетки в теле растения

— резервуар для H2O и растворенных соединений

— функция лизосом (пищева­ри­тельная вакуоль)

— осморе­гуляция и выделение (сократи­тельная вакуоль)

Митохондрии  

1) наружная (гладкая) мембрана имеет выпячивания – кристы

2) кристы – ферменты, участвующие в преобразовании энергии

3) внутреннее пространство – матрикс:

— ДНК

— рибосомы

— белки – ферменты

— РНК

Органеллы, в которых происходит процесс
аэробного дыхания.

— синтез АТФ

— синтез митохон­дриальных белков

— синтез нуклииновых кислот

— синтез углеводов и липидов

— образование митохон­дриальных рибосом

Рибосома

В типичной эукариотической клетке имеется порядка 50000 свободных рибосом

1) состоит из рРНК, белка и магния

2) две субъединицы: большая и малая

— представляют собой места синтеза белка (для внутриклеточного использования)

Центросома (клеточный центр)

1) состоит из 2-х центриолей и лучистой сферы

2) центриоли расположены перпендикулярно друг другу и образованы 9-ю триплетами микротрубочек

3) имеют свою собственную молекулу ДНК

— центриоли определяют полюса при делении клетки

— центросферы формируют короткие и длинные нити веретена деления

Микрофиламенты

Нитевидные структуры состоящие из белков актина и миозина.

— сократительная, обеспечивают подвижность клетки

— образуют цитоскелет

Микротрубочки

Нитевидные структуры животной клетки, состоящие из белка тубулина

— опорная

Микрофибриллы

Нити, состоящие из белка керотина

— опорная

Включения

Непостоянные компоненты: минеральные (соли), витаминные, пигментные

Непостоянные компоненты животной клетки, которые накапливаются и исчезают в процессе жизнедеятельности клетки

Трофические (питательные вещества):

— Углеводы (крахмала). Зерна крахмала находятся в лейкопластах (амилопластах)→цитоплазма→клетки

— Белки.  Находятся в семенах, кристалоподобных структурах в цитоплазме и ядре. Чаще накапливаются в вакуолях (в клеточном соке)

— Жиры. Находятся в гиалоплазме в виде бесцветных капель.

— секреторные (гормоны)

— экскреторные (продукты обмена):

а) оксалат кальция

б) карбонат кальция или кремнезем (кристалический песок)

Цитоплазма

Состоит главным образом из воды, в которой растворены разнообразные вещества, включая глюкозу, белки и ионы.

Цитоплазма пронизана цитоскелетом, образующим «каркас» клетки.

Плазмалемма (плазматическая мембрана)

Замыкает поверхность клетки и контактирует с окружающей средой.

Она обладает выборочной проницаемостью и регулирует перемещение растворенных веществ между клеткой и ее окружением. Плазматическая мембрана выполняет целый ряд функций, многие из которых обеспечиваются белками, входящими в ее состав.

Источник: infotables.ru

Тонкая структура клеточного ядра

Хроматин

Огромная длина молекул ДНК эукариот предопределила появление специальных механизмов хранения, репликации и реализации генетического материала. Хроматином называют молекулы хромосомной ДНК в комплексе со специфическими белками, необходимыми для осуществления этих процессов. Основную массу составляют «белки хранения», так называемые гистоны. Из этих белков построены нуклеосомы — структуры, на которые намотаны нити молекул ДНК. Нуклеосомы располагаются довольно регулярно, так что образующаяся структура напоминает бусы. Нуклеосома состоит из белков четырех типов: H2A, H2B, H3 и H4. В одну нуклеосому входят по два белка каждого типа — всего восемь белков. Гистон H1, более крупный чем другие гистоны, связывается с ДНК в месте ее входа на нуклеосому. Нуклеосома вместе с H1 называется хроматосомой.

Нить ДНК с нуклеосомами образует нерегулярную соленоид-подобную структуру толщиной около 30 нанометров, так называемую 30 нм фибриллу. Дальнейшая упаковка этой фибриллы может иметь различную плотность. Если хроматин упакован плотно, его называют конденсированным или гетерохроматином, он хорошо видим под микроскопом. ДНК, находящаяся в гетерохроматине, не транскрибируется, обычно это состояние характерно для незначимых или молчащих участков. В интерфазе гетерохроматин обычно располагается по периферии ядра (пристеночный гетерохроматин). Полная конденсация хромосом происходит перед делением клетки. Если хроматин упакован неплотно, его называют эу- или интерхроматином. Этот вид хроматина гораздо менее плотный при наблюдении под микроскопом и обычно характеризуется наличием транскрипционной активности. Плотность упаковки хроматина во многом определяется модификациями гистонов — ацетилированием и фосфорилированием.

Считается, что в ядре существуют так называемые функциональные домены хроматина(ДНК одного домена содержит приблизительно 30 тысяч пар оснований), то есть каждый участок хромосомы имеет собственную «территорию». К сожалению, вопрос пространственного распределения хроматина в ядре изучен пока недостаточно. Известно, что теломерные (концевые) и центромерные (отвечающие за связывание сестринских хроматид в митозе) участки хромосом закреплены на белках ядерной ламины.

Ядерная оболочка, ядерная ламина и ядерные поры (кариолемма)

От цитоплазмы ядро отделено ядерной оболочкой, образованной за счёт расширения и слияния друг с другом цистерн эндоплазматической сети таким образом, что у ядра образовались двойные стенки за счёт окружающих его узких компартментов. Полость ядерной оболочки называется люменом или перинуклеарным пространством. Внутренняя поверхность ядерной оболочки подстилается ядерной ламиной, жёсткой белковой структурой, образованной белками-ламинами, к которой прикреплены нити хромосомной ДНК. Ламины прикрепляются к внутренней мембране ядерной оболочки при помощи заякоренных в ней трансмембранных белков — рецепторов ламинов. В некоторых местах внутренняя и внешняя мембраны ядерной оболочки сливаются и образуют так называемые ядерные поры, через которые происходит материальный обмен между ядром и цитоплазмой. Пора не является дыркой в ядре, а имеет сложную структуру, организованную несколькими десятками специализированных белков — нуклеопоринов. Под электронным микроскопом она видна как восемь связанных между собой белковых гранул с внешней и столько же с внутренней стороны ядерной оболочки.

Ядрышко

Ядрышко находится внутри ядра, и не имеет собственной мембранной оболочки, однако хорошо различимо под световым и электронным микроскопом. Основной функцией ядрышка является синтез рибосом. В геноме клетки имеются специальные участки, так называемые ядрышковые организаторы, содержащие гены рибосомной РНК (рРНК), вокруг которых и формируются ядрышки. В ядрышке происходит синтез рРНК РНК полимеразой I, ее созревание, сборка рибосомных субчастиц. В ядрышке локализуются белки, принимающие участие в этих процессах. Некоторые из этих белков имеют специальную последовательность — сигнал ядрышковой локализации (NoLS, от англ. Nucleolus Localization Signal). Следует отметить, самая высокая концентрация белка в клетке наблюдается именно в ядрышке. В этих структурах было локализовано около 600 видов различных белков, причем считается, что лишь небольшая их часть действительно необходима для осуществления ядрышковых функций, а остальные попадают туда неспецифически.

Под электронным микроскопом в ядрышке выделяют несколько субкомпартментов. Так называемые Фибриллярные центры окружены участками плотного фибриллярного компонента, где и происходит синтез рРНК. Снаружи от плотного фибриллярного компонента расположен гранулярный компонент, представляющий собой скопление созревающих рибосомных субчастиц.

Ядерный матрикс

Ядерным матриксом некоторые исследователи называют нерастворимый внутриядерный каркас. Считается, что матрикс построен преимущественно из негистоновых белков, формирующих сложную разветвленную сеть, сообщающуюся с ядерной ламиной. Возможно, ядерный матрикс принимает участие в формировании функциональных доменов хроматина. В геноме клетки имеются специальные незначащие А-Т-богатые участки прикрепления к ядерному матриксу (англ. S/MAR — Matrix/Scaffold Attachment Regions), служащие, как предполагается, для заякоривания петель хроматина на белках ядерного матрикса. Впрочем, не все исследователи признают существование ядерного матрикса.

Эволюционное значение клеточного ядра

Основное функциональное отличие клеток эукариот от клеток прокариот заключается в пространственном разграничении процессов транскрипции (синтеза матричной РНК) и трансляции (синтеза белка рибосомой), что дает в распоряжение эукариотической клетки новые инструменты регуляции биосинтеза и контроля качества мРНК.

В то время, как у прокариот мРНК начинает транслироваться еще до завершения ее синтеза РНК-полимеразой, мРНК эукариот претерпевает значительные модификации (так называемый процессинг), после чего экспортируется через ядерные поры в цитоплазму, и только после этого может вступить в трансляцию. Процессинг мРНК включает несколько элементов.

Из предшественника мРНК (пре-мРНК) в ходе процесса, называемого сплайсингом вырезаются интроны — незначащие участки, а значащие участки — экзоны соединяются друг с другом. Причем экзоны одной и той же пре-мРНК могут быть соединены несколькими разными способами (альтернативный сплайсинг), так что один предшественник может превращаться в зрелые мРНК нескольких разных видов. Таким образом, один ген может кодировать сразу несколько белков.

Кроме того, интрон-экзонная структура генома, практически невозможная у прокариот (так как рибосомы смогут транслировать незрелые мРНК), дает эукариотам определенную эволюционную мобильность. Учитывая протяженность интронных участков, рекомбинация между двумя генами зачастую сводится к обмену экзонами. Благодаря тому, что экзоны часто соответствуют функциональным доменам белка, участки получившегося в результате рекомбинации «гибрида», зачастую сохраняют свои функции. В то же время у прокариот рекомбинация между генами невозможна без разрыва в значащей части, что безусловно уменьшает шансы на то, что получившийся белок будет функционален.

Модификациям подвергаются концы молекулы мРНК. К 5′ -концу молекулы прикрепляется 7-метилгуанин (так называемый кэп). К 3′-концу нематрично присоединяются несколько десятков остатков аденина (полиаденирование).

Процессинг мРНК тесно сопряжен с синтезом этих молекул и необходим для контроля качества. Непроцессированная или не полностью процессированная мРНК не сможет выйти из ядра в цитоплазму или будет нестабильна и быстро деградирует. У прокариот нет таких механизмов контроля качества, и из-за этого прокариотические мРНК имеют меньший срок жизни — нельзя допустить, чтобы неправильно синтезированная молекула мРНК, если такая появится, транслировалась в течение долгого времени.

Происхождение ядра

Клеточное ядро является важнейшей чертой эукариотических организмов, отличающей их от прокариот и архей. Несмотря на значительный прогресс в цитологии и молекулярной биологии, происхождение ядра не выяснено и является предметом научных споров. Выдвинуто 4 основных гипотезы происхождения клеточного ядра, но ни одна из них не получила широкой поддержки.[1]

Гипотеза, известная как «синтропная модель», предполагает что ядро возникло в результате симбиотических взаимоотношений между археей и бактерией (ни археи, ни бактерии не имеют оформленных клеточных ядер). По этой гипотезе, симбиоз возник, когда древняя архея (сходная с современными метаногенными археями), проникла в бактерию (сходную с современными Миксобактериями). Впоследствии архея редуцировалась до клеточного ядра современных эукариот. Эта гипотеза аналогична практически доказанным теориям происхождения митохондрий и хлоропластов, которые возникли в результате эндосимбиоза прото-эукариот и аэробных бактерий.[2] Доказательством гипотезы является наличие одинаковых генов у эукариот и архей, в частности генов гистонов. Также миксобактерии быстро передвигаются, могут образовывать многоклеточные структуры и имеют киназы и G-белки, близкие к эукариотическим.[3]

Согласно второй гипотезе, прото-эукариотическая клетка эволюционировала из бактерии без стадии эндосимбиоза. Доказательством модели является существование современных бактерий из отряда Planctomycetes, которые имеют ядерные структуры с примитивными порами и другие клеточные компартменты, ограниченные мембранами (ничего похожего у других прокариот не обнаружено).[4]

Согласно гипотезе вирусного эукариогенеза, окруженное мембраной ядро, как и другие эукариотические элементы, произошли вследствие инфекции прокариотической клетки вирусом. Это предположение основывается на наличии общих черт у эукариот и некоторых вирусов, а именно геноме из линейных цепей ДНК, кэпировании мРНК и тесном связывании генома с белками (гистоны эукариот принимаются аналогами вирусных ДНК-связывающих белков). По одной версии, ядро возникло при фагоцитировании (поглощении) клеткой большого ДНК-содержащего вируса.[5] По другой версии, эукариоты произошли от древних архей, инфицированных поксвирусами. Это гипотеза основана на сходстве ДНК-полимеразы современных поксвирусов и эукариот.[6][7] Также предполагается, что нерешенный вопрос о происхождении пола и полового размножения может быть связан с вирусным эукариогенезом.[8]

Наиболее новая гипотеза, названная экзомембранной гипотезой, утверждает, что ядро произошло от одиночной клетки, которая в процессе эволюции выработала вторую внешнюю клеточную мембрану; первичная клеточная мембрана после этого превратилась в ядерную мембрану, и в ней образовалась сложная система поровых структур (ядерных пор) для транспорта клеточных компонентов, синтезированных внутри ядра.[9]

Источник: dic.academic.ru

1) Клеточная мембрана — это первичная мембрана клетки, состоящая из двух слоев фосфолипидов. Каждый слой обращен наружу свой гидрофильной «головой» — фосфатной группой, а внутрь — гидрофобными «хвостами» — остатками жирных кислот. Также плазматическую мембрану пронизывает большое количество различных белков. Расположенные в основаниях мембраны погруженные белки выполняют функцию транспорта вещества из клетки во внешнюю среду и наоборот. Белки, которые пронизывают мембрану, называются пронизывающими, и выполняют функцию в основном своеобразных насосов (например, Na-K-насос). Поверхностные белки нередко образуют комплексы с углеводами и липидами, образуя гликопротеиды и липидопротеиды. Остатки липидов и углеводов обращены во внешнюю среду и образуют так называемый гликокаликс — наружный комплекс клетки. Он выполняет сугубо рецепторную функцию (распознает гормоны), а также при помощи гликокаликса происходит связывание клеток между собой. Функция самой мембраны — это избирательный транспорт веществ в клетку, участие в регуляции осмотического давления, активном и пассивном транспорте, участие в процессе фаго-, пино-, и экзо- цитоза
2) Вакуоль — это одномембранный органоид. Он  выполняет функцию накопления клеточного сока и регуляции осмотического давления. Вакуоли характерны для пресноводных простейших, которым необходимо защищаться от избытка воды
3) Ядро — это главный органоид клетки. Он обычно крупнее других и располагается в центре. Состоит из двух мембран, внешняя из которых связывается с ЭПС. Мембрана ядра просто пронизана порами, через которую происходит обмен веществами из ядра в ядро и наоборот. В полости ядра располагается кариоплазма, в которой свободно плавает хроматин — ядерное вещество, в состав которого входит ДНК. В центре ядра обычно располагается ядрышко, которые участвует в синтезе и сборке рибосом. Функция ядра — хранение наследственной информации и регуляция всех процессов в клетке, участие в делении
4) ЭПС — это система уплощенных мешочков, пронизывающих всю клетку. Делится на 2 типа — шероховатую и гладкую. Шероховатая ЭПС несет на себе большое кол-во рибосом и выполняет функцию синтеза и транспорта белков. Гладкая ЭПС больше состоит и трубочек и она выполняет функцию транспорта различных веществ, а также синтеза липидов, которые потом доставляются на аппарат Гольджи
5) Рибосомы — это мелкие структуры клетки, состоящие из двух субъединиц. Рибосома образована рибосомальной РНК и белком, сборка их производится в ядрышке и рядом с ядром. Большое кол-во их прикрепляется к ЭПС, где нередко образуют полисомы — несколько рибосом, через которую проходит одна цепь иРНК. Функция рибосом — синтез белка
6) Митохондрия — это 2-х мембранная структура клетки. Состоит из внешней и внутренней мембраны, внутрення образует складки — криста, на которых располагаются ферменты для проведения дыхательной цепи. Полость заполнена матриксом, в котором находятся ферменты для проведения цикла Кребса. Также митохнодрии имеют собственную ДНК и рибосомы (70S-типа). Являются энерго-станцией клетки, в результате биоокисления вырабатывают АТФ
7) Комплекс Голбджи — это стопка из уплощенных мешочков (цистерн), является образованием ЭПС. По бокам ее находятся пузырьки, которые отщепляются от Комплекса Гольджи по мере необходимости. В этом органоиде накапливаются различные вещества, синтезируемые клетки, где происходит дальнейшее их химическое превращение и последующая упаковка к последующей экстрекции. Также участвует в формировании лизосом.
8) Лизосома — это 1-мембранный органоид, который заполнен различными гидролитическими ферментами. При помощи него происходит внутриклеточное пищеварение (распад более крупных структур на более мелкие), а также участие в фагоцитозе (поглощении крупных частиц)
9) Клеточный центр образован 2-мя центриолями, которые располагаются перпендикулярно друг другу. Центриоль — это трубочка, состоящая из 9-ти триплетов белка тубулина. Центриоль играет ажную роль в формировании цитоскелета клетки, который образован в свою очередь микротрубочками, микрофиламентами и филаментами. Отдельная роль клеточнму центру отводится процессу клетки, где он формирует веретено деления.

Источник: znanija.com