Исторические открытия
                                                                                            
1609 — изготовлен первый микроскоп (Г. Галилей)

1665 — обнаружена клеточная структура пробковой ткани (Р. Гук)

1674 — открыты бактерии и простейшие (А. Левенгук)

1676 — описаны пластиды и хроматофоры (А. Левенгук)

1831 — открыто клеточное ядро (Р. Броун)

1839 — сформулирована клеточная теория  (Т. Шванн, М. Шлейден)

1858- сформулировано положение «Каждая клетка из клетки» (Р. Вирхов)

1873 — открыты хромосомы  (Ф. Шнейдер)

1892 — открыты вирусы (Д. И. Ивановский)

1931 — сконструирован электронный микроскоп (Е. Руске, М.Кноль)

1945 — открыта эндоплазматическая сеть (К. Портер)


1955 — открыты рибосомы (Дж. Палладе)



Раздел:Учение о клетке
Тема: Клеточная теория. Прокариоты и эукариоты

Клетка (лат.»цкллюла» и греч. «цитос») — элементарная жи
вая система, основная структурная единица растительных и животных организмов, способная к самовозобнавлению, саморегуляции и самовоспроизведению. Открыта английский ученым  Р. Гуком в 1663г., им же предложена этот термин. Клетка эукариотов представлена двумя системами — цитоплазмой и ядром. Цитоплазма состоит из различных органелл, которые можно классифицировать  на: двухмембраные  — митохондрии и пластиды;  и одномембранные — эндоплазматическая сеть (ЭПС), Аппарат Гольджи, плазмалемма, тонопласты, сферосомы, лизосомы; немембранные — рибосомы, центросомы, гиалоплазма. Ядро состоит из ядерной оболочки (двухмембранной) и немембранных структур — хромосом, ядрышка и ядерного сока. Кроме того, в клетках имются различные включения.

 КЛЕТОЧНАЯ ТЕОРИЯ: Создатель этой теории — немецкий ученый Т. Шванн, который опираясь на работы М. Шлейдена, Л. Окена, в 1838 -1839 гг. сформулировал следующие положения:


  1. все организмы растений  и животных состоят из клеток
  2. каждая клетка функционирует независимо от других,  но вместе со всеми
  3. все клетки возникают из безструктурного вещества неживой материи.

 Позднее Р. Вирхов ( 1858 ) внес существенное уточнение в последнее положение теории:
     4. все клетки возникают только из клеток путем их деления.

СОВРЕМЕННАЯ КЛЕТОЧНАЯ ТЕОРИЯ:

  1. клеточная организация возникла на заре жизни и прошла длительный путь эволюции от прокариотов до эукариотов, от предклеточных организмов до одно- и многоклеточных.
  2. новые клетки образуются путем деления от ранее существовавших
  3. клетка является микроскопической живой системой, состоящей из цитоплазмы и ядра, окруженных мембраной(за исключением прокариотов)
  4. в клетке осуществляются : 
  • метаболизм — обмен веществ;
  • обратимые физиологические процессы — дыхание, поступление и выделение веществ, раздражимость , движение;
  • необратимые процессы — рост и развитие.

    5. клетка может быть самостоятельным организмом. Все многоклеточные организм также состоят из клеток и их производных. Рост, развитие и размножение  многоклеточного организма — следствие жизнедеятельности одной или нескольких клеток.


Прокариоты (предъядерные, доядерные) составляют надцарство, включающее одно царство — дробянки, объединяющее подцарство архебактерии, бактерии и оксобактерии (отдел цианобактерий и хлороксибактерии)

Эукароты(ядерные) также составляют надцарство. Оно объединяет царства грибы, животные, растения.
 


Тема: Строение и функции клетки

 


                          Растительная клетка :                                              Животная клетка :


iv>

>



 Органеллы  Строение  Функции
 Наружная клеточная мембрана
 ультромикроскопическая пленка, состоящая из бимолекулярного слоя липидов. Цельность липидного слоя может прерываться белковыми молекулами — порами. Кроме того, белки лежат мозаично по обе стороны мембраны, образуя ферментные системы.
 изолирует клетку от окружающей среды, обладает избирательной проницаемостью, регулирует процесс поступления веществ в клетку; обеспечивает обмен веществ и энергии с внешней средой, способствует соединению клеток в ткани, участвует в пиноцитозе и фагоцитозе; регулирует водный баланс клетки и выводит из нее конечные продукты жизнедеятельности.
 Эндоплазматичкская сеть ЭПС

 Ультрамикроскопическая система мембран, образующих трубочки, канальцы, цистерны пузырьки. Строение мембран универсальное, вся сеть объединена в единое целое с наружной мембраной ядерной оболочки и наружной клеточной мембраной. Гранулярная ЭПС несет рибосомы, гладкая лишена их.
Обеспечивает транспорт веществ как внутри клетки, так и между соседними клетками.  Делит клетку на отдельные секции, в которых одновременно происходят различные физиологические  процессы и химические реакции. Гранулярная ЭПС участвует в синтезе белка. В каналах ЭПС молекулы белка приобретают вторичную, третичную и четвертичную структуры, синтезируются жиры, транспортируется АТФ
 Митохондрии

 Микроскопические органеллы, имеющие двухмембраное строение. Внешняя мембрана гладкая, внутренняя — образует различной формы выросты — кристы. В матриксе митохондрий (полужидкое вещество) находятся ферменты, рибосомы, ДНК, РНК. Размножаются делением.
Универсальная органелла, являющаяся дыхательным и энергетическим центром. В процессе кислородного этапа диссимиляции в матриксе с помощью ферментов происходит  расщеплении органических веществ с освобождением энергии, которая идет на синтез  АТФ (на кристах)
 Рибосомы

 Ультрамикроскопические органеллы округлой или грибовидной формы, состоящие из двух частей- субъединиц. Они не имеют мембранного строения и состоят из белка и рРНК. Субъединицы образуются в ядрышке. Объединяются вдоль молекул иРНК в цепочки -полирибосомы — в цитоплазме  Универсальные органеллы всех клеток животных и растений. Находятся в цитоплазме в свободном состоянии или на мембранах ЭПС; кроме того, содержаться в митохондриях и хлоропластах. В рибосомах синтезируются белки по принципу матричного синтеза; образуется полипептидная цепочка — первичная структура молекулы белка.
 Лейкопласты

 Микроскопические органеллы, имеющие двухмембранное строение. Внутренняя мембрана образует 2-3 выроста Форма округлая. Бесцветны. Как и все пластиды, способны к делению. Характерны для растительных клеток. Служат местом отложения запасных питательных веществ, главным образом крахмальных зерен. На свету их строение усложняется и они преобразуют  в хлоропласты. Образуются из пропластид.
 Аппарат Гольджи (диктиосома)

 микроскопические одномембранные органеллы, состоящие из стопочки плоских цистерн, по кроям которых ответвляются трубочки, отделяющие мелкие пузырьки. Имеет два полюса : строительный и секреторный  наиболее подвижная и изменяющаяся органелла. В цистернах накапливаются продукты синтеза, распада и вещества, поступившие в клетку, а так же вещества, которые выводятся из клетки. Упакованные в пузырьки, они поступают в цитоплазму. в растительной клетке участвуют в построении клеточной стенки.
 Хлоропласты  Микроскопические органеллы, имеющие двухмембранное строение. Наружная мембрана гладкая. Внутренняя мембрана образует систему  двухслойных пластин — тилакоидов  стромы и тилакоидов гран.  В мембранах тилакоидов гран между слоями молекул белков и липидов           сосредоточены  пигменты — хлорофилл и каротиноиды. В белково — липидном матриксе находятся собственные рибосомы, ДНК, РНК. Форма хлоропластов чечевицеобразная. Окраска зеленая.
 Характерны для растительных клеток. Органеллы фотосинтеза, способные создавать из неорганических веществ (СО2 и Н2О) при наличии световой энергии и пигмента хлорофилла  органические вещества — углеводы и свободный кислород. Синетз собственных белков. Могут образовываться из пропластид или лейкопластов, а осенью преобразоваться в хромопласты (красные и оранжевые плоды, красные и желтые листья). Способны к делению.
 Хромопласты

Микр-ие органеллы, имеющие двухмембранное строение. Собственно хромопласты имеют  шаровидную форму, а образовавшиеся из хлоропластов принимают форму кристаллов каротиноидов, типичную для данного вида растения. Окраска красная. оранжевая, желтая 
 Характерны для растительных клеток.  Придают лепесткам цветков окраску, привлекательную для насекомых —  опылителей. В осенних листьях и зрелых плодах,  отделяющихся от растения, содержатся кристаллические каротиноиды — конечные продукты обмена
 Лизосомы   

   Микроскопические одномембраные органеллы  округлой формы. их число зависит от жизнедеятельности клетки и ее физиологического состояния. в лизосомах находится лизируещее (растворяющее) ферменты, синтезированные на рибосомах. обособляются от диктисом в виде пузырьков                       
 Клеточный центр   
(Центросома)

  Ультромикроскопическая органелла немембраного строения. состоит из двух центриолей. каждая имеет цилиндрическую форму ,  стенки образованы девятью                           триплетами трубочек, а в середине находится однородное вещество. центриоли расположены перпендикулярно друг другу. 
     Принимает участие в деление клеток животных и низших растений . в начале деления центриоли расходятся к разным полюсам клетки. от центриолей к центромерам хромосом отходят нити веретена деления. в анафазе эти нити притягиваются хроматидами к полюсам. после окончания деления центриоли остаются в дочерних клетках, удваиваются и образуют клеточный центр.
 Органоиды движения
реснички — многочисленные цитоплазматические выросты на поверхности мембраны

жгутики — единичные цитоплазматические  выросты на поверхности клетки

ложные ножки (псевдоподии)- амебовидные выступы цитоплазмы



миофибриллы — тонкие нити длиной 1 см и более

цитоплазма осуществляющая струйчатое и круговое движение

 удаление частичек пыли. передвижение

передвижение

образуются у одноклеточных животных в разных местах цитоплазмы для захвата пищи, для передвижения. Характерны для лейкоцитов крови, а так же клеток энтодермы кишечнополостных.

служат для сокращения мышечных волокон

перемещение органелл клетки по отношению к источнику света, тепла, химического раздражителя.


                

Источник: www.sites.google.com

Бактериальная клетка

2

Отличается от всех остальных как самая просто устроенная.

Клеточная оболочка — основные функции — защита и обмен веществ. Запасное питательное вещество уникально, в других живых клетках его нет — это углевод муреин.

Мембрана — как и у остальных живых клеток, основная функция — защита и обмен веществ.

Цитоплазма — внутренняя полужидкая среда, содержит питательные вещества.

Рибосомы — синтезируют белок.
Мезосомы — осуществление окислительно-восстановительных процессов.
Ядра нет, есть нуклеоид — кольцевая ДНК и РНК.
Жгутитки — обеспечивают движение.

Клетка растений

3

Клеточная стенка — функции те же, запасное питательное вещество — углевод — крахмал, целлюлоза и т.п.
Мембрана — защита и обмен веществ, небольшое отличие — есть плазмодесмы — что-то вроде мостиков между соседними клетками в многоклеточных растениях.
Цитоплазма — внутренняя полужидкая среда, содержит питательные вещества.
Рибосомы — есть, но немного, синтезируют белок.
Ядро — центр генетической информации клетки.
ЭПС (эндоплазматический ретикулум), гладкий (без рибосом) — обеспечивает транспорт веществ, поддерживает форму клетки, шероховатый — рибосомы на нем обеспечивают синтез белка.
Цитоплазма — внутренняя полужидкая среда, содержит питательные вещества.
Хлоропласт — обязательный органойд исключительно растительной клетки. Функция — фотосинтез.
Вакуоль — тоже именно растительный органойд — запас клеточного сока.
Митохондрия — синтез АТФ — обеспечение клетки энергией.
Лизосомы — пищеварительные органеллы.
Аппарат Гольджи — производит лизосомы и хранит питательные вещества.
Микрофиламенты — белковые нити — “рельсы” для передвижения некоторых органелл, участвуют в делении клетки.
Микротрубочки — примерно то же самое, что микрофиламенты, только толще.

Клетка животных

4

Клеточной стенки нет, нет хлоропластов, нет вакуолей.

Остальные органеллы те же, что и у растительной клетки, есть одно “добавление” — компонент ТОЛЬКО животной клетки — центриоли — участвуют в делении клетки, отвечая за правильное расхождение хромосом.

Клетка грибов

Рисунки животной клетки никогда не встречаются в ЕГЭ, да и строение клетки рассматривается только в сравнении с животной и растительной.

По строению она очень похожа на животную, только нет центриолей и есть клеточная стенка, запасное питательное вещество которой — гликоген.

Источник: ege-study.ru

Вернуться к списку Задать свой вопрос

 

 

Эукариотическая животная клетка и микроскопОбобщенная клеточная теория, провозгласившая принцип единства структуры живых организмов, впервые была сформулирована в середине XIX века, и обрела гармонию и завершенность к началу 1889 года. В современности с ней хорошо знакомы школьники средних классов, студенты, ботаники, зоологи и медики, а также неравнодушные любители, которым довелось купить микроскоп и воочию убедиться в необычайности, многогранности и совершенстве микромира.  Начинающим микробиологам предпочтительнее обучаться микроскопии у наставников с широкими познаниями и регулярной практикой. Самоучители и структурированная информация в блогах и энциклопедиях зачастую кажется сложной и «неподъемной». Но стоит раз попрактиковаться в микрокопировании, появляется ощущение уверенности и простоты, путь в интереснейший научный мир начнет сверкать яркими красками. Итак, перейдем к теоретическим сведениям.

Животная клетка является эукариотической, ядерной, то есть в отличие от доядерной прокариотической имеет свое ядро. В биологической систематике обладающие ей организмы объединены в надцарство «эукариоты». К ним относятся: питающиеся органикой животные, многоклеточные растения (в том числе, мхи и некоторые водоросли), царство грибов и грибоподобных микроорганизмов, и микроскопические протисты, обитающие преимущественно в водной среде или влажной почве.

Животная клетка под микроскопом - строение - фото

Основным способом получения фундаментальных знаний было и есть изучение и анализ животной клетки под микроскопом. Сегодня этот незамысловатый оптический прибор доступен каждому, кто интересуется микробиологией. Какие действия должен совершить юный биолог, чтобы рассмотреть внутриклеточные компоненты? Настройка оптики проходит по следующему алгоритму:

  • Создание микропрепарата.  Его приготовление делится на этапы: взятие образца при помощи препаровочной иглы или микротома, фиксация в спиртовом растворе или формалине для остановки процессов жизнедеятельности, подкрашивание красителями для улучшения контрастирования, заключение микрообразца между стеклами (покровным и предметным);
  • Центрирование готового препарата. Для этого он располагается на столике (по центру), при этом настраивается конденсор или диск с диафрагмами – таким образом, чтобы сквозь него прошел максимальный пучок освещения. На детских и школьных моделях достаточно на вращающемся барабане с отверстиями выбрать щель наибольшего диаметра;
  • На револьвере путем вращения до звукового щелчка выбирается объектив минимальной кратности – обычно, 4x;
  • Включается подсветка, регулируется ее яркость, чтобы «не резало» глаза при наблюдении;
  • Рукоятками механизма фокусировки, предусмотренными по бокам штатива, достигается приемлемая чистота и контрастность картинки.

Описанная выше методика исследования животной клетки под микроскопом носит название «метод проходящего света в светлом поле».

Рисунок клетки живого организма - строение

Строение клетки при визуализации идентифицируется не так явно, как в учебниках (в статье вы можете сравнить рисунок и фотографию). Видны такие микрокомпоненты:

  • Динамичный и изменяющийся со временем цитоскелет (каркас). Он состоит из высокомолекулярных полипептидов;
  • Двумембранные митохондрии эллипсоидной или сферической формы;
  • Центриоль (микротрубочки), определяющая веретено деления;
  • Окруженные мембраной лизосомы, обеспечивающие переваривание веществ или бактерий;
  • Рибосомы, синтезирующие белки из аминокислот;
  • Пероксисому, в которой окисляются жирные кислоты;
  • Эндоплазматическая сеть, характеризующуюся наличием пузырьковых полостей и каналов;
  • Жидкое содержимое, называемое цитозоль (фактически, часть цитоплазмы);
  • Везикулы, своеобразные запасники питательных субстанций;
  • Ядро, несущее генетический материал;
  • Ядрышко, генерирующее рибосомные единицы.

Для того, чтобы получить фото, аналогичные представленным в настоящем обзоре, рекомендуется подключить в окулярную трубку специализированную цифровую камеру. Например, Levenhuk M200 BASE или ToupCam 3.1 MP. 

Источник: oktanta.ru