Ядро клетки – центральный органоид, один из самых важных. Наличие его в клетке является признаком высокой организации организма. Клетка, имеющая оформленное ядро, называется эукариотической. Прокариоты – это организмы, состоящие из клетки, не имеющей оформленного ядра. Если подробно рассмотреть все его составляющие, то можно понять, какую функцию выполняет ядро клетки.

ядро клетки функции

Далее в статье будет рассказываться о том, каковы функции ядра клетки, какие компоненты входят в его состав.

Структура ядра

  1. Ядерная оболочка.
  2. Хроматин.
  3. Ядрышки.
  4. Ядерный матрикс и ядерный сок.

Структура и функции ядра клетки зависят от типа клеток и их предназначения.

Ядерная оболочка

Ядерная оболочка имеет две мембраны – внешнюю и внутреннюю. Они разделены между собой перинуклеарным пространством. Оболочка имеет поры. Ядерные поры необходимы для того, чтобы различные крупные частицы и молекулы могли перемещаться из цитоплазмы в ядро и обратно.

Ядерные поры образуются в результате слияния внутренней и наружной мембраны. Поры представляют собой округлые отверстия, имеющие комплексы, в которые входят:


  1. Тонкая диафрагма, закрывающая отверстие. Она пронизана цилиндрическими каналами.
  2. Белковые гранулы. Они находятся с двух сторон от диафрагмы.
  3. Центральная белковая гранула. Она связана с периферическими гранулами фибриллами.

Количество пор в ядерной оболочке зависит от того, насколько интенсивно в клетке проходят синтетические процессы.

Ядерная оболочка состоит из внешней и внутренней мембран. Внешняя переходит в шероховатый ЭПР (эндоплазматический ретикулум).

Хроматин

Хроматин — важнейшее вещество, входящее в ядро клетки. Функции его — это хранение генетической информации. Он представлен эухроматином и гетерохроматином. Весь хроматин – это совокупность хромосом.

Эухроматин – это части хромосом, которые активно принимают участие в транскрипции. Такие хромосомы находятся в диффузном состоянии.каковы функции ядра клетки

Неактивные отделы и целые хромосомы представляют собой конденсированные глыбки. Это и есть гетерохроматин. При изменении состояния клетки гетерохроматин может переходить в эухроматин, и наоборот. Чем больше в ядре гетерохроматина, тем ниже скорость синтеза рибонуклеиновой кислоты (РНК) и тем меньше функциональная активность ядра.

Хромосомы

Хромосомы – это особые образования, которые возникают в ядре только во время деления. Хромосома состоит из двух плеч и центромеры. По форме их делят на:


  • Палочкообразные. Такие хромосомы имеют одно большое плечо, а другое маленькое.
  • Равноплечные. Имеют относительно одинаковые плечи.
  • Разноплечные. Плечи хромосомы зрительно отличаются между собой.
  • С вторичными перетяжками. У такой хромосомы имеется нецентромерная перетяжка, которая отделяет спутничный элемент от основной части.

ядро в клетке выполняет функцию

У каждого вида количество хромосом всегда одинаково, но стоит отметить, что от их количества не зависит уровень организации организма. Так, у человека имеется 46 хромосом, у курицы — 78, у ежа — 96, а у березы — 84. Наибольшее число хромосом имеет папоротник Ophioglossum reticulatum. У него 1260 хромосом на каждую клетку. Наименьшее число хромосом имеет самец-муравей вида Myrmecia pilosula. У него только 1 хромосома.

Именно изучив хромосомы, ученые поняли, каковы функции ядра клетки.

В состав хромосом входят гены.

Ген


Гены – это участки молекул дезоксирибонуклеиновой кислоты (ДНК), в которых закодированы определенные составы молекул белка. В результате этого у организма проявляется тот или иной признак. Ген передается по наследству. Так, ядро в клетке выполняет функцию передачи генетического материала следующим поколениям клеток.

Ядрышки

Нуклеола – это самая плотная часть, которая входит в ядро клетки. Функции, которые она выполняет, очень важны для всей клетки. Обычно имеет округлую форму. Количество ядрышек варьируется в разных клетках – их может быть два, три либо вооще не быть. Так, в клетках дробящихся яиц нуклеолы нет.

Структура ядрышка:

  1. Гранулярный компонент. Это гранулы, которые находятся на периферии ядрышка. Их размер варьируется от 15 нм до 20 нм. В некоторых клетках ГК может быть равномерно распределен по всему ядрышку.
  2. Фибриллярный компонент (ФК). Это тонкие фибриллы, размером от 3 нм до 5 нм. Фк представляет собой диффузную часть ядрышка.

Фибриллярные центры (ФЦ) – это участки фибрилл, имеющие низкую плотность, которые, в свою очередь, окружены фибриллами с высокой плотностью. Химический состав и строение ФЦ почти такие же, как и у ядрышковых организаторов митотических хромосом. В их состав входят фибриллы толщиной до 10 нм, в которых есть РНК-полимераза I. Это подтверждается тем, что фибриллы окрашиваются солями серебра.какую функцию выполняет ядро клетки

Структурные типы ядрышек

iv>
  1. Нуклеолонемный или ретикулярный тип. Характеризуется большим количеством гранул и плотного фибриллярного материала. Данный тип структуры ядрышка характерен для большинства клеток. Его можно наблюдать как в животных клетках, так в растительных.
  2. Компактный тип. Характеризуется небольшой выраженностью нуклеономы, большим количеством фибриллярных центров. Встречается в растительных и животных клетках, в которых активно происходит процесс синтеза белка и РНК. Этот тип ядрышек характерен для клеток, активно размножающихся (клетки культуры ткани, клетки растительных меристем и др.).
  3. Кольцевидный тип. В световой микроскоп данный тип виден как кольцо со светлым центром – фибриллярный центр. Размер таких ядрышек в среднем 1 мкм. Данный тип характерен только для животных клеток (эндотелиоциты, лимфоциты и др.). В клетках с таким типом ядрышек довольно низкий уровень транскрипции.
  4. Остаточный тип. В клетках этого типа ядрышек не происходит синтез РНК. При определенных условиях данный тип может переходить в ретикулярный или компактный, т. е. активироваться. Такие ядрышки характерны для клеток шиповатого слоя кожного эпителия, нормобласта и др.
  5. Сегрегированный тип. В клетках с этим типом ядрышек не происходит синтез рРНК (рибосомной рибонуклеиновой кислоты). Это происходит, если клетка обработана каким-либо антибиотиком или химическим веществом. Слово «сегрегация» в данном случае обозначает «разделение» или «обособление», так как все компоненты ядрышек разделяются, что приводит к его уменьшению.

Почти 60% сухого веса ядрышек приходится на белки. Их количество очень велико и может достигать нескольких сотен.

Главная функция ядрышек – это синтез рРНК. Зародыши рибосом попадают в кариоплазму, затем через поры ядра просачиваются в цитоплазму и на ЭПС.

основные функции ядра в клетке

Ядерный матрикс и ядерный сок

Ядерный матрикс занимает почти все ядро клетки. Функции его специфичны. Он растворяет и равномерно распределяет все нуклеиновые кислоты в состоянии интерфазы.

Ядерный матрикс, или кариоплазма, – это раствор, в состав которого входят углеводы, соли, белки и другие неорганические и органические вещества. В нем содержатся нуклеиновые кислоты: ДНК, тРНК, рРНК, иРНК.

В состоянии деления клетки ядерная оболочка растворяется, образуются хромосомы, а кариоплазма смешивается с цитоплазмой.

Основные функции ядра в клетке

  1. Информативная функция. Именно в ядре находится вся информация о наследственности организма.
  2. Функция наследования. Благодаря генам, которые расположены в хромосомах, организм может передавать свои признаки из поколения в поколение.
  3. Функция объединения. Все органоиды клетки объединены в одно целое именно в ядре.
  4. Функция регуляции. Все биохимические реакции в клетке, физиологические процессы регулируются и согласуются ядром.
>

структура и функции ядра клетки

Один из самых важных органоидов – ядро клетки. Функции его важны для нормальной жизнедеятельности всего организма.

Источник: www.syl.ru

Ядро есть только у эукариотических клеток. При этом некоторые из них его утрачивают в процессе дифференцировки (зрелые членики ситовидных трубок, эритроциты). У инфузорий есть два ядра: макронуклеус и микронуклеус. Бывают многоядерные клетки, возникшие путем объединения нескольких клеток. Однако в большинстве случаев в каждой клетке имеется только одно ядро.

Ядро клетки является самым крупным ее органоидом (если не считать центральные вакуоли клеток растений). Оно самое первое из клеточных структур, которое было описано учеными. Клеточные ядра обычно имеют шаровидную или яйцевидную форму.

Ядро регулирует всю активность клетки. В нем находятся хроматиды — нитевидные комплексы молекул ДНК с белками-гистонами (особенностью которых является содержание в них большого количества аминокислот лизина и аргинина). ДНК ядра хранит информацию о почти всех наследственных признаках и свойствах клетки и организма. В период клеточного деления хроматиды спирализуются, в таком состоянии они видны в световой микроскоп и называются хромосомами.


Хроматиды в неделящейся клетке (в период интерфазы) не полностью деспирализованы. Плотно спирализованные части хромосом называются гетерохроматином. Он располагается ближе к оболочке ядра. К центру ядра располагается эухроматин — более деспирализованная часть хромосом. На нем происходит синтез РНК, т. е. идет считывание генетической информации, экспрессия генов.

Строение клеточного ядра

Репликация ДНК предшествует делению ядра, которое, в свою очередь, предшествует делению клетки. Таким образом, дочерние ядра получают уже готовую ДНК, а дочерние клетки — готовые ядра.

Внутреннее содержимое ядра отделяется от цитоплазмы ядерной оболочкой, состоящей из двух мембран (внешней и внутренней). Таким образом, ядро клетки относится к двумембранным органоидам. Пространство между мембранами называется перинуклеарным.

Внешняя мембрана в определенных местах переходит в эндоплазматическу сеть (ЭПС). Если на ЭПС располагаются рибосомы, то она называется шероховатой. Рибосомы могут размешаться и на наружней ядерной мембране.


Во множестве мест внешняя и внутренняя мембраны сливаются друг с другом, образуя ядерные поры. Их число непостоянно (в среднем исчисляются тысячами) и зависит от активности биосинтеза в клетке. Через поры ядро и цитоплазма обмениваются различными молекулами и структурами. Поры — это не просто дырки, они сложно устроены для избирательного транспорта. Их структуру определяют различные белки-нуклеопорины.

Строение ядерной поры

Из ядра выходят молекулы иРНК, тРНК, субчастицы рибосом.

В ядро через поры заходят различные белки, нуклеотиды, ионы и др.

Субчастицы рибосом собираются из рРНК и рибосомных белков в ядрышке (их может быть несколько). Центральную часть ядрышка образуют специальные участки хромосом (ядрышковые организаторы), которые располагаются рядом друг с другом. В ядрышковых организаторах содержится большое количество копий кодирующих рРНК генов. Перед клеточным делением ядрышко исчезает и вновь образуется уже во время телофазы.

Жидкое (гелеобразное) содержимое клеточного ядра называется ядерным соком (кариоплазмой, нуклеоплазмой). Его вязкость почти такая же как у гиалоплазмы (жидкое содержимое цитоплазмы), однако кислотность выше (ведь ДНК и РНК, которых в ядре большое количество, — это кислоты). В ядерном соке плавают белки, различные РНК, рибосомы.

Источник: biology.su

Дополнительные материалы по теме: Строение и функции ядра клетки.


  

Биология 5,6,7,8,9,10,11 класс, ЕГЭ, ГИА

Строение и работа всех функций живых организмов, растений, грибов, микроорганизмов — вся биология
Биология 5,6,7,8,9,10,11 класс, ЕГЭ, ГИА

Строение клетки.

Строение клетки – это очень важный раздел знаний по биологии , без которого невозможно говорить об усвоении дальнейших знаний, потому что клетка является наименьшей структурной единицей всего живого.
Строение клетки.
  

Система живого мира

Строение и работа всех функций живых организмов, растений, грибов, микроорганизмов — вся биология
Система живого мира

Строение клеточной оболочки.

Клеточная оболочка ( цитоплазматическая оболочка ) – это поверхностный аппарат клетки, который выполняет важные функции, а потому имеет свои особенности.
Строение клеточной оболочки.

Ядро есть только у эукариотических клеток. При этом некоторые из них его утрачивают в процессе дифференцировки (зрелые членики ситовидных трубок, эритроциты). У инфузорий есть два ядра: макронуклеус и микронуклеус. Бывают многоядерные клетки, возникшие путем объединения нескольких клеток.

Однако в большинстве случаев в каждой клетке имеется только одно ядро.

Ядро клетки является самым крупным ее органоидом (если не считать центральные вакуоли клеток растений). Оно самое первое из клеточных структур, которое было описано учеными. Клеточные ядра обычно имеют шаровидную или яйцевидную форму.

Ядро регулирует всю активность клетки. В нем находятся хроматиды — нитевидные комплексы молекул ДНК с белками-гистонами (особенностью которых является содержание в них большого количества аминокислот лизина и аргинина).

ДНК ядра хранит информацию о почти всех наследственных признаках и свойствах клетки и организма. В период клеточного деления хроматиды спирализуются, в таком состоянии они видны в световой микроскоп и называются хромосомами.

Хроматиды в неделящейся клетке (в период интерфазы) не полностью деспирализованы.

Плотно спирализованные части хромосом называются гетерохроматином. Он располагается ближе к оболочке ядра. К центру ядра располагается эухроматин — более деспирализованная часть хромосом.

На нем происходит синтез РНК, т. е. идет считывание генетической информации, экспрессия генов.

Одноядерные клетки

Репликация ДНК предшествует делению ядра, которое, в свою очередь, предшествует делению клетки. Таким образом, дочерние ядра получают уже готовую ДНК, а дочерние клетки — готовые ядра.

Внутреннее содержимое ядра отделяется от цитоплазмы ядерной оболочкой, состоящей из двух мембран (внешней и внутренней).

Таким образом, ядро клетки относится к двумембранным органоидам. Пространство между мембранами называется перинуклеарным.

Внешняя мембрана в определенных местах переходит в эндоплазматическу сеть (ЭПС).

Если на ЭПС располагаются рибосомы, то она называется шероховатой. Рибосомы могут размешаться и на наружней ядерной мембране.

Во множестве мест внешняя и внутренняя мембраны сливаются друг с другом, образуя ядерные поры.

Их число непостоянно (в среднем исчисляются тысячами) и зависит от активности биосинтеза в клетке. Через поры ядро и цитоплазма обмениваются различными молекулами и структурами. Поры — это не просто дырки, они сложно устроены для избирательного транспорта. Их структуру определяют различные белки-нуклеопорины.

Одноядерные клетки

Из ядра выходят молекулы иРНК, тРНК, субчастицы рибосом.

В ядро через поры заходят различные белки, нуклеотиды, ионы и др.

Субчастицы рибосом собираются из рРНК и рибосомных белков в ядрышке(их может быть несколько).

Центральную часть ядрышка образуют специальные участки хромосом (ядрышковые организаторы), которые располагаются рядом друг с другом. В ядрышковых организаторах содержится большое количество копий кодирующих рРНК генов. Перед клеточным делением ядрышко исчезает и вновь образуется уже во время телофазы.

Жидкое (гелеобразное) содержимое клеточного ядра называется ядерным соком (кариоплазмой, нуклеоплазмой).

Его вязкость почти такая же как у гиалоплазмы (жидкое содержимое цитоплазмы), однако кислотность выше (ведь ДНК и РНК, которых в ядре большое количество, — это кислоты). В ядерном соке плавают белки, различные РНК, рибосомы.

Структурные элементы ядра бывают четко выражены только в определенный период клеточного цикла в интерфазе. В период деления клетки (в период митоза или мейоза) одни структурные элементы исчезают, другие существенно преобразуются.

Классификация структурных элементов интерфазного ядра:

• хроматин;

• ядрышко;

• кариоплазма;

• кариолемма.

Хроматин представляет собой вещество, хорошо воспринимающее краситель (хромос), откуда и произошло его название.

Хроматин состоит из хроматиновых фибрилл, толщиной 20-25 нм, которые могут располагаться в ядре рыхло или компактно. На этом основании различают два вида хроматина:

• эухроматин — рыхлый или деконденсированный хроматин, слабо окрашивается основными красителями;

• гетерохроматин — компактный или конденсированный хроматин, хорошо окрашивается этими же красителями.

При подготовке клетки к делению в ядре происходит спирализация хроматиновых фибрилл и превращение хроматина в хромосомы.

После деления в ядрах дочерних клеток происходит деспирализация хроматиновых фибрилл и хромосомы снова преобразуются в хроматин. Следовательно, хроматин и хромосомы представляют собой различные фазы одного и того же вещества.

По химическому строению хроматин состоит из:

• дезоксирибонуклеиновой кислоты (ДНК) 40 %;

• белков около 60 %;

• рибонуклеиновой кислоты (РНК) 1 %.

Ядерные белки представлены формами:

• щелочными или гистоновыми белками 80-85 %;

• кислыми белками 15-20 %.

Гистоновые белки связаны с ДНК и образуют полимерные цепи дезоксирибонуклеопротеида (ДНП), которые и представляют собой хроматиновые фибриллы, отчетливо видимые при электронной микроскопии.

На определенных участках хроматиновых фибрилл осуществляется транскрипция с ДНК различных РНК, с помощью которых осуществляется затем синтез белковых молекул. Процессы транскрипции в ядре осуществляются только на свободных хромосомных фибриллах, то есть в эухроматине.

В конденсированном хроматине эти процессы не осуществляются и потому гетерохроматин является неактивным хроматином. Соотношение эухроматина и гетерохроматина в ядре является показателем активности синтетических процессов в данной клетке. На хроматиновых фибриллах в S-периоде интерфазы осуществляется также процессы редупликации ДНК. Эти процессы происходят как в эухроматине, так и в гетерохроматине, но в гетерохроматине они протекают значительно позже.

Ядрышко — сферическое образование (1-5 мкм в диаметре) хорошо воспринимающее основные красители и располагающееся среди хроматина.

В одном ядре может содержаться от 1 до 4-х и даже более ядрышек. В молодых и часто делящихся клетках размер ядрышек и их количество увеличены.

Ядрышко не является самостоятельной структурой. Оно формируется только в интерфазе в определенных участках некоторых хромосом — ядрышковых организаторах, в которых содержатся гены, кодирующие молекулу рибосомальной РНК. В области ядрышкового анализатора осуществляется транскрипция с ДНК рибосомальной РНК.

В ядрышке происходит соединение рибосомальной РНК с белком и образование субъединиц рибосом.

Микроскопически в ядрышке различают:

• фибриллярный компонент — локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида (РНП);

• гранулярный компонент — локализуется в периферической части ядрышка и представляет скопление субъединиц рибосом.

В профазе митоза, когда происходит спирализация хроматиновых фибрилл и образование хромосом, процессы транскрипции РНК и синтеза субъединиц рибосом прекращаются и ядрышко исчезает.

По окончании митоза в ядрах вновь образованных клеток происходит деконденсация хромосом и появляется ядрышко.

Кариоплазма (нуклеоплазма) или ядерный сок состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров. Под световым микроскопом кариоплазма бесструктурна, но при электронной микроскопии в ней определяются гранулы (15 нм), состоящие из рибонуклеопротеидов.

Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющих расщепление углеводов и образование АТФ.

Негистоновые (кислые) белки образуют в ядре структурную сеть (ядерный белковый матрикс), которая вместе с ядерной оболочкой принимает участие в создание внутреннего порядка, прежде всего в определенной локализации хроматина.

При участии кариоплазмы осуществляется обмен веществ в ядре, взаимодействие ядра и цитоплазмы.

Кариолемма (нуклеолемма) — ядерная оболочка отделяет содержимое ядра от цитоплазмы (барьерная функция), в то же время обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина.

Кариолемма состоит из двух билипидных мембран — внешней и внутренней ядерной мембраны, разделенных перинуклеарным пространством, шириной от 25 до 100 нм.

В кариолемме имеются поры, диаметром 80-90 нм. В области пор внешняя и внутренняя ядерные мембраны переходят друг в друга, а перинуклеарное пространство оказывается замкнутым.

Просвет поры закрыт особым структурным образованием — комплексом поры, который состоит из фибриллярного и гранулярного компонента. Гранулярный компонент представлен белковыми гранулами диаметром 25 нм, располагающимися по краю поры в три ряда.

От каждой гранулы отходят фибриллы и соединяются в центральной грануле, располагающейся в центре поры. Комплекс поры играет роль диафрагмы, регулирующей ее проницаемость. Размеры пор стабильны для данного типа клеток, но число пор может изменяться в процессе дифференцировки клетки. В ядрах сперматозоидов ядерные поры отсутствуют. На наружной ядерной мембране могут локализоваться прикрепленные рибосомы. Кроме того, наружная ядерная мембрана может продолжаться в канальцы эндоплазматической сети.

40.

Гетерохроматин — участки хроматина, находящиеся в течение клеточного цикла в конденсированном (компактном) состоянии. Особенностью гетерохроматиновой ДНК является крайне низкая транскрибируемость. ГЕТЕРОХРОМАТИН

(от гетеро… и хроматин), участки хроматина, находящиеся в конденсированном (плотно упакованном) состоянии в течение всего клеточного цикла. Интенсивно окрашиваются ядерными красителями и хорошо видны в световой микроскоп даже во время интерфазы.

Гетерохроматич. р-ны хромосом, как правило, реплицируются позже эухроматиновых и не транскрибируются, т. е. генетически весьма инертны. Ядра активных тканей и эмбриональных клеток большей частью бывают бедны Г. Различают факультативный и конститутивный (структурный) Г. Факультативный Г. присутствует только в одной из гомологичных хромосом. Пример Г. такого типа — вторая Х-хромосома у жен.особей млекопитающих, к-рая в ходе раннего эмбриогенеза инактивируется вследствие её необратимой конденсации.

Структурный Г. содержится в обеих гомологичных хромосомах, локализован преим. в экспонированных участках хромосомы — в центромере, теломере, ядрышко-вом организаторе (во время интерфазы он располагается неподалёку от ядерной оболочки), обеднён генами, обогащен сателлитной ДНК и может инактивиро-вать расположенные по соседству гены (т.

н. эффект положения). Этот тип Г. очень вариабелен как в пределах одного вида, так и в пределах близких видов. Он может влиять на синапсис хромосом, частоту индуцированных разрывов и рекомбинацию. Участкам структурного Г. свойственна адгезия (слипание) сестринских хроматид.

ЭУХРОМАТИН

(от греч. eu — хорошо, полностью и хроматин), участки хромосом, сохраняющие деспирализованное состояние в покоящемся ядре (в интерфазе) и спирализующиеся при делении клеток (в профазе); содержат большинство генов и потенциально способны к транскрипции.

Э. отличается от гетерохроматина меньшим содержанием метилированных оснований и блоков повторяющихся последовательностей ДНК, большим количеством негистоновых белков и ацетилированных молекул гистонов, менее плотной упаковкой хромосомного материала, что, как полагают, особенно важно для активности Э. и делает его потенциально более доступным для ферментов, обеспечивающих транскрипцию.

Э. может приобретать свойства факультативного гетерохроматина — инактивироваться, что является одним из способов регуляции генной активности.

Дата публикования: 2015-02-18; Прочитано: 229 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.002 с)…Одноядерные клетки

Строение и функции клеточного ядра.

Ядро – обязательная часть эукариотической клетки. Главная функция ядра – хранение генетического материала в форме ДНК и передача ее дочерним клеткам при клеточном делении. Кроме того, ядро управляет белковыми синтезами, контролирует все процессы жизнедеятельности клетки.

( в растительной клетке ядро описал Р.Броун в 1831г., в животной – Т.Шванн в 1838г.)

Большинство клеток имеет одно ядро, обычно округлой формы, реже неправильной формы.

Размеры ядра колеблются от 1мкм (у некоторых простейших) до 1мм (в яйцеклетках рыб, земноводных).

Встречаются двуядерные клетки (клетки печени, инфузорий) и многоядерные (в клетках поперечно – полосатых мышечных волокон, а так же в клетках ряда видов грибов и водорослей).

Некоторые клетки (эритроциты) – безъядерные, это редкое явление, носит вторичный характер.

В состав ядра входят:

1)ядерная оболочка;

2)кариоплазма;

3)ядрышко;

4)хроматин или хромосомы.

Хроматин находится в неделящемся ядре, хромосомы – в митотическом ядре.

Оболочка ядра состоит из двух мембран (наружной и внутренней). Наружная ядерная мембрана соединяется с мембранными каналами ЭПС. На ней располагаются рибосомы.

В мембранах ядра имеются поры (3000-4000). Через ядерные поры происходит обмен различными веществами между ядром и цитоплазмой.

Кариоплазма (нуклеоплазма) представляет собой желеобразный раствор, который заполняет пространство между структурами ядра (хроматином и ядрышками).

Она содержит ионы, нуклеотиды, ферменты.

Ядрышко, обычно шаровидной формы (одно или несколько), не окружено мембраной, содержит фибриллярные белковые нити и РНК.

Ядрышки – не постоянные образования, они исчезают в начале деления клетки и восстанавливаются после его окончания. Ядрышки имеются только в неделящихся клетках.

В ядрышках происходит формирование рибосом, синтез ядерных белков. Сами же ядрышки образуются на участках вторичных перетяжек хромосом (ядрышковых организаторах). У человека ядрышковые организаторы находятся на 13,14,15,21 и 22 хромосомах.

Предыдущая12345678910111213141516Следующая

Дата добавления: 2015-08-08; просмотров: 134;

ПОСМОТРЕТЬ ЕЩЕ:

Ядро клетки по своему строению относится к группе двухмембранных органоидов. Однако ядро настолько важно для жизнедеятельности эукариотической клетки, что обычно его рассматривают отдельно. Ядро клетки содержит хроматин (деспирализованные хромосомы), который отвечает за хранение и передачу наследственной информации.

В строении ядра клетки выделяют следующие ключевые структуры:

  • ядерная оболочка, состоящая из внешней и внутренней мембраны,
  • ядерный матрикс — всё, что заключено внутри клеточного ядра,
  • кариоплазма (ядерный сок) — жидкое содержимое, подобное по составу гиалоплазме,
  • ядрышко,
  • хроматин.

Кроме перечисленного в ядре содержатся различные вещества, субъединицы рибосом, РНК.

Строение наружной мембраны ядра клетки сходно с эндоплазматической сетью.

Часто внешняя мембрана просто переходит в ЭПС (последняя от нее как бы ответвляется, является ее выростом).

С внешней стороны на ядре располагаются рибосомы.

Внутренняя мембрана более прочная за счет выстилающей ее ламины.

Кроме опорной функции к этой ядерной выстилке прикрепляется хроматин.

Пространство между двумя ядерными мембранами называется перинуклеарным.

Мембрана ядра клетки пронизана множеством пор, соединяющих цитоплазму с кариоплазмой. Однако по своему строению поры ядра клетки не просто отверстия в мембране. В них содержатся белковые структуры (поровый комплекс белков), отвечающий за избирательную транспортировку веществ и структур. Пассивно через пору могут проходить только малые молекулы (сахара, ионы).

Хроматин следует считать главным компонентом ядра. В нем заключена наследственная информация, которая передается при каждом делении клетки, а также реализуется в процессе жизнедеятельности самой клетки.

Хроматин ядра клетки состоит их хроматиновых нитей. Каждая хроматиновая нить соответствует одной хромосоме, которая образуется из нее путем спирализации.

Чем сильнее раскручена хромосома (превращена в хроматиновую нить), тем больше она задействована в процессах синтеза на ней.

Одна и та же хромосома может быть в одних участках спирализована, а в других деспирализована.

Каждая хроматиновая нить ядра клетки по строению является комплексом ДНК и различных белков, которые в том числе выполняют функцию скручивания и раскручивания хроматина.

Ядра клеток могут содержать одно и более ядрышек. Ядрышки состоят из рибонуклеопротеидов, из которых в дальнейшем образуются субъединицы рибосом.

Здесь происходит синтез рРНК (рибосомальной РНК).

Источник: ekoshka.ru

Ядро клетки — это одна из основных составных частей всех растительных и животных клеток, неразрывно связанная с обменом, размножением, передачей наследственной информации и др.

Форма ядра клетки варьирует в зависимости от типа клетки. Имеются овальные, шаровидные и неправильной формы — подковообразные или многолопастные ядро клетки (у лейкоцитов), четковидные ядра клетки (у некоторых инфузорий), разветвленные ядра клетки (в железистых клетках насекомых) и др. Величина ядра клетки различна, но обычно связана с объемом цитоплазмы. Нарушение этого соотношения в процессе роста клетки приводит к клеточному делению. Количество ядер клетки также неодинаково — большинство клеток имеет одно ядро, хотя встречаются двуядерные и многоядерные клетки (например, некоторые клетки печени и костного мозга). Положение ядра в клетке является характерным для клеток каждого типа. В зародышевых клетках ядро обычно находится в центре клетки, но может смещаться по мере развития клетки и образования в цитоплазме специализированных участков или отложения  в  ней   резервных   веществ.

В ядре клетки различают основные структуры: 1) ядерную оболочку (ядерную мембрану), через поры которой осуществляется обмен между ядром клетки и цитоплазмой [имеются данные, указывающие на то, что ядерная мембрана (состоящая из двух слоев) без перерыва переходит в мембраны эндоплазматической сети (см. Цитоплазма) и комплекса Гольджи]; 2) ядерный сок, или кариоплазму,— полужидкую, слабо окрашиваемую плазматическую массу, заполняющую все ядра клетки и содержащую в себе остальные компоненты ядра; 3) хромосомы (см.), которые в неделящемся ядре видны только с помощью специальных методов микроскопии (на окрашенном срезе неделящейся клетки хромосомы обычно имеют вид неправильной сети из темных тяжей и зернышек, в совокупности называемых хроматином); 4) одно или несколько сферических телец — ядрышек, являющихся специализированной частью ядра клетки и связанных с синтезом рибонуклеиновой кислоты и белков.

Ядро клетки обладает сложной химической организацией, в которой важнейшую роль играют нуклеопротеиды — продукт соединения нуклеиновых кислот с белками. В жизни клетки имеются два основных периода: интерфазный, или метаболический, и митотический, или период деления. Оба периода характеризуются главным образом изменениями в строении ядра клетки. В интерфазе ядро клетки находится в покоящемся состоянии и участвует в синтезе белков, регуляции формообразования, процессах секреции и других жизненных отправлениях клетки. В период деления в ядре клетки происходят изменения, приводящие к перераспределению хромосом и образованию дочерних ядер клетки; наследственная информация передается, таким образом, через ядерные структуры новому поколению клеток.

Ядра клетки размножаются только делением, при этом в большинстве случаев делятся и сами клетки. Обычно различают: прямое деление ядра клетки путем перешнуровки — амитоз и самый распространенный способ деления ядер клетки— типичное непрямое деление, или митоз (см.).

Действие ионизирующей радиации и некоторых других факторов способно изменять заключенную в ядре клетки генетическую информацию, приводя к различным изменениям ядерного аппарата, что иногда может приводить к гибели самих клеток или служить причиной наследственных аномалий у потомства (см. Наследственность), Поэтому изучение структуры и функций ядра клетки, особенно связей между хромосомными соотношениями и наследованием признаков, которыми занимается цитогенетика, имеет существенное практическое значение для медицины (см. Цитогенетические исследования).

См. также Клетка.

Ядро клетки — важнейшая составная часть всех растительных и животных клеток.

Клетка, лишенная ядра или с поврежденным ядром, не способна нормально выполнять свои функции. Ядро клетки, точнее, организованная в его хромосомах (см.) дезоксирибонуклеиновая кислота (ДНК),— носитель наследственной информации, определяющей все особенности клетки, тканей и целого организма, его онтогенез и свойственные организму нормы реагирования на воздействия среды. Заключенная в ядре наследственная информация закодирована в составляющих хромосомы молекулах ДНК последовательностью четырех азотистых оснований: аденина, тимина, гуанина и цитозина. Эта последовательность является матрицей, определяющей структуру синтезируемых в клетке белков.

Даже самые незначительные нарушения структуры ядра клетки ведут к необратимым изменениям свойств клетки или к ее гибели. Опасность ионизирующих излучений и многих химических веществ для наследственности (см.) и для нормального развития плода имеет в своей основе повреждения ядер в половых клетках взрослого организма или в соматических клетках развивающегося эмбриона. В основе преобразования нормальной клетки в злокачественную также лежат определенные нарушения структуры ядра клетки.

Размеры и форма ядра клетки и соотношение его объема и объема всей клетки характерны для различных тканей. Одним из главных признаков, отличающих элементы белой и красной крови, являются форма и размер их ядер. Ядра лейкоцитов могут быть неправильной формы: изогнуто-колбасовидной, лапчатой или четковидной; в последнем случае каждый участок ядра соединен с соседним тонкой перемычкой. В зрелых мужских половых клетках (сперматозоидах) ядро клетки составляет подавляющую часть всего объема клетки.

Зрелые эритроциты (см.) человека и млекопитающих не имеют ядра, так как они теряют его в процессе дифференцировки. Они имеют ограниченный срок жизни и не способны размножаться. В клетках бактерий и сине-зеленых водорослей отсутствует резко очерченное ядро. Однако в них содержатся все характерные для ядра клетки химические вещества, распределяющиеся при делении по дочерним клеткам с такой же правильностью, как и в клетках высших многоклеточных организмов. У вирусов и фагов ядро представлено единственной молекулой ДНК.

При рассмотрении покоящейся (неделящейся) клетки в световом микроскопе ядро клетки может иметь вид бесструктурного пузырька с одним или несколькими ядрышками. Ядро клетки  хорошо красится специальными ядерными красками (гематоксилин, метиленовый синий, сафранин и др.), которые обычно используют в лабораторной практике. При помощи фазово-контрастного устройства ядро клетки можно исследовать и прижизненно. В последние годы для изучения процессов, протекающих в ядре клетки, широко используют микрокинематографию, меченые атомы С14 и Н3 (ауторадиография) и микроспектрофотометрию. Последний метод особенно успешно применяют для изучения количественных изменений ДНК в ядре в процессе  жизненного цикла клетки. Электронный микроскоп позволяет выявить детали тонкой структуры ядра покоящейся клетки, необнаруживаемые в оптическом микроскопе (рис. 1).

При делении клеток — кариокинезе или митозе (см.) — ядро клетки претерпевает ряд сложных преобразований (рис. 2), во время которых становятся отчетливо видимыми его хромосомы. Перед делением клетки каждая хромосома ядра синтезирует из веществ, присутствующих в ядерном соке, себе подобную, после чего материнская и дочерняя хромосомы расходятся к противоположным полюсам делящейся клетки. В результате каждая дочерняя клетка получает такой же хромосомный набор, какой был у материнской клетки, а вместе с ним и заключенную в нем наследственную информацию. Митоз обеспечивает идеально правильное разделение всех хромосом ядра на две равнозначные части.

Митоз и мейоз (см.) являются важнейшими механизмами, обеспечивающими закономерности явлений наследственности. У некоторых простейших организмов, а также в патологических случаях в клетках млекопитающих и человека ядра клетки делятся путем простой перетяжки, или амитоза. В последние годы показано, что и при амитозе происходят процессы, обеспечивающие разделение ядра клетки на две равнозначные части.

Набор хромосом в ядре клетки особи называют кариотипом (см.). Кариотип во всех клетках данной особи, как правило, одинаков. Многие врожденные аномалии и уродства (синдромы Дауна, Клайнфелтера, Тернера—Шерешевского и др.) обусловлены различными нарушениями кариотипа, возникшими либо на ранних стадиях эмбриогенеза, либо при созревании половой клетки, из которой возникла аномальная особь. Аномалии развития, связанные с видимыми нарушениями хромосомных структур ядра клетки, называют хромосомными болезнями (см. Наследственные болезни). Различные повреждения хромосом могут быть вызваны действием физических или химических мутагенов (рис. 3). В настоящее время методы, позволяющие быстро и точно устанавливать кариотип человека, используют для ранней диагностики хромосомных болезней и для уточнения этиологии некоторых заболеваний.

Важный органоид ядра клетки — ядрышко — является продуктом жизнедеятельности хромосом. Оно продуцирует рибонуклеиновую кислоту (РНК), являющуюся обязательным промежуточным звеном в синтезе белка, вырабатываемого каждой клеткой.

Ядро клетки отделено от окружающей цитоплазмы (см.) оболочкой, толщина которой 60-70 Å.

Через поры в оболочке вещества, синтезируемые в ядре, поступают в цитоплазму. Пространство между оболочкой ядра и всеми его органоидами заполнено кариоплазмой, состоящей из основных и кислых белков, ферментов, нуклеотидов, неорганических солей и других низкомолекулярных соединений, необходимых для синтеза дочерних хромосом при делении ядра клетки.

См. также Клетка.

Источник: www.medical-enc.ru