Клетка – это структурная и функциональная единица живого организма, которая несет генетическую информацию, обеспечивает обменные процессы, способна к регенерации и самовоспроизведению.

Есть одноклеточные особи и развитые многоклеточные животные и растения. Их жизнедеятельность обеспечивается работой органов, которые построены из разных тканей. Ткань, в свою очередь, представлена совокупностью клеток схожих по строению и выполняемым функциям.

Клетки разных организмов имеют свои характерные свойства и строение, но есть общие составляющие присущие всем клеткам: и растительным, и животным.

Органеллы свойственные всем типам клеток


Строение растительной и животной клетки
Строение растительной и животной клетки

Ядро – один из важных компонентов клетки, содержит генетическую информацию и обеспечивает передачу ее потомкам. Окружено двойной мембраной, что изолирует его от цитоплазмы.

Цитоплазма – вязкая прозрачная среда, заполняющая клетку. В цитоплазме размещены все органоиды. Цитоплазма состоит из системы микротрубочек, которая обеспечивает четкое перемещение всех органелл. А также контролирует транспорт синтезированных веществ.

Клеточная мембрана – оболочка, которая отделяет клетку от внешней среды, обеспечивает транспорт веществ в клетку и выведение продуктов синтеза или жизнедеятельности.

Эндоплазматическая сеть – мембранная органелла, состоит из цистерн и канальцев, на поверхности которых происходит синтез рибосом (гранулярная ЭПС). Места, где нет рибосом, образуют гладкий эндоплазматический ретикулум. Гранулярная и агранулярная сеть не отграничены, а переходят друг в друга и соединяются с оболочкой ядра.

Комплекс Гольджи – стопка цистерн, сплюснутых в центре и расширенных на периферии. Предназначен для завершения синтеза белков и дальнейшего транспорта их из клетки, вместе с ЭПС образует лизосомы.


Митохондрии – двухмембранные органоиды, внутренняя мембрана формирует выступы внутрь клетки – кристы. Отвечают за синтез АТФ, энергетический обмен. Выполняет дыхательную функцию (поглощая кислород и выделяя СО2).

Рибосомы – отвечают за синтез белка, в их структуре выделяют малую и большую субъединицы.

Лизосомы – осуществляют внутриклеточное переваривание, за счет содержания гидролитических ферментов. Расщепляют захваченные чужеродные вещества.

Как в растительных, так и животных клетках есть, помимо органелл, непостоянные структуры — включения. Они появляются при повышении обменных процессов в клетке. Они выполняют питательную функцию и содержат:

  • Зерна крахмала в растениях, и гликоген — в животных;
  • белки;
  • липиды – высокоэнергетические соединения, обладают большей ценностью, чем углеводы и белки.

Есть включения, не играющие роли в энергетическом обмене, они содержат продукты жизнедеятельности клетки. В железистых клетках животных включения накапливают секрет.

Органеллы свойственные только растительной клетке

Органеллы растительной клетки
Органеллы растительной клетки

Клетки животных в отличие от клеток растений не содержат вакуолей, пластид, клеточной стенки.

iv>

Клеточная стенка формируется из клеточной пластинки, образуя первичную и вторичную клеточную оболочки.

Первичная клеточная стенка встречается в недифференцированных клетках. В ходе созревания между мембраной и первичной клеточной стенкой закладывается вторичная оболочка. По своему строению она сходна с первичной, только имеет больше целлюлозы и меньшее количество воды.

Вторичная клеточная стенка оснащена множеством пор. Пора – это место, где между первичной оболочкой и мембраной отсутствует вторичная стенка. Поры размещены попарно в смежных клетках. Размещенные рядом клетки связываются друг с другом плазмодесмой – это канал, представляющий собой тяж цитоплазмы, выстланный плазмолеммой. Через него клетки обмениваются синтезированными продуктами.

Функции клеточной стенки:

  1. Поддержание тургора клетки.
  2. Придает форму клеткам, выполняя роль скелета.
  3. Накапливает питательные продукты.
  4. Защищает от внешнего воздействия.

Вакуоли – органеллы, наполненные клеточным соком, участвуют в переваривании органических веществ (сходны с лизосомами животной клетки). Образуются при помощи совместной работы ЭПС и комплекса Гольджи. Сначала формируется и функционирует несколько вакуолей, во время старения клетки они сливаются в одну центральную вакуоль.

Пластиды – автономные двухмембранные органеллы, внутренняя оболочка имеет выросты – ламеллы. Все пластиды делят на три типа:


  • Лейкопласты – безпигментные образования, способны запасать крахмал, белки, липиды;
  • хлоропласты – зеленные пластиды, содержат пигмент хлорофилл, способны к фотосинтезу;
  • хромопласты – кристаллы оранжевого цвета, из-за наличия пигмента каротина.

Органеллы свойственные только животной клетке

Органеллы животной клетки
Органеллы животной клетки

Отличие растительной клетки от животной заключается в отсутствии в ней центриоли, трехслойной мембраны.

Центриоли – парные органеллы, расположены вблизи ядра. Принимают участие в формировании веретена деления и способствуют равномерному расхождению хромосом к разным полюсам клетки.

Плазматическая мембрана — для клеток животных характерна трехслойная, прочная мембрана, построена из липидов протеинов.

Сравнительная характеристика растительной и животной клетки

>

Сравнительная таблица животной и растительной клетки
Свойства
Растительная клетка
Животная клетка
Строение органелл
Мембранное
Ядро
Сформированное, с набором хромосом
Деление
Размножение соматических клеток, путем митоза
Органоиды
Сходный набор органелл
Клеточная стенка +
Пластиды +
Центриоли +
Тип питания Автотрофный Гетеротрофный
Энергетический синтез С помощью митохондрий и хлоропластов Только с помощью митохондрий
Метаболизм Преимущество анаболизма над катоболизмом Катаболизм превышает синтез веществ
Включения Питательные вещества (крахмал), соли Гликоген, белки, липиды, углеводы, соли
Реснички Крайне редко Есть


Растительные клетки благодаря хлоропластам осуществляют процессы фотосинтеза – преобразуют энергию солнца в органические вещества, животные клетки на это не способны.

Митотическое деление растения идет преимущественно в меристеме, характеризуется наличием дополнительного этапа – препрофазы, в организме животных митоз присущ всем клеткам.

Размеры отдельных растительных клеток (около 50мкм) превышают размеры животных клеток (примерно 20мкм).

Взаимосвязь между клетками растений осуществляется за счет плазмодесмы, животных – при помощи десмосом.

Вакуоли растительной клетки занимают большую часть ее объёма, в животных – это мелкие образования в небольших количествах.

Клеточная стенка растений построена из целлюлозы и пектина, у животных мембрана состоит из фосфолипидов.

Растения не способны активно передвигаться, поэтому приспособились автотрофному способу питания, синтезируя самостоятельно все необходимые питательные вещества из неорганических соединений.

Животные – гетеротрофы и используют экзогенные органические вещества.

Сходство в структуре и функциональных возможностях растительных и животных клеток указывает на единство их происхождения и принадлежности к эукариотам. Их отличительные черты обусловлены различным способом жизни и питания.

Источник: animals-world.ru

Цитоплазматические образования – органеллы

Органеллы (органоиды) — структурные компоненты цитоплазмы. Они имеют определённую форму и размеры, являются обязательными цитоплазматическими структурами клетки. При их отсутствии или повреждении клетка обычно теряет способность к дальнейшему существованию. Многие из органоидов способны к делению и самовоспроизведению. Размеры их настолько малы, что их можно видеть только в электронный микроскоп.

Ядро


Ядро — самая заметная и обычно самая крупная органелла клетки. Оно впервые было подробно исследовано Робертом Броуном в 1831 году. Ядро обеспечивает важнейшие метаболические и генетические функции клетки. По форме оно достаточно изменчиво: может быть шаровидным, овальным, лопастным, линзовидным.

Ядро играет значительную роль в жизни клетки. Клетка, из которой удалили ядро, не выделяет более оболочку, перестаёт расти и синтезировать вещества. В ней усиливаются продукты распада и разрушения, вследствие этого она быстро погибает. Образование нового ядра из цитоплазмы не происходит. Новые ядра образуются только делением или дроблением старого.

Внутреннее содержимое ядра составляет кариолимфа (ядерный сок), заполняющая пространство между структурами ядра. В нём находится одно или несколько ядрышек, а также значительное количество молекул ДНК, соединённых со специфическими белками — гистонами.

Ядрышко

Ядрышко — как и цитоплазма, содержит преимущественно РНК и специфические белки. Важнейшая его функция заключается в том, что в нём происходит формирование рибосом, которые осуществляют синтез белков в клетке.

Аппарат Гольджи


Аппарат Гольджи — органоид, имеющий универсальное распространение во всех разновидностях эукариотических клеток. Представляет собой многоярусную систему плоских мембранных мешочков, которые по периферии утолщаются и образуют пузырчатые отростки. Он чаще всего расположен вблизи ядра.

В состав аппарата Гольджи обязательно входит система мелких пузырьков (везикул), которые отшнуровываются от утолщённых цистерн (диски) и располагаются по периферии этой структуры. Эти пузырьки играют роль внутриклеточной транспортной системы специфических секторных гранул, могут служить источником клеточных лизосом.

Функции аппарата Гольджи состоят также в накоплении, сепарации и выделении за пределы клетки с помощью пузырьков продуктов внутриклеточного синтеза, продуктов распада, токсических веществ. Продукты синтетической деятельности клетки, а также различные вещества, поступающие в клетку из окружающей среды по каналам эндоплазматической сети, транспортируются к аппарату Гольджи, накапливаются в этом органоиде, а затем в виде капелек или зёрен поступают в цитоплазму и либо используются самой клеткой, либо выводятся наружу. В растительных клетках Аппарат Гольджи содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения клеточной оболочки. Предполагают, что он участвует в образовании вакуолей. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году.

Лизосомы

Лизосомы представляют собой мелкие пузырьки, ограниченные мембраной основная функция которых — осуществление внутриклеточного пищеварения. Использование лизосомного аппарата происходит при прорастании семени растения (гидролиз запасных питательных веществ).

Микротрубочки

Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.

Вакуоль

Вакуоль — важнейшая составная часть растительных клеток. Она представляет собой своеобразную полость (резервуар) в массе цитоплазмы, заполненную водным раствором минеральных солей, аминокислот, органических кислот, пигментов, углеводов и отделённую от цитоплазмы вакуолярной мембраной — тонопластом.

Цитоплазма заполняет всю внутреннюю полость только у самых молодых растительных клеток. С ростом клетки существенно изменяется пространственное расположение вначале сплошной массы цитоплазмы: у неё появляются заполненные клеточным соком небольшие вакуоли, и вся масса становится ноздреватой. При дальнейшем росте клетки отдельные вакуоли сливаются, оттесняя к периферии прослойки цитоплазмы, в результате чего в сформированной клетке находится обычно одна большая вакуоль, а цитоплазма со всеми органеллами располагаются около оболочки.

Водорастворимые органические и минеральные соединения вакуолей обусловливают соответствующие осмотические свойства живых клеток. Этот раствор определённой концентрации является своеобразным осмотическим насосом для регулируемого проникновения в клетку и выделения из неё воды, ионов и молекул метаболитов.

В комплексе со слоем цитоплазмы и её мембранами, характеризующимися свойствами полупроницаемости, вакуоль образует эффективную осмотическую систему. Осмотически обусловленными являются такие показатели живых растительных клеток, как осмотический потенциал, сосущая сила и тургорное давление.

Пластиды

Пластиды — самые крупные (после ядра) цитоплазматические органоиды, присущие только клеткам растительных организмов. Они не найдены только у грибов. Пластиды играют важную роль в обмене веществ. Они отделены от цитоплазмы двойной мембранной оболочкой, а некоторые их типы имеют хорошо развитую и упорядоченную систему внутренних мембран. Все пластиды едины по происхождению.

Хлоропласты — наиболее распространённые и наиболее функционально важные пластиды фотоавтотрофных организмов, которые осуществляют фотосинтетические процессы, приводящие в конечном итоге к образованию органических веществ и выделению свободного кислорода. Хлоропласты высших растений имеют сложное внутреннее строение.

Размеры хлоропластов у разных растений неодинаковы, но в среднем диаметр их составляет 4-6 мкм. Хлоропласты способны передвигаться под влиянием движения цитоплазмы. Кроме того, под воздействием освещения наблюдается активное передвижение хлоропластов амебовидного типа к источнику света.

Хлорофилл — основное вещество хлоропластов. Благодаря хлорофиллу зелёные растения способны использовать световую энергию.

Лейкопласты (бесцветные пластиды) представляют собой чётко обозначенные тельца цитоплазмы. Размеры их несколько меньше, чем размеры хлоропластов. Более и однообразна и их форма, приближающая к сферической.

Встречаются в клетках эпидермиса, клубнях, корневищах. При освещении очень быстро превращаются в хлоропласты с соответствующим изменением внутренней структуры. Лейкопласты содержат ферменты, с помощью которых из излишков глюкозы, образованной в процессе фотосинтеза, в них синтезируется крахмал, основная масса которого откладывается в запасающих тканях или органах (клубнях, корневищах, семенах) в виде крахмальных зёрен. У некоторых растений в лейкопластах откладываются жиры. Резервная функция лейкопластов изредка проявляется в образовании запасных белков в форме кристаллов или аморфных включений.

Хромопласты в большинстве случаев являются производными хлоропластов, изредка — лейкопластов.

Созревание плодов шиповника, перца, помидоров сопровождается превращением хлоро- или лейкопластов клеток мякоти в каратиноидопласты. Последние содержат преимущественно жёлтые пластидные пигменты — каратиноиды, которые при созревании интенсивно синтезируются в них, образуя окрашенные липидные капли, твёрдые глобулы или кристаллы. Хлорофилл при этом разрушается.

Митохондрии

Митохондрии — органеллы, характерные для большинства клеток растений. Имеют изменчивую форму палочек, зёрнышек, нитей. Открыты в 1894 году Р. Альтманом с помощью светового микроскопа, а внутреннее строение было изучено позднее с помощью электронного.

Митохондрии имеют двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты — трубочки в растительных клетках. Пространство внутри митохондрии заполнено полужидким содержимым (матриксом), куда входят ферменты, белки, липиды, соли кальция и магния, витамины, а также РНК, ДНК и рибосомы. Ферментативный комплекс митохондрий ускоряет работу сложного и взаимосвязанного механизма биохимических реакций, в результате которых образуется АТФ. В этих органеллах осуществляется обеспечение клеток энергией — преобразование энергии химических связей питательных веществ в макроэргиеские связи АТФ в процессе клеточного дыхания. Именно в митохондриях происходит ферментативное расщепление углеводов, жирных кислот, аминокислот с освобождением энергии и последующим превращением её в энергию АТФ. Накопленная энергия расходуется на ростовые процессы, на новые синтезы и т. д. Митохондрии размножаются делением и живут около 10 дней, после чего подвергаются разрушению.

Эндоплазматическая сеть

Эндоплазматическая сеть — сеть каналов, трубочек, пузырьков, цистерн, расположенных внутри цитоплазмы. Открыта в 1945 году английским учёным К. Портером, представляет собой систему мембран, имеющих ультрамикроскопическое строение.

Вся сеть объединена в единое целое с наружной клеточной мембраной ядерной оболочки. Различают ЭПС гладкую и шероховатую, несущую на себе рибосомы. На мембранах гладкой ЭПС находятся ферментные системы, участвующие в жировом и углеводном обмене. Этот тип мембран преобладает в клетках семян, богатых запасными веществами (белками, углеводами, маслами), рибосомы прикрепляются к мембране гранулярной ЭПС, и во время синтеза белковой молекулы полипептидная цепочка с рибосомами погружается в канал ЭПС. Функции эндоплазматической сети очень разнообразны: транспорт веществ как внутри клетки, так и между соседними клетками; разделение клетки на отдельные секции, в которых одновременно проходят различные физиологические процессы и химические реакции.

Рибосомы

Рибосомы — немембранные клеточные органоиды. Каждая рибосома состоит из двух не одинаковых по размеру частичек и может делиться на два фрагмента, которые продолжают сохранять способность синтезировать белок после объединения в целую рибосому.

Рибосомы синтезируются в ядре, затем покидают его, переходя в цитоплазму, где прикрепляются к наружной поверхности мембран эндоплазматической сети или располагаются свободно. В зависимости от типа синтезируемого белка рибосомы могут функционировать по одиночке или объединяться в комплексы — полирибосомы.

Источник: biouroki.ru

Вы узнаете, что у клеток растений и животных сходными являются те структуры, которые управляют работой клетки, сохраняют наеледственную информацию, обуславливают росткле тки и обеспечивают её энергией.

Что такое ДНК? У животных есть ДНК ? Дышат ли растения ?

На рисунках 10 и 11 изображены схемы строения животной и растительной клеток. Несмотря на различное строение, оба типа клеток имеют много сходного — у них есть клеточная мембрана, ядро, рыбосомы, митохондрии. Эти структуры и органеллы выполняют функции, общие как для животных, так и для растений.

Клеточная мембрана — это структура, присущая любой клетке. Она очень т он кая и в оптический микроскоп не видна. Мембрана образована плёнкой жироподобных молекул, в которую «встроены» молекулы белков. Жиро подобные молекулы делают мембрану непроницаемой, а белки определяют, какие вещества пропустить внутрь, а какие — выпустить наружу.

Каждая клетка заполнена цитоплазмой. Цитоплазма не остаётся неподвижной. Движение цитоплазмы облегчает транспортировку неорганических и простых органических веществ к различным органеллам.

Общим признаком животной и растительной клетки является

И растительная, и животная клетки имеют ядро. Его можно уви- ‘ деть в оптический микроскоп. Ядро — это структура, которая отде- ‘ лена от цитоплазмы я дер ной оболочкой и содержит молекулы ДНК.

ДНК — это длинная молекула, содержащая «инструкции» о том, как производить все необходимые клетке белки. Участок ДНК, содержащий информацию об одном белке, называется ген. При каждом делении дочерние клетки по наследству получают копию ДНК материнской клетки. Поэтому молекула ДНК не только руководит работой клетки, а также является носителем наследственной информации.

Таким образом, ядро — это центр управления работой клетки и место хранения носителей наследственной информации — молекул ДНК.

Во всех клетках имеются рибосТмы — органе л лы, где происходит синтез белков. Они заметны только под электронным микроскопом. Таким образом, рибосома — это, фактически, клеточный конвейер, на котором происходит сборка белков.

Как растительная, так: и животная клетки также имеют митохондрии Митох Ыдрия — это органе л л а, которая обеспечивает клетку энергией.

Она довольно большая и поэтому иногда заметна в оптический микроскоп.

СёИТОЗ — это процесс соединения простых раз розненных частей в сложное целое. Например, синтез белков — это процесс, при котором простые вещества (аминокислоты), соединяясь друг с другом в определённой последовательности, образуют сложное соединение — белок.

Общим признаком животной и растительной клетки являетсяОбщим признаком животной и растительной клетки является

Митохондрия работает аналогично тепловой электростанции: в ней «горючее» взаимодействует с кислородом. Этот процесс называется дыханием, он подобен горению, но без пламени. Часть выделяющейся энергии заряжает «химические батарейки» — особые молекулы, которые называются АТФ. Остаток энергии рассеивается в виде тепла. «Горючим» для митохондрии, в отличие от теплоэлектростанции, является не уголь, а углевод — глюкоза. Глюкоза в митохондриях при взаимодействии с кислородом расщепляется на углекислый газ и воду (рис„ 12).

Но в работе электростанции и митохондрии имеются сущ ест венные различия. Электростанция вырабатывает электрическую энергию, а митохондрия — химическую. В отличие от электростанции, работу митохондрии нельзя приостановить — клетка сразу погибнет.

Выводы

Органеллами и структурами, общими для животных и растительных клеток, являются те, которые:

управляют работой клетки и сохраняют наследственную информацию (ядро с ДНК);

в процессе дыхания обеспечивают клетку энергией (митохондрия);

обеспечивают синтез белков (рибосомы);

контролируют поглощение и выделение клеткой веществ, а также отде ляют цитоплазму от внешней среды (клеточная мембрана).

Митохондрии, ДНК, рибосомы, дыхание.

Контрольные вопросы

Назовите орган ел л у или клеточную структуру, которая:

•    вырабатывает энергию для обеспечения клеточных процессов;

•    позволяет нужным веществам попадать в клетку и предотвращает поступление ненужных или вредных веществ;

•    контролирует работу клетки и с охраняет наследственную информацию;

•    обеспечивает синтез белков.

Для любознательных

Органеллы, обеспечивающие транспорт веществ в клетке

За транспортные функции в растительной и животной клетках отвечают, в первую очередь, эн до плазматическая сеть и диктиосомы. Эндоплаз-матёческая сеть — это разветвлённая система тонких каналов (рис. 10, 11). Каналы эндоплазма™ческой сети являются своеобразными внутриклеточными путями, которые определяют маршруты движения различных органических веществ, в первую очередь, — белков. Кроме того, наружная сторона стенок каналов эн до плазматической сети является местом прикреплен и я р и б ос о м. Эн до п л аз м ати ч ес кая с еть зам етн а тол ько в э л ектр он н ы й микроскоп.

Диктиосомы — это органеллы, которые получают вещества из эндо-плазматической сети, сортируют их, готовят их к транспортировке и «упаковывают» в мапенькие мембранные пузырьки (рис. 10, 11). Далее эти пузырьки отправляются по назначению — или к другим частям клетки, или к клеточной мембране, откуда выводятся наружу.

Напичиедиктиосом является общим признаком и растительной, и >швотной клетки, однако у животных диктиосомы образуют довольно сложную структуру — комплекс Гольджи. Диктиосомы заметны в оптический микроскоп, но их строение можно изучить только с помощью электронного микроскопа.

Сколько разных белков работает на фабрике жизни?

Для того, чтобы клетка могла расти и размножаться, ей нужно много различных белков. Согласно разработанной во второй половине XX в. гипотезе «минимальной клетки», считалось, что клетке, чтобы жить, необходимо синтезировать 800-1000 различных топов белков. Современные оценки мини-мального количества необходимых белков показапи, что клетка может жить, если её ДНК кодирует примерно 310-380 белков. В 2010 г. молекула ДНК с минимапьным количеством генов была искусственно создана и введена в клетку бактерии, из которой была удалена её собственная ДНК. Такая бактериальная клетка в лабораторных условиях начала расти и делиться. Таким образом было доказано, что даже минимального количества генов достаточно для обеспечения полноценной жизнедеятельности клетки.

 

Это материал из учебника Биология 6 класс Костиков

 

Источник: narodna-osvita.com.ua

растения.Г. Животные.А.2 Автотрофные организмы — это: А. Вирусы.Б. Рыбы.В. Животные.Г. Растения, содержащие хлорофилл.А.3 Бактериальная клетка: А. Нейрон.Б. Аксон.В. Дендрит.Г. Холерный вибрион.А.4 Отличительной особенностью растительных клеток является наличие: А. Ядра.Б. Цитоплазмы.В. Мембран.Г. Клеточной стенки из целлюлозы.А.5 В результате митоза происходит: А. Выделение.Б. Регенерация тканей и органов организма..В. Пищеварение.Г. Дыхание.А.6 Укажите одно из положений клеточной теории: А. Одной капли чистого никотина (0,05 г) достаточно, чтобы убить человека.Б. Все новые клетки образуются при делении исходных клеток.В. Вирусы и бактериофаги — представители царства животных.Г. Вирусы и бактериофаги — представители Подцарства Многоклеточные.А.7 Размножение – это: А. Получение питательных веществ из окружающей среды.Б. Выделение ненужных веществ.В. Воспроизведение себе подобных.Г. Поступление в организм кислорода.А.8 Процесс образования женских половых гамет называется: А. ОвогенезБ. СперматогенезВ. ДроблениеГ. ДелениеА.9 Внутреннее оплодотворение происходит у: А. Акул.Б. Щук.В.Обезьян.Г. Лягушек.А.10 Для развивающегося эмбриона человека губительным является: А. Прогулки на свежем воздухе.Б. Соблюдение будущей мамой режима питания.В. Наркотическая зависимость женщины.Г. Соблюдение будущей мамой режима труда и отдыха.А.11 Непрямой тип развития — у: А. Человека разумного.Б. Человекообразных обезьян.В. Узконосых обезьян.Г. Бабочки капустницы.А.12 Генопит — это совокупность всех: А. Признаков организма.Б. Генов организмов.В. Дурных привычек.Г. Полезных привычек.А.13 При дигибридном скрещивании изучается наследование: А. Многих признаков.Б. Трёх признаков.В. Двух признаков.Г. Одного признака.ЗАДАНИЕ В. Задания с кратким ответомВ.1 Найдите соответствие..1.Доминантный признак у человека. А. Серые глаза.2. Рецессивный признак у человека. Б. Карие глаза.В. Светлые волосы.Г. Чёрные волосы.1 2В. 2 Сравните характеристики бесполого и полового размножения. Впишите номер ответа в нужную колонку.Половое размножение. Бесполое размножение1. В процессе размножения участвует одна особь.2. В процессе размножения участвуют две особи разного пола.3. Начало новому организму даёт зигота, возникающая в результате слияния мужской и женской половых клеток.4. Начало новому организму (организмам) даёт соматическая клетка.5. Дизентерийная палочка.6. Самец и самка прудовой лягушки.В.3 Выберите правильный ответ. Выпишите номера правильных утверждений. №___________1.Сперматозоид — женская половая гамета.2. Сперматозоид — мужская половая гамета3. Яйцеклетка — мужская половая гамета4. Яйцеклетка — женская половая гамета5.Овогенез – процесс развития яйцеклеток.6. Овогенез – процесс развития сперматозоидов.7. Сперматогенез — процесс развития яйцеклеток.8. Сперматогенез — процесс развития сперматозоидов9. Оплодотворение — это процесс слияния половых гамет: двух сперматозоидов.10. Оплодотворение — это процесс слияния половых гамет: двух яйцеклеток.11. Оплодотворение — это процесс слияния половых гамет: сперматозоида и яйцеклетки. В.4 Установите правильную последовательность усложнения организмов по плану: неклеточные формы жизни-прокариоты-эукариоты.1.Вирус гриппа Н7N92. Амёба пресноводная.3. Холерный вибрион.В.5 Гетерозиготная (Аа) чёрная крольчиха скрещивается с гетерозиготным (Аа) черным кроликом. 1. Какого расщепления по фенотипу следует ожидать при таком скрещивании?А. 3:1; Б. 1:1; В. 1:2:12. Сколько процентов составляет вероятность рождения белых крольчат — (гомозиготных по двум рецессивным генам — аа) ? Ответ:_________________В.6 Внимательно прочитайте текст, подумайте и ответьте на вопрос:»Вспомнить о возможной эволюционной роли симбиоза учёных заставило изучение внутреннего строения клетки — в середине прошлого века после появления электронного микроскопа открытия в этой области посыпались одно за другим. Оказалось, в частности, что не только хлоропласты растений, но и митохондрии — «энергетические установки» любых настоящих клеток — в самом деле похожи на бактерий причём не только внешне: у них есть собственная ДНК и они размножаются независимо от клетки — хозяина.»( По материалам журнала «Вокруг Света»).Какие органоиды имеют собственную ДНК?

Источник: matematika.neznaka.ru