Растительные клеткиэукариотические клетки, однако несколькими своими свойствами они отличаются от клеток остальных эукариот. К их отличительным чертам относят:

Отличие растительной клетки от животной

  • Крупная центральная вакуоль, пространство, заполненное клеточным соком и ограниченное мембраной — тонопластом. Вакуоль играет ключевую роль в поддержании клеточного тургора, контролирует перемещение молекул из цитозоля в выделения клетки, хранит полезные вещества и расщепляет отслужившие старые белки и органеллы.
  • Есть клеточная стенка, состоящая главным образом из целлюлозы, а также гемицеллюлозы, пектина и во многих случаях лигнина. Она образуется протопластомповерх клеточной мембраны. Она отлична от клеточной стенки грибов, состоящей из хитина, и бактерий, построенной из пептидогликана (муреина).

  • Специализированные пути связи между клетками — плазмодесмы, цитоплазматические мостики: цитоплазма и эндоплазматический ретикулум (ЭПР) соседних клеток сообщаются через поры в клеточных стенках.
  • Пластиды, из которых наиболее важны хлоропласты. Хлоропласты содержат хлорофилл, зелёный пигмент, поглощающий солнечный цвет. В них осуществляется фотосинтез, в ходе которого клетка синтезирует органические вещества из неорганических. Другими пластидами являются лейкопласты: амилопласты, запасающие крахмал, элайопласты, хранящие жиры и др., а также хромопласты, специализирующиеся на синтезе и хранении пигментов. Как и митохондрии, чей геном у растений содержит 37 генов, пластиды имеют собственные геномы (пластомы), состоящие из около 100—120 уникальных генов.
  • Деление клеток (митоз) наземных растений и некоторых водорослей, особенно харовых  и порядка Trentepohliales характеризуется наличием дополнительной стадии — препрофазы. Помимо этого цитокинез у них осуществляется при помощи фрагмопласта — «формы» для строящейся клеточной пластинки Мужские половые клетки мхов и папоротниковидных имеют жгутик, схожий со жгутиком сперматозоидов животных, но у семенных растений — голосеменных и цветковых — они лишены жгутика и называются спермиями.

Клеточная стенка имеется не только у растительных клеток: она есть у грибов и бактерий, но только у растений она состоит из целлюлозы (исключением являются грибоподобные организмы оомицеты, чья клеточная стенка также состоит из целлюлозы.


еточная стенка образуется из клеточной пластинки, причём сначала формируется первичная, а затем вторичная клеточная стенка. В клеточной стенке каркасом являются пучки молекул целлюлозы, а связующим веществом служат гемицеллюлоза и пектины, которые образуют матрикс клеточной стенки. Эти вещества транспортируются во время роста клеточной пластинки из комплекса Гольджи к плазматической мембране, где пузырьки сливаются с ней и посредством экзоцитоза выбрасывают содержимое наружу. Первичная клеточная стенка содержит до 90% воды и характерна для меристематических и малодифференцированных клеток. Эти клетки способны изменять свой объём, но не за счёт растяжения целлюлозных фибрилл, а смещения относительно друг друга этих фибрилл. Некоторые клетки, например, мезофилла листа, сохраняют первичную оболочку и по достижении нужных размеров перестают откладывать в неё новые вещества.

Однако у большинства клеток этот процесс не прекращается, и между плазматической мембраной и первичной оболочкой у них откладывается вторичная клеточная стенка. Она имеется принципиально схожее с первичной строение, но содержит значительно больше целлюлозы и меньше воды. Во вторичной стенке обычно различают три слоя — наружный, самый мощный средний и внутренний. Во вторичной стенке имеется большое количество пор. Различают следующие поры:


  • Простые поры представляют собой каналы во вторичной оболочке паренхимных клеток и склереид, имеющие одинаковую ширину на всем протяжении.
  • Окаймлённые поры — это поры, окаймление которых составляет куполообразно приподнятая над поровой мембраной вторичная оболочка Характерны для водопроводящих элементов, представленных мёртвыми клетками.
  • Слепые поры представляют собой каналы во вторичной оболочке только одной из двух соседних клеток, такие поры не функционируют.
  • Ветвистые поры — поры, разветвлённые на одном из концов вследствие слияния двух или нескольких простых пор в процессе утолщения вторичной оболочки.
  • Щелевидные поры — поры с отверстиями в виде косой щели; образуются в клетках прозенхимы, например, волокнах древесины.

Пластиды — органеллы растительной клетки, состоящие из белковой стромы, окружённой двумя липопротеидными мембранами. Внутренняя из них образует внутрь выросты (тилакоиды, или ламеллы)  Пластиды, как и митохондрии, являются самовоспроизводящимися органеллами и имеют собственный геном — пластом, а также рибосомы.  Пластиды присущи исключительно растениям. Различают три основных типа пластид: Лейкопласты. Эти пластиды не содержат никаких пигментов, внутренняя мембранная система, хотя и присутствует, но развита слабо.

iv>

Хромопласты — пластиды жёлто-оранжевого цвета, обусловленного наличием в них пигментов каротиноидов: каротина, ксантофилла, лютеина, зеаксантина и др. Образуются из хлоропластов при разрушении в них хлорофилла и внутренних мембран
Хлоропласты — пластиды в виде двояковыпуклой линзы, окружённые оболочкой из двух липопротеидных мембран. Внутренняя из них образует длинные выросты в белковую строму — тилакоиды стромы и более мелкие, расположенные стопками тилакоиды гран, соединённые между собой тилакоидами стромы. С белковым слоем мембран тилакоидов связаны пигменты: хлорофилл и каротиноиды. В хлоропластах осуществляется фотосинтез. Первичный крахмал, синтезированный хлоропластами, откладывается в строме между тилакоидами.

Вакуоль — полость в клетке, заполненная клеточным соком и окружённая мембраной — тонопластом. Вещества, содержащиеся в клеточном соке, определяют величину осмотического давления и тургор клеточной оболочки. Вакуоли образуются из провакуолей — небольших мембранных пузырьков, отшнуровывающихся от ЭПР и комплекса Гольджи. Потом пузырьки сливаются, образуя более крупные вакуоли. Только у старых вакуолей все вакуоли могут сливаться в одну гигантсвую центральную вакуоль, обычно же клетка, помимо центральной вакуоли, содержит мелкие вакуоли, наполненные запасными веществами и продуктами обмена.

Вакуоли выполняют в клетке следующие основные функции:


  • создание тургора;
  • запасание необходимых веществ;
  • отложение веществ, вредных для клетки;
  • ферментативное расщепление органических соединений (это сближает вакуоли с лизосомами).

Термин протопласт происходит от слова протоплазма, которое долгое время использовалось для обозначения всего живого. Протопласт – это протоплазма индивидуальной клетки. Протопласт состоит из цитоплазмы и ядра. В цитоплазме находятся органеллы (рибосомы, микротрубочки, пластиды, митохондрии) и мембранные системы (эндоплазматический ретикулум, диктиосомы). Цитоплазма включает в себя еще цитоплазматический матрикс (основное вещество) в которое погружены органеллы и мембранные системы. От клеточной стенки цитоплазма отделена плазматической мембраной, которая представляет собой элементарную мембрану. В отличие от большинства животных клеток растительные клетки содержат одну или несколько  По химическому составу протопласт содержит белки, жиры, углеводы и минеральные вещества. Протопласт на 75-90% состоит из воды. Белки могут быть связаны с другими органическими соединениями и образовывать сложные соединения — протеиды. Все метаболические процессы идут при участии биологических катализаторов — ферментов.

>
Онтогенез растительной клетки

Онтогенез растительной клетки

С момента образования и до отмирания клетки проходят определенный путь развития, в котором выделяют три основные фазы: эмбриональную, растяжения и дифференциации.

Эмбриональная фаза развития – процесс новообразования клеток путем их деления. Образовавшиеся в результате деления клетки мелкие, расположены плотно, оболочка тонкая, богатая пектином, мало клетчатки. В цитоплазме развита ЭПР, много рибосом.

Фаза растяжения. Клетки растут, увеличиваются в объеме. Протопласт вакуолизируется. Мелкие многочисленные вакуоли сливаются, размер их увеличивается, количество сокращается. Цитоплазма становится более жидкой.

В фазе дифференциации клетки приобретают индивидуальные особенности. Специализация клеток происходит в соответствии с их расположением в растении. Обязательный момент дифференциации – образование вторичной оболочки. Характерные морфологические особенности приобретает протопласт.

Выполнившие свои физиологические функции клетки отмирают.


лстостенные клетки и после отмирания продолжают функционировать как проводящие или механические ткани. Тонкостенные после отмирания протопласта сплющиваются под давлением соседних клеток и постепенно рассасываются. Этот процесс называется облитерация (лат. obliteratus – прекращение). Известно, что соседние клетки как бы сцементированы срединной пластинкой. Поэтому, когда она разрушается при помощи некоторых веществ, то оболочки соседних клеток отклеиваются друг от друга, и клетки разъединяются. Процесс разъединения клеток в результате разрушения срединной пластинки называют мацерацией.

Отличия растительной клетки от животной:

  • наличие пластид (хлоропластов, лейкопластов, хромопластов);
  • запасной полисахарид — крахмал;
  • наличие целлюлозной клеточной стенки;
  • крупные вакуоли.

Источник: vseobiology.ru

Клетка основная форма организации живой материи, элементарная единица организма. Она представляет собой самовоспроизводящуюся систему, которая обособлена от внешней среды и сохраняет определенную концентрацию химических веществ, но одновременно осуществляет постоянный обмен со средой. Единственная клетка одноклеточного организма универсальна, она выполняет все функции, необходимые для обеспечения жизни и размножения. У многоклеточных организмов клетки чрезвычайно разнообразны по размеру, форме, внутреннему строению и выполняемым функциям


Несмотря на огромное разнообразие, клетки растений характеризуются общностью строения — это эукариоты, имеющие оформленное ядро. От клеток других эукариот (животные, грибы) их отличают следующие особенности: 1) наличие пластид; 2) наличие клеточной стенки, основным компонентом которой является целлюлоза; 3) хорошо развитая система вакуолей; 4) отсутствие центриолей при делении; 5) рост путем растяжения; 6) взрослые клетки имеют постоянную форму.

Форма и размеры растительных клеток очень разнообразны. Клетки, диаметр которых по всем направлениям приблизительно одинаков, называются паренхимными; у прозенхимных клеток длина превышает их ширину в 5-6 и более раз.Размеры клеток большинства растений колеблются от 10 до 100 мкм (чаще всего 15-60 мкм), они видны только под микроскопом. Более крупными обычно бывают клетки, запасающие воду и питательные вещества. Мякоть плодов арбуза, лимона, апельсина состоит из столь крупных (несколько миллиметров) клеток, что их можно увидеть невооруженным глазом. Очень большой длины достигают некоторые прозенхимные клетки. Например, лубяные волокна льна имеют длину около40 мм, крапивы -80 мм.Число клеток в растении достигает астрономических величин. Так, один лист дерева насчитывает более 100 млн. клеток.


В растительной клетке можно различить три основные части: 1) углеводную клеточную стенку, окружающую клетку снаружи; 2) протопласт – живое содержимое клетки; 3) вакуоль пространство в центральной части клетки, заполненное водянистым содержимым — клеточным соком. Клеточная стенка и вакуоль являются продуктами жизнедеятельности протопласта.

Протопласт – активное живое содержимое клетки. Протопласт представляет собой чрезвычайно сложное образование, дифференцированное на различные компоненты, называемые органеллами (органоидами), которые постоянно в нем встречаются, имеют характерное строение и выполняют специфические функции (рис. 2).

Особенности строения клеток растений

1 – ядро; 2 – ядерная оболочка; 3 – ядерная пора; 4 – ядрышко; 5 – хроматин; 6 – кариоплазма; 7 – клеточная стенка; 8 – плазмалемма; 9 – плазмодесмы; 10 – агранулярная эндоплазматическая сеть; 11 – гранулярная эндоплазматическая сеть; 12 – митохондрия; 13 – рибосомы; 14 – лизосома; 15 – хлоропласт; 16 – диктиосома; 17 – гиалоплазма; 18 – тонопласт; 19 – вакуоль

 

Рисунок 2 — Строение растительной клетки

 

К органеллам клетки относятся ядро, пластиды, митохондрии, рибосомы, эндоплазматическая сеть, аппарат Гольджи, лизосомы, микротельца. Органеллы погружены в гиалоплазму, которая обеспечивает их взаимодействие. Гиалоплазма с органеллами, за вычетом ядра, составляет цитоплазму клетки. От клеточной стенки протопласт отделен наружной мембраной – плазмалеммой, от вакуоли — внутренней мембраной – тонопластом. В протопласте осуществляются все основные процессы обмена веществ.


Химический состав протопласта очень сложен и разнообразен. Каждая клетка характеризуется своим химическим составом в зависимости от физиологических функций. Основными (конституционными) классами соединений являются: вода (60-90%), белки (40-50% сухой массы протопласта), нуклеиновые кислоты (1-2%), липиды (2-3%), углеводы и другие органические соединения. В состав протопласта входят и неорганические вещества в виде ионов минеральных солей (2-6%). Белки, нуклеиновые кислоты, липиды и углеводы синтезируются самим протопластом.

Помимо конституционных веществ, в клетке присутствуют запасные вещества (временно выключенные из обмена) и отбросы(конечные его продукты). Запасные вещества и отбросы, как правило, накапливаются в клеточном соке вакуолей в растворенном виде или образуют включения– оформленные частицы, видимые в световой микроскоп. К ним относят вещества вторичного синтеза, изучаемые в курсе фармакогнозии, как терпеноиды, алкалоиды, полифенольные соединения и др.

По физическим свойствам протопласт представляет собой многофазный коллоидный раствор (плотность 1,03-1,1). Обычно это коллоидная система с преобладанием дисперсионной среды — воды. В живой клетке содержимое протопласта находится в постоянном движении, его можно заметить под микроскопом по передвижению органоидов и включений. Ток цитоплазмы называется также циклозом. Он обеспечивает лучшую транспортировку веществ и способствует аэрации клетки.

Цитоплазма — обязательная часть живой клетки, где происходят все процессы клеточного обмена, кроме синтеза нуклеиновых кислот, совершающегося в ядре. Основу цитоплазмы составляет ее матрикс, или гиалоплазма,в который погружены органеллы.

Гиалоплазма — сложная бесцветная, оптически прозрачная коллоидная система, она связывает все погруженные в нее органеллы, обеспечивая их взаимодействие. Гиалоплазма содержит ферменты и активно участвует в клеточном метаболизме, в ней протекают такие биохимические процессы, как гликолиз, синтез аминокислот, синтез жирных кислот и масел и др. Она способна к активному движению и участвует во внутриклеточном транспорте веществ.

Часть структурных белковых компонентов гиалоплазмы формирует надмолекулярные агрегаты со строго упорядоченным расположением молекул — микротрубочки и микрофиламенты. Микротрубочки – это тонкие цилиндрические структуры диаметром около 24 нм и длиной до нескольких микрометров, в основе которых лежит белок тубулин. Микротрубочки участвуют во внутриклеточном транспорте, поддержании формы протопласта. Микрофиламенты представляют собой длинные нити толщиной 5-7 нм, состоящие из сократительного белка актина, который крепится к плазмалемме, пластидам, элементам эндоплазматической сети, рибосомам, микротрубочкам. Микрофиламенты генерируют движение гиалоплазмы и направленное перемещение прикрепленных к ним органелл. Совокупность микротрубочек и микрофиламентов составляет цитоскелет.

В основе структуры цитоплазмы лежат биологические мембраны — тончайшие (4-10 нм) пленки, построенные в основном из фосфолипидов и белков — липопротеидов. Молекулы липидов образуют структурную основу мембран. Фосфолипиды располагаются двумя параллельными слоями таким образом, что их гидрофильные части направлены наружу, в водную среду, а гидрофобные остатки жирных кислот – внутрь. Часть молекул белков располагается несплошным слоем на поверхности липидного каркаса с одной или обеих его сторон, часть их погружена в этот каркас, а некоторые проходят через него насквозь, образуя в мембране гидрофильные «поры». Большинство мембранных белков представлено различными ферментами.

Мембраны – живые компоненты цитоплазмы. Они отграничивают протопласт от внеклеточной среды, создают внешнюю границу органелл и участвуют в создании их внутренней структуры, во многом являясь носителем их функций. Характерной особенностью мембран является их замкнутость, непрерывность – концы их никогда не бывают открытыми. В некоторых особенно активных клетках мембраны могут составлять до 90% сухого вещества цитоплазмы.

Одной из основных свойств биологических мембран – их избирательная проницаемость (полупроницаемость): одни вещества проходят через них с трудом или вообще не проходят (барьерное свойство), другие проникают легко. Пограничными мембранами протопласта являются плазмалемма– плазматическая мембрана и тонопласт, или вакуолярная мембрана.

Рибосомы – маленькие (около 20 нм), почти сферические гранулы, состоящие из рибонуклеопротеидов – комплексов РНК и различных структурных белков, не имеют мембранной структуры. Рибосомы располагаются в цитоплазме клетки свободно, или же прикрепляются к мембранам эндоплазматической сети. Располагаются рибосомы поодиночке либо группами из 4-40 (полисомы), они являются центрами синтеза белка в клетке.

Рибосома состоит из двух субъединиц (большой и малой), соединенных между собой ионами магния. Субъединицы образуютсяв ядрышке, сборка рибосом осуществляется в цитоплазме. Рибосомы обнаружены также в митохондриях и пластидах, но их размер меньше.

Эндоплазматическая сеть (эндоплазматический ретикулум) представляет собой разветвленную трехмерную сеть каналов, пузырьков и цистерн, ограниченных мембранами, пронизывающую гиалоплазму. Если на ее поверхности размещены рибосомы, то она носит название гранулярной, или шероховатой; без рибосом называется агранулярной, или гладкой. Агранулярная эндоплазматическая сеть принимает участие в синтезе жиров и других липофильных соединений (эфирные масла, смолы, каучук).

Эндоплазматическая сеть используется для транспортировки веществ. Эндоплазматические сети соседних клеток соединяются через цитоплазматические тяжи — плазмодесмы, которые проходят сквозь клеточные стенки. Эндоплазматическая сеть – центр образования и роста клеточных мембран. Она дает начало таким компонентам клетки, как вакуоли, лизосомы, диктиосомы, микротельца. При посредстве эндоплазматической сети осуществляется взаимодействие между органеллами.

Аппарат Гольджи назван по имени итальянского ученого К. Гольджи, впервые описавшего его в животных клетках. В клетках растений аппарат Гольджи состоит из отдельныхдиктиосом, или телец Гольджи и пузырьков Гольджи. Каждая диктиосома представляет собой стопку из 5-7 и более уплощенных округлых цистерн диаметром около 1 мкм, ограниченных мембраной (рис. 3). По краям диктиосомы часто переходят в систему тонких ветвящихся трубок. Число диктиосом в клетке сильно колеблется (от 10-50 до нескольких сотен) в зависимости от типа клетки и фазы ее развития. Пузырьки Гольджи различного диаметра отчленяются от краев диктиосомных цистерн или краев трубок и направляются обычно в сторону плазмалеммы или вакуоли.

Особенности строения клеток растений

Рисунок 3 — Схема строения диктиосомы

 

Диктиосомы являются центрами синтеза, накопления и выделения полисахаридов, прежде всего пектиновых веществ и гемицеллюлоз матрикса клеточной стенки и слизей.

Лизосомы–органеллы, отграниченные от гиалоплазмы мембраной и содержащие гидролитические ферменты, способные разрушать органические соединения. Лизосомы растительных клеток представляют собой мелкие (0,5-2 мкм) цитоплазматические вакуоли и пузырьки – производные эндоплазматической сети или аппарата Гольджи. Основная функция лизосом — локальный автолиз, то есть разрушение отдельных участков цитоплазмы собственной клетки, заканчивающееся образованием на ее месте цитоплазматической вакуоли. Другая функция лизосом – удаление изношенных или избыточных клеточных органелл, а также очищение полости клетки после отмирания ее протопласта.

Митохондрииокруглые или эллиптические, реже нитевидные органеллы диаметром 0,3-1 мкм, окруженные двумя мембранами. Внутренняя мембрана образует выросты в полость митохондрии – кристы, которые значительно увеличивают ее внутреннюю поверхность. Пространство между кристами заполнено матриксом. В матриксе находятся рибосомы и нити собственной ДНК (рис. 4).

Особенности строения клеток растений

 

ВМ – внутренняя мембрана митохондрии; ДНК – нить митохондриальной ДНК; К – криста; Ма – матрикс; НМ – наружная мембрана митохондрии; Р – митохондриальные рибосомы

 

Рисунок 4 — Схемы строения митохондрии в трехмерном изображении (1) и на срезе (2)

 

Митохондрии называют силовыми станциями клетки. В них осуществляется внутриклеточное дыхание, в результате которого органические соединения расщепляются с высвобождением энергии. Митохондрии являются постоянными органеллами, которые не возникают заново, а распределяются при делении между дочерними клетками. Увеличение числа митохондрий происходит за счет их собственного деления.

Пластиды — органеллы, характерные только для растений. Различают три типа пластид: 1) хлоропласты (пластиды зеленого цвета); 2) хромопласты (пластиды желтого, оранжевого или красного цвета) и лейкопласты (бесцветные пластиды). Обычно в клетке встречаются пластиды только одного типа.

Хлоропласты имеют наибольшее значение, в них протекает фотосинтез. Они содержат зеленый пигмент хлорофилл, придающий растениям зеленый цвет, и пигменты, относящиеся к группе каротиноидов. Хлоропласты растений имеют форму двояковыпуклой линзы и размеры 4-7 мкм, они хорошо видны в световой микроскоп. Число хлоропластов в фотосинтезирующих клетках может достигать 40-50. У водорослей роль фотосинтетического аппарата выполняют хроматофоры, они значительно крупнее, число их в клетке – от 1 до 5.

Хлоропласты имеют сложное строение. От гиалоплазмы они отграничены двумя мембранами – наружной и внутренней (рис. 5). Внутреннее содержимое называется строма. Внутренняя мембрана формирует внутри хлоропласта сложную, строго упорядоченную систему мембран, имеющих форму плоских пузырьков, называемых тилакоидами, которые собраны в стопки — граны, напоминающие столбики монет. Часто в хлоропластах встречаются крахмальные зерна, это так называемый первичный, или ассимиляционный крахмал – временное хранилище продуктов фотосинтеза.

Основная функция хлоропластов – фотосинтез, образование органических веществ из неорганических за счет энергии света. Они поглощают энергию света и направляют ее на осуществление реакций фотосинтеза. Эти реакции подразделяются на светозависимые и темновые (не требующие присутствия света). Светозависимые реакции состоят в преобразовании световой энергии в химическую и разложении (фотолизе) воды. Они приурочены к мембранам тилакоидов.

Особенности строения клеток растений

Вм – внутренняя мембрана; Гр – грана; ДНК – нить пластидной ДНК; НМ – наружная мембрана; Пг – пластоглобула; Р – рибосомы хлоропласта; С – строма; ТиГ – тилакоид граны; ТиМ – межгранный тилакоид

 

Рисунок 5 — Схема строения хлоропласта в трехмерном изображении (1) и на срезе (2)

 

Темновые реакции – восстановление углекислого газа воздуха водородом воды до углеводов (фиксация СО2) – протекают в строме хлоропластов. Наличие ДНК и рибосом указывает, как и в случае митохондрий, на существование в хлоропластах своей собственной белоксинтезирующей системы.

Лейкопластымелкие бесцветные пластиды. Они встречаются в основном в клетках органов, скрытых от солнечного света, таких как корни, корневища, клубни, семена. Строение их в общих чертах сходно со строением хлоропластов: оболочка из двух мембран, строма, рибосомы, нити ДНК аналогичны таковым хлоропластов. Однако, в отличие от хлоропластов, у лейкопластов слабо развита внутренняя мембранная система. Лейкопласты – это органеллы, связанные с синтезом и накоплением запасных питательных веществ, в первую очередь крахмала, редко белков и липидов. Крахмал имеет вид зерен, в отличие от ассимиляционного крахмала хлоропластов, он называется запасным, или вторичным. Часто в клетках встречаются лейкопласты, не накапливающие запасные питательные вещества, их роль еще до конца не выяснена. На свету лейкопласты могут превращаться в хлоропласты.

Хромопластыпластиды оранжевого, красного и желтого цвета, который обусловлен пигментами, относящимися к группе каротиноидов. Хромопласты встречаются в клетках лепестков многих растений (ноготки, лютик, одуванчик), зрелых плодов (томат, шиповник, рябина, тыква, арбуз), редко — корнеплодов (морковь), а также в осенних листьях.

Внутренняя мембранная система в хромопластах, как правило, отсутствует. Хромопласты имеют более или менее сферическую форму. В некоторых случаях (корнеплоды моркови, плоды арбуза) каротиноиды откладываются в виде кристаллов различной формы. Кристалл растягивает мембраны хромопласта, и он принимает его форму: зубчатую, игловидную, серповидную, пластинчатую, треугольную, ромбовидную и др.

Значение хромопластов до конца еще не выяснено. Большинство из них представляют собой стареющие пластиды. Они, как правило, развиваются из хлоропластов, при этом в пластидах разрушаются хлорофилл и внутренняя мембранная структура, и накапливаются каротиноиды. Это происходит при созревании плодов и пожелтении листьев осенью. Косвенное биологическое значение хромопластов состоит в том, что они обусловливают яркую окраску цветков и плодов, привлекающую насекомых для перекрестного опыления и других животных для распространения плодов.

Ядро — основная и обязательная часть эукариотической клетки. Ядро является центром управления обменом веществ клетки, ее ростом и развитием, контролирует деятельность всех других органелл. Ядро хранит генетическую информацию и передает ее дочерним клеткам в процессе клеточного деления. Ядро имеется во всех живых растительных клетках, исключение составляют только зрелые членики ситовидных трубок флоэмы. Клетки с удаленным ядром, как правило, быстро погибают.

Ядро – самая крупная органелла, его размер составляет 10-25 мкм. Очень большие ядра у половых клеток (до 500 мкм). Форма ядра чаще сферическая или эллипсоидальная, но в сильно удлиненных клетках может быть линзовидной или веретеновидной.

Клетка, как правило, содержит одно ядро. В молодых (меристематических) клетках оно обычно занимает центральное положение. По мере роста центральной вакуоли ядро смещается к клеточной стенке и располагается в постенном слое цитоплазмы.

По химическому составу ядро резко отличается от остальных органелл высоким (15-30%) содержанием ДНК – вещества наследственности клетки. В ядре сосредоточено 99% ДНК клетки. В ядре содержатся также в значительных количествах РНК (в основном иРНК и рРНК) и белки.

Структура ядра одинакова у всех эукариотических клеток. В ядре различают хроматин и ядрышко, которые погружены в кариоплазму; от цитоплазмы ядро отделено ядерной оболочкой с порами.

Ядрышко — плотное, сферическое тельце диаметром 1-3 мкм. Обычно в ядре содержатся 1-2, иногда несколько ядрышек. Ядрышки являются основным носителем РНК ядра, состоят из рибонуклеопротеидов. Функция ядрышек – синтез рРНК и образование субъединиц рибосом.

Вакуоли содержатся почти во всех растительных клетках. Они представляют собой полости в клетке, заполненные водянистым содержимым – клеточным соком. От цитоплазмы клеточный сок изолирован избирательно проницаемой вакуолярной мембраной – тонопластом. Тонопласт выполняет барьерные и транспортные функции. Для большинства зрелых клеток растений характерна крупная центральная вакуоль, занимающая до 70-90% объема клетки.

Клеточный сок представляет собой водный раствор различных веществ, являющихся продуктами жизнедеятельности протопласта, в основном, запасными веществами и отбросами. Реакция клеточного сока обычно слабокислая или нейтральная, реже щелочная. Вещества, входящие в состав клеточного сока, чрезвычайно разнообразны. Это углеводы, белки, органические кислоты и их соли, аминокислоты, минеральные ионы, алкалоиды, гликозиды, танниды, пигменты и другие растворимые в воде соединения. Большинство из них относится к группе эргастических веществ – продуктов метаболизма протопласта, которые могут появляться и исчезать в различные периоды жизни клетки. Многие вещества клеточного сока образуются только в растительных клетках.

Кроме функции накопления запасных веществ и отбросов, вакуоли в растительных клетках выполняют еще одну важную функцию – поддержание тургора. Поступающая в клеточный сок вода оказывает давление на постенный протопласт, а через него и на клеточную стенку, вызывая напряженное, упругое ее состояние, или тургор клетки.

Включения. Образование включений вызвано избыточным накоплением некоторых продуктов обмена веществ в определенных участках клетки – в вакуоли, гиалоплазме, различных органеллах, реже в клеточной стенке. Эти вещества часто выпадают в осадок в аморфном виде или в форме кристаллов – включений. Включения имеют определенную форму и хорошо видны в световой микроскоп. По наличию тех или иных включений, их форме и распределению можно отличить одни виды, роды и семейства растений от других, поэтому они часто служат важным диагностическим признаком при анализе лекарственного растительного сырья.

Включения представляют собой либо запасные вещества (временно выведенные из обмена веществ соединения), либо конечные продукты обмена. К первой категории включений относятся крахмальные зерна, липидные капли и отложения белков; ко второй – кристаллы некоторых веществ.

Крахмальные зерна – наиболее распространенные включения растительных клеток. Форма, размер, количество в амилопласте и строение (положение образовательного центра, слоистость, наличие или отсутствие трещин) крахмальных зерен часто специфичны для вида растения. Обычно крахмальные зерна имеют сферическую, яйцевидную или линзовидную форму, однако у картофеля она неправильная. Наиболее крупные зерна (до 100 мкм) характерны для клеток клубней картофеля, в зерновке пшеницы они двух размеров – мелкие (2-9 мкм) и более крупные (30-45 мкм). Для клеток зерновки кукурузы характерны мелкие зерна (5-30 мкм). Сложные крахмальные зерна у риса, овса, гречихи.

Отложения крахмала широко распространены во всех органах растения, но особенно богаты им семена, подземные побеги (клубни, луковицы, корневища), паренхима проводящих тканей корней и стеблей древесных растений.

Липидные капли встречаются практически во всех растительных клетках. Жирные масла накапливаются у огромного количества растений и по своему значению являются второй после крахмала формой запасных питательных веществ. Особенно богаты ими семена и плоды. Семена некоторых растений (подсолнечник, хлопчатник, арахис) могут содержать до 40% масла от массы сухого вещества. Поэтому растительные жиры получают, главным образом, из семян.

Белковые включения в виде разнообразных аморфных или кристаллических отложений образуются в различных органеллах клетки. Наиболее часто белковые кристаллы можно встретить в ядре, реже — в гиалоплазме, строме пластид, в расширениях цистерн эндоплазматической сети, матриксе пероксисом и митохондрий. В наибольшем количестве они откладываются в запасающей ткани сухих семян в виде алейроновых зерен. Они характерны для запасающих клеток семян масличных растений (лен, подсолнечник, тыква, горчица, клещевина и др.). Реже встречаются простые алейроновые зерна, не содержащие кристаллов, а только аморфный белок (бобовые, рис, кукуруза) (рис. 6).

 

Особенности строения клеток растений Особенности строения клеток растений

А Б

Кр – белковые кристаллы; Гл – глобоиды; Ма – белковый матрикс; 1 — простые гранулы крахмала, 2 – алейроновые зерна

 

Рисунок 6 — Алейроновые зерна в клетках эндосперма семян клещевины(А) и семян фасоли (Б)

 

Белки и вещества глобоидов расходуются на рост и развитие проростка. Кристаллы кальция оксалатачасто встречаются в растительных клетках. Они откладываются только в вакуолях. Форма кристаллов кальция оксалата довольно разнообразна (рис. 7) и часто специфична для определенных растений.

 

Особенности строения клеток растений

1,2 – рафиды (1 – вид сбоку, 2 – вид на поперечном срезе); 3 – друза; 4 – кристаллический песок; 5 – одиночный кристалл

 

Рисунок 7 — Формы кристаллов кальция оксалата

 

В отличие от животных, которые выделяют избыток ионов во внешнюю среду вместе с мочой, растения, не имеющие развитых органов выделения, вынуждены накапливать их в тканях. Действительно, кристаллы образуются в больших количествах в тех органах и тканях, которые растения время от времени сбрасывают (листья и кора). Однако имеются данные, что кристаллы могут исчезать из вакуолей. В таком случае их можно рассматривать как место отложения запасного кальция.

Клеточная стенка (клеточная оболочка) – характерный признак растительной клетки, отличающий ее от клетки животной. Клеточная стенка придает клетке определенную форму. Клеточная стенка придает клетке прочность и защищает протопласт, она уравновешивает тургорное давление и препятствует, таким образом, разрыву плазмалеммы. Совокупность клеточных стенок образует внутренний скелет, поддерживающий тело растения и придающий ему механическую прочность.

Клеточная стенка бесцветна и прозрачна, легко пропускает солнечный свет. Обычно стенки пропитаны водой. Клеточная стенка состоит в основном из полисахаридов, которые можно подразделить на скелетные вещества и вещества матрикса. Скелетным веществом клеточной стенки растений является целлюлоза (клетчатка). У грибов скелетным веществом клеточной стенки является хитин – полисахарид, построенный из остатков глюкозамина. Хитин еще более прочен, чем целлюлоза.

Матрикс является сложной смесью полисахаридов, молекулы которых состоят из остатков нескольких различных сахаров и представляют собой более короткие, чем у целлюлозы, и разветвленные цепи. Матричные полисахариды определяют такие свойства клеточной стенки, как сильная набухаемость, высокая проницаемость для воды и растворенных в ней низкомолекулярных соединений, катионообменные свойства.

Клеточные стенки растений часто подвергаются химическим видоизменениям. Одревеснение, или лигнификацияпроисходит в том случае, если в матриксе откладывается лигнин – полимерное соединение фенольной природы, нерастворимое в воде. Одревесневшая клеточная стенка теряет эластичность, резко повышается ее твердость и прочность на сжатие, снижается проницаемость для воды. Опробковение, или суберинизация происходит в результате отложения с внутренней стороны клеточной стенки гидрофобных полимеров – суберина и воска. Субериновая пленка практически непроницаема для воды и для газов, поэтому после ее образования клетка обычно отмирает. Опробковение характерно для стенок клеток покровной ткани пробки. Кутинизацииподвергаются наружные стенки клеток покровной ткани эпидермы. Кутикула предохраняет растение от излишнего испарения воды с поверхности растения. Минерализацияклеточной стенки происходит вследствие отложения в матриксе большого количества минеральных веществ, чаще всего кремнезема (оксида кремния), реже оксалата и карбоната кальция. Минеральные вещества придают стенке твердость и хрупкость. Отложение кремнезема характерно для клеток эпидермы хвощей, осок и злаков. Приобретенная в результате окремнения жесткость стеблей и листьев служит защитным средством против улиток, а также значительно снижает поедаемость и кормовую ценность растений.

У некоторых специализированных клеток наблюдается ослизнениеклеточной стенки. При этом вместо целлюлозной вторичной стенки происходит отложение аморфных, сильно гидратированных кислых полисахаридов в виде слизей и камедей, близких по химической природе к пектиновым веществам. Слизи хорошо растворяются в воде с образованием слизистых растворов. Выделяемая растительными клетками слизь выполняет различные функции. Так, слизь корневого чехлика служит в качестве смазки, облегчающей рост кончика корня в почве. Слизевые железки насекомоядных растений (росянка) выделяют ловчую слизь, к которой приклеиваются насекомые. Слизь, выделяемая наружными клетками семенной кожуры (лен, айва, подорожники), закрепляет семя на поверхности почвы и защищает проросток от высыхания.

3 Клеточная теория.

По итогам изучения строения растительных и животных организмов в М. Шлейден, Т. Шванн и Р. Вирхов к середине XIX веке сформулировали клеточную теорию. Рассмотрим основные и дополнительные ее положения:

1. Клетка — это элементарная, функциональная единица строения всего живого (кроме вирусов, которые не имеют клеточного строения).

2. Клетка — единая система, она включает множество закономерно связанных между собой элементов, представляющих целостное образование, состоящее из сопряжённых функциональных единиц — органоидов.

3. Клетки всех организмов гомологичны.

4. Клетка происходит только путём деления материнской клетки.

5. Многоклеточный организм представляет собой сложную систему из множества клеток, объединённых и интегрированных в системы тканей и органов, связанных друг с другом.

6. Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны друг другу.

7. В основе деления клетки и размножения организмов лежит копирование наследственной информации — молекул нуклеиновых кислот. Положения о генетической непрерывности относится не только к клетке в целом, но и к митохондриям, хлоропластам, генам и хромосомам.

Клетки многоклеточных тотипотентны, то есть обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией (работой) различных генов, что приводит к их морфологическому и функциональному разнообразию — к дифференцировке.

4 Растительные ткани, их классификация.

Тканиэтоустойчивые, закономерно повторяющиеся комплексы клеток, сходные по происхождению, строению и приспособленные к выполнению одной или нескольких функций.

Ткани возникли у растений в связи с переходом их предков – водорослей к наземному образу жизни. Переход от условий водной среды к условиям суши сопровождался дифференциацией однородного слоевища водных обитателей на основные вегетативные органы: корень и побег. Возникли группы клеток, выполняющие определенные функции. В процессе эволюции строение тела растений усложнялось: у мхов имеется около 20 различных типов клеток, у папоротникообразных — около 40, у покрытосеменных — более 80. Наиболее совершенные и сложные по структуре ткани сформировались у цветковых растений.

Ткани классифицируют в зависимости от выполняемой функции. Однако надо помнить, что одна и та же ткань может выполнять несколько функций. Различают сложные ткани, состоящие из разнородных элементов, выполняющих разные функции, и простые ткани, состоящие из однородных элементов (рис. 8).

Особенности строения клеток растений

Рисунок 8 – Классификация растительных тканей

 

Функции ткани могут меняться в зависимости от ее возраста. Классификации тканей довольно разнообразны.

Наиболее часто выделяют шесть типов тканей: 1) образовательные, или меристемы; 2) основные; 3) покровные; 4) выделительные; 5) механические; 6) проводящие. Последние пять типов объединяют в постоянные ткани. Они образуются из меристем путем дифференциации клеток.

 

Основная литература:

1 Родман А.С. Ботаника. – М.: Колос, 2001. — 328 с.

2 Еленевский А.Г., Соловьев М.П., Тихомиров В.Н. Ботаника: систематика высших, или наземных, растений. 2 изд. — М.: Academіa, 2001. — 429 с.

3 Еленевский А.Г., Соловьев М.П., Тихомиров В.Н. Ботаника: систематика высших, или наземных, растений. 2 изд. — М.: Academіa, 2000. — 440 с.

Дополнительная литература:

1 Лотова Л.И. Морфология и анатомия высших растений. – М.: Изд-во УРСС, 2001. – 415 с.

2 Ишмуратова М.Ю. Ботаника. Учебно-методическое пособие. — Караганда: РИО Болашак-Баспа, 2015. — 331 с.

 

Контрольные вопросы:

1 Какие признаки строения и жизнедеятельности растений позволяют относить их к живым организмам?

2Укажите отличительные особенности строения животных и растительных организмов.

3 Какова роль зеленых растений в круговороте веществ в природе?

4 Какую роль сыграли растения в формировании современной почвенной и воздушной атмосферы?

5Укажите основные сферы использования растений в жизни современного человека.

6 В каких отраслях необходимы знания по ботанике?

7 Какие признаки строения отличают растительную и животную клетку?

8 Назовите основные органоиды растительной клетки и выполняемые ими функции.

9 Каким образом вещества поступают в клетку? Какова роль клеточной оболочки в этом процессе?

10 Назовите основные экскреторные и запасные питательные вещества растительной клетки. Каким образом они помогают при диагностике лекарственного растительного сырья?

11 Как можно расшифровать каждое положение клеточной теории?

12 Дайте определение растительным тканям.

 

Источник: znatock.org

6. Разнообразие клеток.

Особенности строения клеток растений

У многоклеточных организмов разные клетки (например, нервные, мышечные, клетки крови)выполняют разные функции («разделение труда») и поэтому различаются по своей структуре. Несмотря на это, многообразие форм и организация клеток подчинены единым структурным принципам.

Форма клеток необычайно разнообразна – от простейшей шаровидной (одноклеточные организмы; среди бактерий – кокки) до самой причудливой. Микрококки имеют диаметр 0,2 мкм, нервные клетки достигают в длину 1 м, а млечные сосуды растений – даже нескольких метров.

7. Свойства клетки: деление, рост, развитие, обмен веществ.

Деление клетки — сложный процесс, состоящий из ряда этапов, последовательно идущих друг за другом. Главную роль в нем играют события, происходящие в ядре. Наследственный материал (хромосомы) удваивается и разделяется на две одинаковые части, которые расходятся к противоположным концам клетки. Затем идет разделение цитоплазмы. В итоге из одной материнской клетки образуются две подобные ей дочерние клетки.

 

Рост клетки. Живая клетка растет, т. е. увеличивается в размерах. Рост обеспечивается увеличением объема цитоплазмы, вакуоли и растяжением клеточной стенки .

 

Обмен веществ. Все эти сложные процессы жизнедеятельности (питание, дыхание и др.) происходят в отдельных частях клетки. Вещества, образовавшиеся при этом, во время движения цитоплазмы соединяются с другими веществами, вновь распадаются, становятся иными, обеспечивая клетку энергией, необходимой для жизни.

 

Одно из важнейших проявлений жизнедеятельности клетки —движение цитоплазмы. Благодаря движению цитоплазмы ко всем частям клетки доставляются нужные ей вещества и удаляются в вакуоли вещества, выработанные клеткой (ненужные ей), и запасные вещества — на хранение.

Источник: StudFiles.net

Одноклеточные и многоклеточные растения

Есть растения одноклеточные и многоклеточные. К первым относятся некоторые водоросли, состоящие только из одной клетки, и в этом случае такая клетка несет в себе все присущие ей функции. Многоклеточные растения представляют собой не простую сумму клеток, а единый организм, в котором они образуют различные ткани и органы, находящиеся во взаимодействии друг с другом.

Структурные элементы растительной клетки

Клетки растений весьма разнообразны как по размерам и форме, так и по выполняемым ими функциям, но в основном состоят из одних и тех же частей.Растительная клетка Строение взрослой растительной клетки.

  1. — оболочка,
  2. — срединная пластинка,
  3. — межклетник,
  4. — плазмодесмы,
  5. — плазмалемма,
  6. — тонопласт,
  7. — вакуоля,
  8. — цитоплазма,
  9. — капелька масла,
  10. — митохондрия,
  11. — хлоропласт,
  12. — граны в хлоропласте,
  13. — крахмальное зерно в хлоропласте,
  14. — ядро,
  15. — ядерная оболочка,
  16. — ядрышко,
  17. — хроматин.

Каждая взрослая живая клетка состоит из:

  • оболочки,
  • протоплазмы,
  • вакуоли.

Оболочка придает растительной клетке определенную форму. Под оболочкой находится протоплазма, обычно плотно прижатая к оболочке. Центральную часть клетки занимает вакуоля, наполненная клеточным соком. У молодых клеток вакуоли нет и протоплазма заполняет всю полость клетки. Рассмотрим подробнее строение растительной клетки, для этого опишем все ее составные части.

Протоплазма

Протоплазма — это живое вещество организма; в ней протекают сложнейшие реакции обмена, характерные для жизни. В протоплазме находится большое количество мембран-пленок, в образовании которых большую роль играют соединения белков с фосфатидами (жироподобными веществами). Благодаря наличию мембран у протоплазмы имеются огромные внутренние поверхности, на которых и протекают процессы адсорбции (поглощения) и десорбции (выделения) веществ и их передвижение, происходящие с большой скоростью. Большое количество мембран, разделяющих содержимое клетки, позволяет различным веществам, находящимся в клетке, не перемешиваться и передвигаться одновременно в противоположных направлениях. Однако физико-химические свойства мембран непостоянны; они непрерывно изменяются в зависимости от внутренних и внешних условий, что дает возможность саморегулирования биохимических процессов.

Химический состав протоплазмы

Химический состав протоплазмы очень сложен. Она состоит из органических и неорганических соединений, находящихся как в коллоидном, так и в растворенном состоянии. Удобным объектом для изучения химического состава протоплазмы является плазмодий фикомицетов, представляющий собой голую, лишенную оболочки протоплазму. Ниже приведен суммарный состав протоплазмы фикомицетов (в % от сухого веса): Водорастворимые органические вещества…………………………………………………   40,7 Из них: сахара………………………………………………………………………………………………..   14,2 белки……………………………………………………………………………………………………………….  22 аминокислоты, органические основания и другие азотные соединения…..  24,3 Не растворимые в воде органические вещества ………………………………………..   55,9 Из них: нуклеопротеиды………………………………………………………………………………..   32,2 свободные нуклеиновые кислоты ………………………………………………………………..   2,5 глобулины (простые белки) ……………………………………………………………………………   0,5 липопротеиды…………………………………………………………………………………………………   4,8 нейтральные жиры…………………………………………………………………………………………   6,8 фитостеролы (высокомолекулярные спирты) ……………………………………………….  3.2 фосфатиды………………………………………………………………………………………………………..  1,3 другие органические вещества……………………………………………………………………….  4,6 Минеральные вещества…………………………………………………………………………………..  3,4 Химический состав протоплазмы высших растений близок к приведенному выше, но он может изменяться в зависимости от вида, возраста и органа растения. В протоплазме содержится до 80% воды (в протоплазме покоящихся семян — 5—15%). Она пропитывает всю коллоидную систему протоплазмы, являясь ее структурным элементом. В протоплазме все время происходят химические реакции, для протекания которых необходимо, чтобы реагирующие соединения были в растворе.

Цитоплазма

Основной частью протоплазмы является цитоплазма, представляющая собой полужидкое содержимое клетки и заполняющее ее внутреннее пространство. В цитоплазме расположены ядро, пластиды, митохондрии (хондриосомы), рибосомы и аппарат Гольджи. Наружная мембрана цитоплазмы, граничащая с клеточной оболочкой, называется плазмалеммой. Плазмалемма легко пропускает воду и многие ионы, но задерживает крупные молекулы. На границе цитоплазмы с вакуолью тоже образуется мембрана, называемая тонопластом. В цитоплазме расположена эндоплазматическая сеть, представляющая собой систему ветвящихся мембран, соединенных с наружной мембраной. Мембраны эндоплазматической сети образуют каналы и расширения, на поверхности которых и протекают все химические реакции. Важнейшие свойства цитоплазмы — вязкость и эластичность. Вязкость цитоплазмы изменяется в зависимости от температуры: при повышении температуры вязкость уменьшается и, наоборот, при понижении — увеличивается. При большой вязкости обмен веществ в клетке снижается, при малой — возрастает. Эластичность цитоплазмы проявляется в ее способности возвращаться к исходной форме после деформации, что указывает на определенную структуру цитоплазмы. Цитоплазма способна к движению, которое тесно связано с окружающими условиями. Основу движения составляет сократимость белков цитоплазмы клеток. Повышение температуры ускоряет движение цитоплазмы, отсутствие кислорода останавливает его. Вероятно, движение цитоплазмы тесно связано с превращением веществ и энергии в растении. Способность цитоплазмы реагировать на внешние условия и приспосабливаться к ним называется раздражимостью. Наличие раздражимости характеризует живой организм. Ответная реакция цитоплазмы на воздействие температуры, света и влаги требует затраты энергии, которая выделяется в процессе дыхания. Листочки стыдливой мимозы при механическом раздражении быстро складываются, но при частом повторении раздражения перестают на него реагировать; последнее, по-видимому, объясняется недостатком энергии. Раздражимость цитоплазмы— основа всех видов движения и других явлений жизнедеятельности раст.

Ядро

Ядро — важнейший и самый крупный органоид клетки. Размеры ядра зависят от вида растения и состояния клетки (у высших растений в среднем от 5 до 25 мк). Форма ядра чаще всего шаровидная, у вытянутых клеток — овальная. Живая клетка обычно имеет только одно ядро, но у высших растений сильно вытянутые клетки (из которых образуются лубяные волокна) содержат по нескольку ядер. В молодых клетках, не имеющих вакуоли, ядро обычно занимает центральное положение, у взрослых при образовании вакуолей оно отодвигается к периферии. Ядро представляет собой коллоидную систему, но более вязкую, чем цитоплазма. Оно отличается от цитоплазмы и по химическому составу; в ядре содержатся основные и кислые белки и различные ферменты, а также большое количество нуклеиновых кислот, дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). ДНК преобладает в ядре и обычно не содержится в цитоплазме. Ядро отделяется от цитоплазмы тонкой оболочкой, или ядерной мембраной, в которой находятся отверстия — поры. Через поры осуществляется обмен между ядром и цитоплазмой. Под мембраной находится ядерный сок, в который погружены одно или несколько ядрышек и хромосомы. В ядрышке содержатся рибонуклеиновая кислота (РНК), которая принимает участие в синтезе белка, и фосфорсодержащие белки. Ядро принимает участие во всех жизненных процессах клетки; при его удалении клетка отмирает.

Пластиды

Пластиды имеются только в растительных клетках. Они хорошо видны в обычный микроскоп, так как более плотные и иначе преломляют свет, чем цитоплазма. Во взрослой растительной клетке различают 3 типа пластид:

  • хлоропласты, имеющие зеленую окраску,
  • хромопласты желтые или оранжевые,
  • лейкопласты — бесцветные.

Размеры пластид зависят от вида растения и колеблются от 3—4 до 15—30 мк. Лейкопласты обычно мельче хлоропластов и хромопластов.

Митохондрии

Митохондрии встречаются во всех живых клетках и расположены в цитоплазме. Форма их весьма разнообразна и изменчива, размеры 0,2—5 мк. Количество митохондрий в клетке колеблется от десятков до нескольких тысяч. Они более плотны, чем цитоплазма, и имеют иной химический состав; в них содержится 30—40% белка, 28—38% липоидов и 1 — .6% рибонуклеиновой кислоты. Митохондрии передвигаются в клетке вместе с цитоплазмой, но в некоторых клетках, по-видимому, они способны и к самостоятельному движению. Роль митохондрий в обмене веществ клетки очень велика. Митохондрии являются центрами, в которых происходит дыхание и образование макроэргических связей, заключенных в аденозинтрифосфорной кислоте (АТФ) и имеющих большой запас энергии (стр. 70, 94—96). Освобождение и перенос образующейся энергии происходят с участием большого числа ферментов, находящихся в митохондриях.

Аппарат Гольджи

В цитоплазме находится аппарат Гольджи, форма которого различна в разных клетках. Он может быть в виде дисков, палочек, зернышек. Аппарат Гольджи имеет много полостей, окруженных двухслойной оболочкой. Роль его сводится к накоплению и выведению из клетки различных веществ, вырабатываемых клеткой.

Рибосомы

Рибосомы — это субмикроскопические частицы, имеющие форму зернышек размером до 0,015 мк. Рибосомы содержат много белка (до 55%) и богаты рибонуклеиновой кислотой (35%), что составляет 65% всей рибонуклеиновой кислоты (РНК), находящейся в клетке. В рибосомах из аминокислот синтезируются белки, что возможно только при наличии РНК. Рибосомы находятся в цитоплазме, ядре, пластидах и, возможно, в митохондриях. Химический состав органоидов. В настоящее время благодаря созданию центрифуг, имеющих огромную скорость вращения (десятки тысяч оборотов в минуту), можно отделять различные части клетки друг от друга, так как они имеют разный удельный вес. Поэтому стало возможным изучать биохимические свойства каждой части клетки. Для сравнения химического состава органоидов клетки приводим данные (табл. 1).

Химический состав органоидов растительной клетки (в °/о от сухого вещества)

Органоид Белки  Липоиды  Нуклеиновые кислоты  Примечание
 Цитоплазма  80—95  2—3  1—2   Большая часть нуклеиновых кислот — ДНК
 Ядра  50—80  8—40  10—30
 Пластиды  30—45  20—40  0,5—3,0
 Митохондрии  30—40  25—38  1—6
 Рибосомы  50—57  3—4  35

Клеточная оболочка

Характерный признак растительной клетки — наличие прочной оболочки, которая придает клетке определенную форму и предохраняет протоплазму от повреждений. Оболочка может расти только при участии протоплазмы. Клеточная оболочка молодых клеток состоит в основном из целлюлозы (клетчатки), гемицеллюлоз и пектиновых веществ. Молекулы целлюлозы имеют вид длинных цепочек, собранных в мицеллы, расположение которых неодинаково у разных клеток. У волокон льна, конопли и других, представляющих собой вытянутые в длину клетки, мицеллы целлюлозы расположены вдоль клетки под некоторым углом. У клеток с одинаковым диаметром мицеллы расположены по всем направлениям в виде сетки. В межмицеллярных пространствах оболочки находится вода. В процессе жизни растительного организма в строении клеточной оболочки могут происходить изменения: оболочка может утолщаться и химически изменяться. Утолщение оболочки идет изнутри за счет жизнедеятельности протоплазмы, причем оно происходит не по всей внутренней поверхности клетки; всегда остаются не утолщенные места — поры, состоящие только из тонкой целлюлозной оболочки. Через поры, расположенные в соседних клетках друг против друга, проходят тончайшие нити цитоплазмы — плазмодесмы, благодаря которым осуществляется обмен между клетками. Однако при очень сильном утолщении оболочек резко затрудняется обмен, в клетке остается очень мало протоплазмы, и такие клетки отмирают, например лубяные волокна льна и конопли. В оболочке клетки могут происходить также химические изменения в зависимости от характера растительной ткани. В покровных тканях — эпидермисе — происходит кутинизация. При этом в межмицеллярных пространствах целлюлозной оболочки накапливается кутин — жироподобное вещество, трудно проницаемое для газов и воды. Однако кутинизация не приводит к отмиранию клеток, так как отложения кутина не захватывают всей поверхности клетки. В клетках покровной ткани кутинизируется только наружная стенка, образуя так называемую кутикулу. В оболочках клеток может также откладываться суберин — пробковое вещество, тоже жироподобное и непроницаемое для воды и газов. Отложение суберина, или опробковение, происходит быстро по всей поверхности оболочки, это нарушает обмен клетки и приводит к ее отмиранию. Может происходить и одревеснение оболочки. В этом случае она пропитывается лигнином, который приводит к остановке роста клетки, а в дальнейшем, при более сильном одревеснении, и к ее отмиранию.

Клеточный сок

Молодая растительная клетка полностью заполнена протоплазмой, но по мере роста клетки в ней появляются вакуоли, заполненные клеточным соком. Вначале вакуоли возникают в большом количестве в виде мелких капелек, затем отдельные вакуоли начинают сливаться в одну центральную и протоплазма оттесняется к стенкам клетки.рост клетки Изменения происходящие в растительной клетке при ее росте.

  1. — молодая клетка,
  2. — образование вакуолей,
  3. — слияние вакуолей и оттеснение  протоплазмы к оболочке.

Клеточный сок, заполняющий вакуолю, представляет собой водный раствор органических и минеральных веществ. В нем могут находиться сахара, органические и минеральные кислоты и их соли, ферменты, растворимые белки и пигменты. Весьма часто в клеточном соке встречается пигмент антоциан, окраска которого меняется в зависимости от реакции среды.

Источник: LibTime.ru