Клеточная стенка — это дополнительная оболочка, которая располагается поверх (с внешней стороны) цитоплазматической мембраны и образуется в процессе жизнедеятельности самой клеткой. Такая оболочка есть у клеток не всех организмов, а только у растений, грибов, бактерий, части простейших (одноклеточных эукариот). Ее нет у животных клеток и многих простейших.

Строение и функции клеточной стенки взаимосвязанно формировались в процессе эволюции. При этом ее химическое строение (в большей степени) и функции (в меньшей) у разных групп организмов различаются. Так у растений основным компонентом оболочки является целлюлоза, у грибов — хитин, у бактерий — муреин.

Обычно в школьном курсе цитологии подробно рассматриваются строение и функции растительной клеточной стенки (оболочки).

Целлюлоза представляет собой линейный полисахарид, мономером которого является глюкоза. В составе клеточной стенки молекулы целлюлозы соединяются между собой водородными связями и образуют микрофибриллу (пучок). В оболочке множество таких фибрилл. Часть из них расположены параллельно друг другу, другая часть — под углом к первой и т. д. Такое строение создает прочный каркас.


Кроме целлюлозы, в состав клеточной стенки растений входят другие вещества (вода, гемицеллюлоза, пектиновые вещества, белки и др.). Они формируют матрикс, в котором находятся фибриллы. Вода составляет 60-70% массы оболочки. Молекулы гемицеллюлозы более короткие и разветвленные по-сравнению с целлюлозой, они связывают между собой микрофибриллы.

Строение первичной растительной клеточной стенки

Пектины также представляют собой полисахариды (линейные и разветвленные), основным мономером которых является галактуроновая кислота. Также в их состав входят арабинозы и галактозы, остатки метанола. Пектиновые вещества имеют кислую природу, могут быть растворимыми и нерастворимыми. Растворимые пектины при добавлении сахара переходят в гелеобразное состояние. Из-за этой особенности их используют в пищевой промышленности в качестве желирующих веществ.

Стенки соседних клеток растений не примыкают друг к другу непосредственно. Между ними находится срединная пластинка, образованная из студнеобразных пектатов магния и кальция.

Соседние клетки растений связаны между собой через плазмодесмы — цитоплазматические мостики, проходящие через отверстия в клеточных стенках и срединных пластинках.


У большинства растительных клеток кроме первичной, после завершения роста и дифференциации, образуется вторичная стенка. Она формируется между цитоплазматической мембраной и первичной оболочкой и состоит из нескольких слоев целлюлозы. При этом фибриллы каждого слоя располагаются под своим углом. Данная структура придает клетке еще большую прочность. Вторичной стенки нет у клеток мягких тканей (например, у мезофилльной ткани листа).

Одревеснение ряда тканей растения связано с так называемой лигнификацией. Вещество лигнин придает стенкам особую прочность и жесткость.

Рассмотрев строение, обратимся к функциям клеточных стенок. У растений нет скелета, однако многие из них достигают огромных размеров, что невозможно без какой-либо внутренней опоры. Ее то совместно и выполняют жесткие оболочки клеток. Итак, главная функция клеточных стенок растений — это обеспечение опоры за счет создания прочного каркаса.

Стенки ограничивают рост клеток и препятствуют их разрыву, не давая в определенных условиях излишкам воды поступать в клетки. Микрофибриллы целлюлозы, ориентируясь определенным образом, определяют направление роста клетки. Так, если волокна преимущественно идут поперек, то рост будет идти вдоль.

У растений есть ткани, выполняющие транспортную функцию. Некоторые из них состоят из мертвых клеток, а функцию транспорта обеспечивают исключительно клеточные стенки.

У некоторых клеток их оболочки служат для хранения запаса питательных веществ.

Источник: scienceland.info

Клеточная стенка растительной клетки: общие сведения


Клеточная стенка (нередко в качестве синонима термина "клеточная стенка" в учебной и научной литературе используется термин "клеточная оболочка".) у растений — это структурное образование, располагающееся по периферии клетки, за пределами плазмалеммы , придающее клетке прочность, сохраняющее ее форму и защищающее протопласт .

Клеточная стенка растений противостоит высокому осмотическому давлению большой центральной вакуоли и препятствует разрыву клетки. Кроме того, совокупность прочных клеточных стенок выполняет роль своеобразного внешнего скелета, поддерживающего форму растения и придающего ему механическую прочность. Клеточная стенка, обладая большой прочностью, в то же время способна к росту, и прежде всего к росту растяжением. Эти два в известной степени противоположных требования удовлетворяются за счет особенностей ее строения и химического состава.

Клеточная стенка, как правило, прозрачна и хорошо пропускает солнечный свет. Через нее легко проникают вода и низкомолекулярные вещества, но для высокомолекулярных веществ она полностью или частично непроницаема. У многоклеточных организмов стенки соседних клеток скреплены между собой пектиновыми веществами, образующими срединную пластинку.

iv>

При специальной обработке растительных тканей некоторыми веществами (крепкие щелочи, азотная кислота) стенки соседних клеток разъединяются в результате разрушения срединной пластинки. Этот процесс называется мацерацией . Естественная мацерация происходит у перезрелых плодов груши, дыни, персика и др.

В результате тургорного давления стенки соседних клеток в углах могут округляться и между ними образуются межклетники.

Стенка клетки представляет собой продукт жизнедеятельности ее протопласта . Поэтому стенка может расти, только находясь в контакте с протопластом. Однако при отмирании протопласта стенка сохраняется и мертвая клетка может продолжать выполнять функции проведения воды или играть роль механической опоры.

Основу клеточной стенки составляют высокополимерные углеводы: молекулы целлюлозы (клетчатки) , собранные в сложные пучки — фибриллы, образующие каркас, погруженный в основу (матрикс), состоящий из гемицеллюлоз , пектинов и гликопротеидов ( рис. 21 ). Молекулы целлюлозы состоят из большого числа линейно расположенных мономеров — остатков глюкозы . Целлюлоза очень стойка, не растворяется в разбавленных кислотах и даже в концентрированных щелочах. Эластичный целлюлозный скелет придает клеточной оболочке механическую прочность. Первоначально число микрофибрилл, образованных молекулами целлюлозы, в клеточной стенке относительно невелико, но с возрастом оно увеличивается и клетка теряет способность к растяжению.


Гемицеллюлозы отличаются от целлюлозы составом мономеров и разветвленным их расположением в молекулах. Являясь одним из компонентов пластичного матрикса, гемицеллюлозы придают клеточной стенке дополнительную прочность, но почти не препятствуют ее росту. Гемицеллюлозы могут быть и запасными веществами, так как легко гидролизуются. Кроме гемицеллюлоз в матрикс, а также в срединную пластинку входят пектиновые вещества, или пектины , и полисахариды , образованные мономерами — уроновыми кислотами . Эти вещества скрепляют, склеивают оболочки соседних клеток. Молекулы гемицеллюлоз, пектина и гликопротеидов соединяют целлюлозные микрофибриллы.

Помимо полисахаридов , в матриксе стенок многих клеток часто обнаруживаются неуглеводные компоненты. Наиболее обычен из них лигнин — полимерное вещество полифенольной природы. Содержание его в стенках некоторых видов клеток может достигать 30%. Лигнин откладывается при завершении роста стенки. Процесс отложения лигнина получил название одревеснения, или лигнификации . Стенка, пропитанная лигнином, очень прочна и тверда. Лигнифицируются чаще всего оболочки клеток, подвергающихся механическим нагрузкам.

Стенки некоторых типов клеток могут включать слои липидов : воска , кутина и суберина . Кутин и воск обычно покрывают наружные стенки клеток эпидермы. Слой кутина создает на поверхности растения водо- и воздухонепроницаемый слой кутикулы . Суберин пропитывает стенки. Он непроницаем для воды и газов, поэтому такая суберинизированная, или опробковевшая, клетка быстро отмирает.

>

Источник: medbiol.ru

1Безъядерные клетки называютсяПрокариоты 
2Ядерные клетки называютсяэукариоты 
3Бактерии, синезеленые водоросли относятся кпрокариотам 
4Грибы, животные и растения относятся кэукариотам 
5У всех клеток естьКлеточная стенка, цитоплазма, ядро, 
6Клеточной стенки нет уживотных 
7Клеточная стенка состоит из целлюлозы уДля растительных клеток 
8Пластиды, осуществляющие фотосинтезхлоропласты 
9Клеточная стенка состоит из хитина угрибов 
10Клетка без клеточной стенки свою формуМогут двигаться и изменять форму 
11Одним двумокулярным слоем фосфолипидов и 
двумя одномолекулярными слоями белка образованаПлазматическая мембрана 
12Защиту клетки и избирательную проницаемость 
(транспорт веществ в клетку и из клетки) осуществляетмембрана 
13Транспорт веществ через клеточную мембрану, 
требующий затрат энергииОбеспечивает белковый слой мембраны 
14Жидкая часть цитоплазмы без органоидовЦитозоль (гиалоплазма) – вязкий раствор солей и органических веществ 
15Немембранные органоиды, синтезирующие белкирибосомы 
16Одномембранные органоиды, разлагающие 
питательные вещества и способные к автолизулизосомы 
17Одномембранные органоиды растений, заполненные клеточным с.


транспорт, синтез жиров и углеводов, упаковку веществ в мембранные пузырьки Гладкая ЭПС (без рибосом) 
Аппарат Гольджи 
23Немембранный органоид, состоящий из микротрубочек и участвующий в формировании «веретена деления» Центриоли или клеточный центр 
24Двумембранные органоиды, растительной клетки, содержащие растительные пигменты красного, зеленого или белого цветаПластиды 
25Выросты внутренней мембраны митохондрийКристы 
26Немембранный органоид ядра, состоящий из ДНК и ответственный за хранение и передачу наследственной информациихромосомы 
27Пластиды зеленого цветаХлоропласты 
28Пластиды красного или оранжевого цветовХромопласты, каротиноиды 
29Пластиды белого цветаЛейкопласты 
30Органоид, осуществляющий конечный этап дахания и пищеварениямитохондрия 
31Энергетические органоиды только растительных клетокХлоропласты 
32Органоиды клеток всех эукариот, осуществляющие синтез АТФмитохондрии 
33Двумембранный органоид растений, накапливающий крахмал Лейкопласт 
34Складки и стопочки, образованные внутренней мембраной хлоропластаГраны 


Клеточная стенка — жёсткая оболочка клетки, расположенная снаружи от цитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции. Обнаруживается у большинства бактерий, архей, грибов и растений. Животные и многие простейшие не имеют клеточной стенки. 

В состав клеточной стенки входят структурные компоненты (целлюлоза у растений и хитин у грибов) , компоненты матрикса (гемицеллюлоза, пектин, белки) , инкрустирующие компоненты (лигнин, суберин) и вещества, откладывающиеся на поверхности оболочки (кутин и воск).

Источник: znanija.com

Цитоплазматические образования – органеллы

Органеллы (органоиды) — структурные компоненты цитоплазмы. Они имеют определённую форму и размеры, являются обязательными цитоплазматическими структурами клетки. При их отсутствии или повреждении клетка обычно теряет способность к дальнейшему существованию. Многие из органоидов способны к делению и самовоспроизведению. Размеры их настолько малы, что их можно видеть только в электронный микроскоп.

Ядро

Ядро — самая заметная и обычно самая крупная органелла клетки. Оно впервые было подробно исследовано Робертом Броуном в 1831 году. Ядро обеспечивает важнейшие метаболические и генетические функции клетки. По форме оно достаточно изменчиво: может быть шаровидным, овальным, лопастным, линзовидным.

Ядро играет значительную роль в жизни клетки. Клетка, из которой удалили ядро, не выделяет более оболочку, перестаёт расти и синтезировать вещества. В ней усиливаются продукты распада и разрушения, вследствие этого она быстро погибает. Образование нового ядра из цитоплазмы не происходит. Новые ядра образуются только делением или дроблением старого.


Внутреннее содержимое ядра составляет кариолимфа (ядерный сок), заполняющая пространство между структурами ядра. В нём находится одно или несколько ядрышек, а также значительное количество молекул ДНК, соединённых со специфическими белками — гистонами.

Ядрышко

Ядрышко — как и цитоплазма, содержит преимущественно РНК и специфические белки. Важнейшая его функция заключается в том, что в нём происходит формирование рибосом, которые осуществляют синтез белков в клетке.

Аппарат Гольджи

Аппарат Гольджи — органоид, имеющий универсальное распространение во всех разновидностях эукариотических клеток. Представляет собой многоярусную систему плоских мембранных мешочков, которые по периферии утолщаются и образуют пузырчатые отростки. Он чаще всего расположен вблизи ядра.

В состав аппарата Гольджи обязательно входит система мелких пузырьков (везикул), которые отшнуровываются от утолщённых цистерн (диски) и располагаются по периферии этой структуры. Эти пузырьки играют роль внутриклеточной транспортной системы специфических секторных гранул, могут служить источником клеточных лизосом.


Функции аппарата Гольджи состоят также в накоплении, сепарации и выделении за пределы клетки с помощью пузырьков продуктов внутриклеточного синтеза, продуктов распада, токсических веществ. Продукты синтетической деятельности клетки, а также различные вещества, поступающие в клетку из окружающей среды по каналам эндоплазматической сети, транспортируются к аппарату Гольджи, накапливаются в этом органоиде, а затем в виде капелек или зёрен поступают в цитоплазму и либо используются самой клеткой, либо выводятся наружу. В растительных клетках Аппарат Гольджи содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения клеточной оболочки. Предполагают, что он участвует в образовании вакуолей. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году.

Лизосомы

Лизосомы представляют собой мелкие пузырьки, ограниченные мембраной основная функция которых — осуществление внутриклеточного пищеварения. Использование лизосомного аппарата происходит при прорастании семени растения (гидролиз запасных питательных веществ).

Микротрубочки

Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.

Вакуоль

Вакуоль — важнейшая составная часть растительных клеток. Она представляет собой своеобразную полость (резервуар) в массе цитоплазмы, заполненную водным раствором минеральных солей, аминокислот, органических кислот, пигментов, углеводов и отделённую от цитоплазмы вакуолярной мембраной — тонопластом.

Цитоплазма заполняет всю внутреннюю полость только у самых молодых растительных клеток. С ростом клетки существенно изменяется пространственное расположение вначале сплошной массы цитоплазмы: у неё появляются заполненные клеточным соком небольшие вакуоли, и вся масса становится ноздреватой. При дальнейшем росте клетки отдельные вакуоли сливаются, оттесняя к периферии прослойки цитоплазмы, в результате чего в сформированной клетке находится обычно одна большая вакуоль, а цитоплазма со всеми органеллами располагаются около оболочки.

Водорастворимые органические и минеральные соединения вакуолей обусловливают соответствующие осмотические свойства живых клеток. Этот раствор определённой концентрации является своеобразным осмотическим насосом для регулируемого проникновения в клетку и выделения из неё воды, ионов и молекул метаболитов.

В комплексе со слоем цитоплазмы и её мембранами, характеризующимися свойствами полупроницаемости, вакуоль образует эффективную осмотическую систему. Осмотически обусловленными являются такие показатели живых растительных клеток, как осмотический потенциал, сосущая сила и тургорное давление.

Пластиды

Пластиды — самые крупные (после ядра) цитоплазматические органоиды, присущие только клеткам растительных организмов. Они не найдены только у грибов. Пластиды играют важную роль в обмене веществ. Они отделены от цитоплазмы двойной мембранной оболочкой, а некоторые их типы имеют хорошо развитую и упорядоченную систему внутренних мембран. Все пластиды едины по происхождению.

Хлоропласты — наиболее распространённые и наиболее функционально важные пластиды фотоавтотрофных организмов, которые осуществляют фотосинтетические процессы, приводящие в конечном итоге к образованию органических веществ и выделению свободного кислорода. Хлоропласты высших растений имеют сложное внутреннее строение.

Размеры хлоропластов у разных растений неодинаковы, но в среднем диаметр их составляет 4-6 мкм. Хлоропласты способны передвигаться под влиянием движения цитоплазмы. Кроме того, под воздействием освещения наблюдается активное передвижение хлоропластов амебовидного типа к источнику света.

Хлорофилл — основное вещество хлоропластов. Благодаря хлорофиллу зелёные растения способны использовать световую энергию.

Лейкопласты (бесцветные пластиды) представляют собой чётко обозначенные тельца цитоплазмы. Размеры их несколько меньше, чем размеры хлоропластов. Более и однообразна и их форма, приближающая к сферической.

Встречаются в клетках эпидермиса, клубнях, корневищах. При освещении очень быстро превращаются в хлоропласты с соответствующим изменением внутренней структуры. Лейкопласты содержат ферменты, с помощью которых из излишков глюкозы, образованной в процессе фотосинтеза, в них синтезируется крахмал, основная масса которого откладывается в запасающих тканях или органах (клубнях, корневищах, семенах) в виде крахмальных зёрен. У некоторых растений в лейкопластах откладываются жиры. Резервная функция лейкопластов изредка проявляется в образовании запасных белков в форме кристаллов или аморфных включений.

Хромопласты в большинстве случаев являются производными хлоропластов, изредка — лейкопластов.

Созревание плодов шиповника, перца, помидоров сопровождается превращением хлоро- или лейкопластов клеток мякоти в каратиноидопласты. Последние содержат преимущественно жёлтые пластидные пигменты — каратиноиды, которые при созревании интенсивно синтезируются в них, образуя окрашенные липидные капли, твёрдые глобулы или кристаллы. Хлорофилл при этом разрушается.

Митохондрии

Митохондрии — органеллы, характерные для большинства клеток растений. Имеют изменчивую форму палочек, зёрнышек, нитей. Открыты в 1894 году Р. Альтманом с помощью светового микроскопа, а внутреннее строение было изучено позднее с помощью электронного.

Митохондрии имеют двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты — трубочки в растительных клетках. Пространство внутри митохондрии заполнено полужидким содержимым (матриксом), куда входят ферменты, белки, липиды, соли кальция и магния, витамины, а также РНК, ДНК и рибосомы. Ферментативный комплекс митохондрий ускоряет работу сложного и взаимосвязанного механизма биохимических реакций, в результате которых образуется АТФ. В этих органеллах осуществляется обеспечение клеток энергией — преобразование энергии химических связей питательных веществ в макроэргиеские связи АТФ в процессе клеточного дыхания. Именно в митохондриях происходит ферментативное расщепление углеводов, жирных кислот, аминокислот с освобождением энергии и последующим превращением её в энергию АТФ. Накопленная энергия расходуется на ростовые процессы, на новые синтезы и т. д. Митохондрии размножаются делением и живут около 10 дней, после чего подвергаются разрушению.

Эндоплазматическая сеть

Эндоплазматическая сеть — сеть каналов, трубочек, пузырьков, цистерн, расположенных внутри цитоплазмы. Открыта в 1945 году английским учёным К. Портером, представляет собой систему мембран, имеющих ультрамикроскопическое строение.

Вся сеть объединена в единое целое с наружной клеточной мембраной ядерной оболочки. Различают ЭПС гладкую и шероховатую, несущую на себе рибосомы. На мембранах гладкой ЭПС находятся ферментные системы, участвующие в жировом и углеводном обмене. Этот тип мембран преобладает в клетках семян, богатых запасными веществами (белками, углеводами, маслами), рибосомы прикрепляются к мембране гранулярной ЭПС, и во время синтеза белковой молекулы полипептидная цепочка с рибосомами погружается в канал ЭПС. Функции эндоплазматической сети очень разнообразны: транспорт веществ как внутри клетки, так и между соседними клетками; разделение клетки на отдельные секции, в которых одновременно проходят различные физиологические процессы и химические реакции.

Рибосомы

Рибосомы — немембранные клеточные органоиды. Каждая рибосома состоит из двух не одинаковых по размеру частичек и может делиться на два фрагмента, которые продолжают сохранять способность синтезировать белок после объединения в целую рибосому.

Рибосомы синтезируются в ядре, затем покидают его, переходя в цитоплазму, где прикрепляются к наружной поверхности мембран эндоплазматической сети или располагаются свободно. В зависимости от типа синтезируемого белка рибосомы могут функционировать по одиночке или объединяться в комплексы — полирибосомы.

Источник: biouroki.ru