Цитоплазма (протоплазма) как живое содержимое клетки известна была уже в XII веке. Термин протоплазма впервые предложен чешским ученым Пуркинье (1839).

Различают три слоя цитоплазмы: плазмалемму, гиалоплазму, тонопласт.

Плазмалемма — элементарная мембрана, наружный слой цитоплазмы, примыкает к оболочке. Толщина ее около 80А (А – ангстрем, 10-10 м). Состоит из фосфолипидов, белков, липопротеинов, углеводов, неорганических ионов, воды. Может иметь ламеллярную (слоистую) и мицеллярную (капельную) структуры. Чаще всего состоит из 3-х слоев: бимолекулярный слой фосфолипидов (35А), на их долю приходится 40%, поверхность покрыта с обеих сторон прерывистым слоем структурных белков (20 и 25А). В некоторых местах на стыке ламеллярной и мицеллярной структур или между двумя мицеллами наружный и внутренний слои структурных белков могут смыкаться, образуя гидрофильные белковые поры, 7-10А, через которые проходят вещества в растворенном состоянии.


В матрикс мембран бывают встроены молекулы белков, не имеющие ферментативной активности — специфические селективные каналы ионной проводимости (калиевые, натриевые и др.). Наконец, в мембране могут быть белки – ферменты, обеспечивающие поступление в клетку высокомолекулярных веществ. Все эти образования – биохимические поры – обеспечивают главное свойство мембран – полупроницаемость.

Плазмалемма имеет многочисленные складки, углубления, выступы, что уве¬личивает ее поверхность во много раз.

Как мембрана, плазмалемма выполняет важные и сложные функции: 1. Регулирует поступление и выделение веществ клеткой; 2. Преобразует, запасает и расходует энергию; 3. Представляет химический преобразователь;ускоряет превращение веществ; 4. Принимает и преобразует световые, механические и химические сигналы внешнего мира.

Таким образом, плазмалемма контролирует проницаемость клетки, про¬цессы поглощения, превращения, секреции и экскреции веществ.

Тонопласт — внутренняя мембрана, отграничивающая клеточный сок от цитоплазмы

Гиалоплазма. Представляет основу клеточной организации, является вы­ражением ее сущности как живого. С физико-химической точки зрения являет­ся сложной гетерогенной коллоидной системой, где высокомолекулярные со­единения диспергированы в водной среде. В среднем цитоплазма содержит 70-80% воды, 12% белков,1,5-2% нуклеиновых кислот, около 5% жира, 4-6% угле­водов и 0,5-2% неорганических веществ.
жет находиться в двух состояниях: золя и геля. Золь — жидкое состояние, обладает вязкостью, гель — твердое со­стояние, обладает эластичностью, растяжимостью. Способна к обратимым пере­ходам «золь-гель переход» под влиянием температуры, концентрации водород­ных ионов, прибавления электролита, механического воздействия.

Цитоплазма находится в постоянном движении, которое в обычных условиях очень медленное и почти незаметное. Повышение температуры, световой или химический раздражитель ускоряют движение цитоплазмы и делают его заметным в световом микроскопе. Увидеть это движение помогают хлоропласты, которые увлекаются током вязкой цитоплазмы. Движение цитоплазмы бывает двух видов: круговое (ротационное) и струйчатое (циркуляционное). Если полость клетки занята одной крупной вакуолью, то цитоплазма движется только вдоль стенок. Это круговое движение. Его можно наблюдать в клетках листа валлиснерии, элодеи. Если в клетке несколько вакуолей, то тяжи цитоплазмы, пересекая клетку, соединяются в центре, где располагается ядро. В этих тяжах происходит струйчатое движение цитоплазмы. Струйчатое движение цитоплазмы можно наблюдать в клетках жгучих волосков крапивы, в клетках волосков молодых побегов тыквы.

Свойства гиалоплазмы связаны и с надмолекулярными структурами белковой природы. Это микротрубочки и микрофиламенты.


Микротрубочки — полые мелкие образования с электроноплотной белковой стенкой. Участвуют в проведении веществ по цитоплазме, в перемещении хромосом и образовании нитей митотического веретена.

Микрофиламенты состоят из спирально расположенных белковых субъе­диниц, образующих волокна или трехмерную сеть, содержат сократительные белки и способствуют движению гиалоплазмы и прикрепленных к ним орга­ноидов.

Гиалоплазма как сложная гетерогенная коллоидная система макромолекул и надмолекулярных структур характеризуется нерастворимостью в воде, вяз­костью, эластичностью, способностью к обратным изменениям, непроходимо­стью через поры естественных мембран, большими поверхностями раздела, об­ладает сильным светопреломлением, очень малой скоростью диффузии.

Органоиды гиалоплазмы. Как отмечалось раньше, в гиалоплазме имеется большое количество надмо­лекулярных образований, которые представляют собой многочисленные орга­ноиды.

Функции биомембран

1)барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.


2)транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).


3)матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;

4)механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных — межклеточное вещество.

5)энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;

6)рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

7)ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.

8)осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.


9)маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Источник: StudFiles.net

Цитоплазма

Цитоплазма — обязательная часть клетки, заключенная между плазматической мембраной и ядром; подразделяется на гиалоплазму (основное вещество цитоплазмы), органоиды (постоянные компоненты цитоплазмы) и включения (временные компоненты цитоплазмы). Химический состав цитоплазмы: основу составляет вода (60–90% всей массы цитоплазмы), различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Характерная особенность цитоплазмы эукариотической клетки — постоянное движение (циклоз). Оно обнаруживается, прежде всего, по перемещению органоидов клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции.


Гиалоплазма (цитозоль) представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы: золь — более жидкая гиалоплазма и гель — более густая гиалоплазма. Между ними возможны взаимопереходы: гель превращается в золь и наоборот.

Функции цитоплазмы:

  1. объединение всех компонентов клетки в единую систему,
  2. среда для прохождения многих биохимических и физиологических процессов,
  3. среда для существования и функционирования органоидов.

Клеточные оболочки

Клеточные оболочки ограничивают эукариотические клетки. В каждой клеточной оболочке можно выделить как минимум два слоя. Внутренний слой прилегает к цитоплазме и представлен плазматической мембраной (синонимы — плазмалемма, клеточная мембрана, цитоплазматическая мембрана), над которой формируется наружный слой. В животной клетке он тонкий и называется гликокаликсом (образован гликопротеинами, гликолипидами, липопротеинами), в растительной клетке — толстый, называется клеточной стенкой (образован целлюлозой).

Строение мембран


Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны. Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты; участок молекулы, в котором находится остаток фосфорной кислоты, называют гидрофильной головкой, участки, в которых находятся остатки жирных кислот — гидрофобными хвостами. В мембране фосфолипиды располагаются строго упорядоченно: гидрофобные хвосты молекул обращены друг к другу, а гидрофильные головки — наружу, к воде.

Помимо липидов в состав мембраны входят белки (в среднем ≈ 60%). Они определяют большинство специфических функций мембраны (транспорт определенных молекул, катализ реакций, получение и преобразование сигналов из окружающей среды и др.). Различают: 1) периферические белки (расположены на наружной или внутренней поверхности липидного бислоя), 2) полуинтегральные белки (погружены в липидный бислой на различную глубину), 3) интегральные, или трансмембранные, белки (пронизывают мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки). Интегральные белки в ряде случаев называют каналообразующими, или канальными, так как их можно рассматривать как гидрофильные каналы, по которым в клетку проходят полярные молекулы (липидный компонент мембраны их бы не пропустил).


Строение мембраны: А — гидрофильная головка фосфолипида; В — гидрофобные хвостики фосфолипида; 1 — гидрофобные участки белков Е и F; 2 — гидрофильные участки белка F; 3 — разветвленная олигосахаридная цепь, присоединенная к липиду в молекуле гликолипида (гликолипиды встречаются реже, чем гликопротеины); 4 — разветвленная олигосахаридная цепь, присоединенная к белку в молекуле гликопротеина; 5 — гидрофильный канал (функционирует как пора, через которую могут проходить ионы и некоторые полярные молекулы).

В состав мембраны могут входить углеводы (до 10%). Углеводный компонент мембран представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины образуют надмембранный комплекс — гликокаликс, имеющий толщину несколько десятков нанометров. В нем располагаются многие рецепторы клетки, с его помощью происходит адгезия клеток.

Молекулы белков, углеводов и липидов подвижны, способны перемещаться в плоскости мембраны. Толщина плазматической мембраны — примерно 7,5 нм.

Функции мембран

Мембраны выполняют такие функции:

  1. отделение клеточного содержимого от внешней среды,
  2. регуляция обмена веществ между клеткой и средой,
  3. деление клетки на компартаменты («отсеки»),
  4. место локализации «ферментативных конвейеров»,
  5. обеспечение связи между клетками в тканях многоклеточных организмов (адгезия),
  6. распознавание сигналов.

Важнейшее свойство мембран — избирательная проницаемость, т.е. мембраны хорошо проницаемы для одних веществ или молекул и плохо проницаемы (или совсем непроницаемы) для других. Это свойство лежит в основе регуляторной функции мембран, обеспечивающей обмен веществ между клеткой и внешней средой. Процесс прохождения веществ через клеточную мембрану называют транспортом веществ. Различают: 1) пассивный транспорт — процесс прохождения веществ, идущий без затрат энергии; 2) активный транспорт — процесс прохождения веществ, идущий с затратами энергии.

При пассивном транспорте вещества перемещаются из области с более высокой концентрацией в область с более низкой, т.е. по градиенту концентрации. В любом растворе имеются молекулы растворителя и растворенного вещества. Процесс перемещения молекул растворенного вещества называют диффузией, перемещения молекул растворителя — осмосом. Если молекула заряжена, то на ее транспорт влияет и электрический градиент. Поэтому часто говорят об электрохимическом градиенте, объединяя оба градиента вместе. Скорость транспорта зависит от величины градиента.

Можно выделить следующие виды пассивного транспорта: 1) простая диффузия — транспорт веществ непосредственно через липидный бислой (кислород, углекислый газ); 2) диффузия через мембранные каналы — транспорт через каналообразующие белки (Na+, K+, Ca2+, Cl); 3) облегченная диффузия — транспорт веществ с помощью специальных транспортных белков, каждый из которых отвечает за перемещение определенных молекул или групп родственных молекул (глюкоза, аминокислоты, нуклеотиды); 4) осмос — транспорт молекул воды (во всех биологических системах растворителем является именно вода).

Необходимость активного транспорта возникает тогда, когда нужно обеспечить перенос через мембрану молекул против электрохимического градиента. Этот транспорт осуществляется особыми белками-переносчиками, деятельность которых требует затрат энергии. Источником энергии служат молекулы АТФ. К активному транспорту относят: 1) Na++-насос (натрий-калиевый насос), 2) эндоцитоз, 3) экзоцитоз.

Работа Na++-насоса. Для нормального функционирования клетка должна поддерживать определенное соотношение ионов К+ и Na+ в цитоплазме и во внешней среде. Концентрация К+ внутри клетки должна быть значительно выше, чем за ее пределами, а Na+ — наоборот. Следует отметить, что Na+ и К+ могут свободно диффундировать через мембранные поры. Na++-насос противодействует выравниванию концентраций этих ионов и активно перекачивает Na+ из клетки, а K+ в клетку. Na++-насос представляет собой трансмембранный белок, способный к конформационным изменениям, вследствие чего он может присоединять как K+, так и Na+. Цикл работы Na++-насоса можно разделить на следующие фазы: 1) присоединение Na+ с внутренней стороны мембраны, 2) фосфорилирование белка-насоса, 3) высвобождение Na+ во внеклеточном пространстве, 4) присоединение K+ с внешней стороны мембраны, 5) дефосфорилирование белка-насоса, 6) высвобождение K+ во внутриклеточном пространстве. На работу натрий-калиевого насоса тратится почти треть всей энергии, необходимой для жизнедеятельности клетки. За один цикл работы насос выкачивает из клетки 3Na+ и закачивает 2К+.

Эндоцитоз — процесс поглощения клеткой крупных частиц и макромолекул. Различают два типа эндоцитоза: 1) фагоцитоз — захват и поглощение крупных частиц (клеток, частей клеток, макромолекул) и 2) пиноцитоз — захват и поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Явление фагоцитоза открыто И.И. Мечниковым в 1882 г. При эндоцитозе плазматическая мембрана образует впячивание, края ее сливаются, и происходит отшнуровывание в цитоплазму структур, отграниченных от цитоплазмы одиночной мембраной. К фагоцитозу способны многие простейшие, некоторые лейкоциты. Пиноцитоз наблюдается в эпителиальных клетках кишечника, в эндотелии кровеносных капилляров.

Экзоцитоз — процесс, обратный эндоцитозу: выведение различных веществ из клетки. При экзоцитозе мембрана пузырька сливается с наружной цитоплазматической мембраной, содержимое везикулы выводится за пределы клетки, а ее мембрана включается в состав наружной цитоплазматической мембраны. Таким способом из клеток желез внутренней секреции выводятся гормоны, у простейших — непереваренные остатки пищи.

 

Источник: licey.net

Функции и свойства цитоплазмы

Цитоплазматическое содержимое клетки способно двигаться, что благоприятствует оптимальному размещению органоидов и в результате лучше протекают биохимические реакции, выделение продуктов обмена и т. п.

У простейших (амёба) благодаря движению цитоплазмы осуществляется основное передвижение клеток в пространстве.

Функции и свойства цитоплазмы. Автор24 — интернет-биржа студенческих работ

Цитоплазмой сформированы различные внешние образования клетки – жгутики, реснички, выросты поверхности, которые играют важную роль в движении клеток и способствуют соединению клеток в ткани.

Цитоплазма является матриксом для всех клеточных элементов, обеспечивая взаимодействие всех клеточных структур, в ней происходят разнообразные химические реакции, по цитоплазме вещества перемещаются в клетке, а также из клетки в клетку.

Источник: spravochnick.ru

Что такое цитоплазма

Цитоплазма представляет собой вязкое (желеподобное) прозрачное вещество, которое заполняет каждую клетку и ограничено клеточной мембраной. В ее состав входят вода, соли, белки и другие органические молекулы.

Все органоиды эукариотов, такие как ядро, эндоплазматический ретикулят и митохондрии, расположены в цитоплазме. Часть ее, которая не содержится в органоидах, называется цитосоль. Хотя может показаться, что цитоплазма не имеет ни формы, ни структуры на самом деле она представляет собой высокоорганизованное вещество, которое обеспечивается за счет так называемого цитоскелета (белковая структура). Открыта была цитоплазма в 1835 году Робертом Брауном и другими учеными.

Это интересно: к прокариотам относятся также бактерии, почему?

Химический состав

Главным образом цитоплазма представляет собой субстанцию, которая заполняет клетку. Эта субстанция вязкая, подобная гелю, состоит на 80% из воды и, обычно, является прозрачной и бесцветной.

Состав цитоплазмыЦитоплазма — субстанция жизни, которую также называют молекулярным супом, в котором клеточные органоиды находятся во взвешенном состоянии и соединены друг с другом двухслойной липидной мембраной. Цитоскелет, находящийся в цитоплазме, придает ей форму. Процесс цитоплазматического течения обеспечивает перемещение полезных веществ между органоидами и вывод продуктов жизнедеятельности. Эта субстанция содержит много солей и является хорошим проводником электричества.

Как было сказано, субстанция состоит на 70−90% из воды и является бесцветной. Большинство клеточных процессов происходят в ней, например, гликоз, метаболизм, процессы клеточного деления. Внешний прозрачный стеклообразный слой называется эктоплазмой или клеточной корой, внутренняя часть субстанции носит название эндоплазмы. В клетках растений имеет место процесс цитоплазматического течения, представляющий собой течение цитоплазмы вокруг вакуоля.

Основные характеристики

Следует перечислить следующие свойства цитоплазмы:

  • Цитоплазму можно разделить на две части: эндоплазма, представляющая собой ее центральную область с органоидами, и эктоплазма — периферическая ее часть, подобная гелю.
  • Цитоплазма представляет собой жидкую субстанцию, заполняющую пространство между клеточной мембраной и органоидами;
  • Цитоплазма: характеристикаРазличные части желеобразной массы окрашены в разные оттенки цветов и называются эргатоплазмой;
  • Смесь разнообразных гранул, органических образований придает ей коллоидную консистенцию;
  • Периферийная зона цитоплазмы более вязкая и желатинообразная, чем остальная ее часть, и называется плазмогель. Слой же цитоплазмы вокруг клеточного ядра имеет более высокую текучесть, чем остальная ее часть, и называется плазмосоль;
  • Физическая природа субстанции — коллоидное состояние. Она состоит в основном из воды и частиц различной формы и размера, взвешенные в ней;
  • Содержит протеины, из которых 20−25% являются растворимыми в воде, включая ферменты;
  • Также здесь находятся некоторые аминокислоты, углеводороды, неорганические соли, липиды и липидоподобные вещества;
  • Плазмогель способен абсорбировать либо выделять воду в соответствии с потребностями клетки;
  • Она имеет целую систему организованных волокон, которые можно наблюдать используя специальную технику раскрашивания;
  • Субстанция химически представляет собой 90% воды и 10% органических и неорганических образований.

Структура и компоненты

В прокариотах (например, бактерии), которые не имеют ядра, соединенного с мембраной, цитоплазма представляет все содержимое клетки внутри плазматической мембраны. В эукариотах (например, клетки растений и животных) цитоплазма образована тремя отличающимися друг от друга компонентами: цитосоль, органоиды, различные частицы и гранулы, носящие название цитоплазматических включений.

Цитосоль, органоиды, включения

Цитосоль представляет собой полужидкий компонент, расположенный внешне по отношению к ядру и внутри плазматической мембраны. Цитосоль составляет приблизительно 70% объема клетки и состоит из воды, волокон цитоскелета, солей и органических и неорганических молекул, растворенных в воде. Также содержит протеины и растворимые структуры такие, как рибосомы и протеасомы. Внутренняя часть цитосоля, наиболее текучая и гранулированная, называется эндоплазмой.

Цитоплазма: компонентыСеть волокон и высокие концентрации растворенных макромолекул, например, белков приводят к образованию макромолекулярных скоплений, которые сильно влияют на перенос веществ между компонентами цитоплазмы.

Органоид означает «маленький орган», который связан с мембраной. Органоиды находятся внутри клетки и выполняют специфические функции, необходимые для поддержания жизни этого наименьшего кирпичика жизни. Органоиды представляют собой маленькие клеточные структуры, выполняющие специальные функции. Можно привести следующие примеры:

  • митохондрии;
  • рибосомы;
  • ядро;
  • лизосомы;
  • хлоропласты (в растениях);
  • эндоплазматическая сеть;
  • аппарат Гольджи.

Внутри клетки также находится цитоскелет — сеть волокон, помогающих ей сохранять свою форму.

Цитоплазматические включенияЦитоплазматические включения представляют собой частицы, которые временно находятся во взвешенном состоянии в желеобразной субстанции и состоят из макромолекул и гранул. Можно встретить три типа таких включений: секреторные, питательные, пигментные. В качестве примера секреторных включений можно назвать белки, ферменты и кислоты. Гликоген (молекула для хранения глюкозы) и липиды — яркие примеры питательных включений, меланин, находящийся в клетках кожи, является примером пигментных включений.

Цитоплазматические включения, будучи небольшими частицами, взвешенными в цитосоле, представляют собой разнообразную гамму включений, присутствующих в различного типа клетках. Это могут быть как кристаллы оксалата кальция или диоксида кремния в растениях, так и гранулы крахмала и гликогена. Широкую гамму включений представляют собой липиды, имеющие сферическую форму, присутствующие как в прокариотах, так и в эукариотах, и служащие для накопления жиров и жирных кислот. Например, такие включения занимают большую часть объема адипоситов — специализированных накопительных клеток.

Функции цитоплазмы в клетке

Наиболее важные функции можно представить в виде следующей таблицы:

  • обеспечение формы клетки;
  • среда обитания органоидов;
  • транспорт веществ;
  • запас полезных веществ.

Митоз входит в список функций цитоплазмыЦитоплазма служит для поддержки органоидов и клеточных молекул. Множество клеточных процессов происходит в цитоплазме. Некоторые из этих процессов включают синтез белков, первый этап клеточного дыхания, который носит название гликолиз, процессы митоза и мейоза. Кроме того, цитоплазма помогает перемещаться гормонам по клетке, также через нее осуществляется вывод продуктов жизнедеятельности.

Большинство разных действий и событий происходит именно в этой желатиноподобной жидкости, в которой содержатся ферменты, способствующие разложению продуктов жизнедеятельности, также здесь проходит множество процессов метаболизма. Цитоплазма обеспечивает клетку формой, заполняя ее, помогает поддерживать органоиды на своих местах. Без нее клетка выглядела бы «сдутой», и различные вещества не могли бы легко перемещаться от одного органоида к другому.

Транспорт веществ

Жидкая субстанция содержимого клетки очень важна для поддержания ее жизнедеятельности, так как позволяет легко обмениваться питательными веществами между органоидами. Такой обмен обязан процессу цитоплазматического течения, представляющему собой потоки цитосоля (наиболее подвижная и текучая часть цитоплазмы), переносящие питательные вещества, генетическую информацию и другие вещества от одного органоида к другому.

Некоторые процессы, которые происходят в цитосоле, включают в себя также перенос метаболитов. Органоид может производить аминокислоту, жирную кислоту и другие вещества, которые через цитосоль перемещаются к органоиду, нуждающемуся в этих веществах.

Цитоплазматические потоки приводят к тому, что сама клетка может перемещаться. Некоторые наименьшие жизненные структуры снабжены ресничками (маленькие, похожие на волос образования снаружи клетки, позволяющие последней перемещаться в пространстве). Для других же клеток, например, амебы единственной возможностью перемещаться является перемещение жидкости в цитосоле.

Запас питательных веществ

Помимо транспорта различного материала, жидкое пространство между органоидами выступает в роли своего рода камеры хранения этих материалов до момента, когда они действительно потребуются тому или иному органоиду. Внутри цитосоля во взвешенном состоянии находятся протеины, кислород и различные строительные блоки. Помимо полезных веществ, в цитоплазме содержатся и продукты метаболизма, которые ждут своей очереди, пока процесс удаления не выведет их из клетки.

Плазматическая мембрана

Клеточная, или плазматическая, мембрана представляет собой образование, препятствующее вытеканию цитоплазмы из клетки. Эта мембрана состоит из фосфолепидов, образующих двойной липидный слой, который является полупроницаемым: лишь определенные молекулы могут проникать через этот слой. Протеины, липиды и другие молекулы могут проникать через клеточную мембрану посредством процесса эндоцитоза, при котором образуется пузырек с этими веществами.

Пузырек, включающий в себя жидкость и молекулы, отрывается от мембраны, образуя при этом эндосому. Последняя перемещается внутри клетки к своим адресатам. Продукты жизнедеятельности выводятся посредством процесса экзоцитоза. В этом процессе пузырьки, образующиеся в аппарате Гольджи, соединяются с мембраной, которая выталкивает их содержимое в окружающую среду. Также мембрана обеспечивает форму клетки и служит опорной платформой для цитоскелета и клеточной стенки (в растениях).

Клетки растений и животных

Описание клетки животных и растенийПодобие внутреннего содержимого клеток растений и животных говорит об их одинаковом происхождении. Цитоплазма обеспечивает механическую поддержку внутренним структурам клетки, которые находятся в ней во взвешенном состоянии.

Цитоплазма поддерживает форму и консистенцию клетки, а также содержит множество химических веществ, являющихся ключевыми для поддержания жизненных процессов и метаболизма.

Реакции метаболизма, такие как гликоз и синтез протеинов, происходят в желеобразном содержимом. В клетках растений, в отличие от животных, присутствует движение цитоплазмы вокруг вакуоли, которое известно как цитоплазматическое течение.

Цитоплазма клеток животных представляет собой вещество, подобное гелю, растворенному в воде, она заполняет весь объем клетки и содержит белки и другие важные молекулы, необходимые для жизнедеятельности. Гелеобразная масса содержит протеины, углеводороды, соли, сахара, аминокислоты и нуклеотиды, все клеточные органоиды и цитоскелет.

Источник: obrazovanie.guru

Строение

Цитоплазма состоит из постоянной жидкой части – гиалоплазмы и элементов, которые меняются – органелл и включений.

Строение и функции цитоплазмы

Органеллы цитоплазмы делятся на мембранные и немембранные, последние в свою очередь могут быть двухмембранные и одномембранные.

  1. Немембранные органеллы: рибосомы, вакуоли, центросома, жгутики.
  2. Двухмембранные органеллы: митохондрии, пластиды, ядро.
  3. Одномембранные органеллы: аппарат Гольджи, лизосомы, вакуоли эндоплазматический ретикулум.

Также к компонентам цитоплазмы относятся клеточные включения, представлены в виде липидных капель или гранул гликогена.

Основные признаки цитоплазмы:

  • Бесцветная;
  • эластичная;
  • слизисто-вязкая;
  • структурированная;
  • подвижная.

Жидкая часть цитоплазмы по своему химическому составу отличается в клетках разной специализации. Основное вещество – вода от 70% до 90%, также в состав входят протеины, углеводы, фосфолипиды, микроэлементы, соли.

Кислотно-щелочное равновесие поддерживается на уровне 7,1–8,5pH (слабощелочное).

Цитоплазма, при изучении на большом увеличении микроскопа, не является однородной средой. Различают две части – одна находится на периферии в области плазмолеммы (эктоплазма), другая – возле ядра (эндоплазма).

Эктоплазма служит связующим звеном с окружающей средой, межклеточной жидкостью и соседними клетками. Эндоплазма – это место расположения всех органелл.

В структуре цитоплазмы выделяют особые элементы – микротрубочки и микрофиламенты.

Микротрубочки – немембранные органоиды, необходимые для перемещения органелл внутри клетки и образования цитоскелета. Глобулярный белок тубулин – основное строительное вещество для микротрубочек. Одна молекула тубулина в диаметре не превышает 5нм. При этом молекулы способны объединятся друг с другом, вместе образуя цепочку. 13 таких цепочек формируют микротрубочку диаметром 25нм.

Молекулы тубулина находятся в постоянном движении для формирования микротрубочек, если на клетку воздействуют неблагоприятные факторы, процесс нарушается. Микротрубочки укорачиваются или вовсе денатурируются. Эти элементы цитоплазмы очень важны в жизни растительных и бактериальных клеток, так как принимают участие в строении их оболочек.

Микротрубочки и микрофиламенты
Микротрубочки и микрофиламенты

Микрофиламенты – это субмикроскопические немембранные органеллы, которые образуют цитоскелет. Также входят в состав сократительного аппарата клетки. Микрофиламенты состоят из двух видов белка – актина и миозина. Актиновые волокна тонкие до 5нм в диаметре, а миозиновые толстые – до 25нм. Микрофиламенты в основном сосредоточены в эктоплазме. Существуют также специфические филаменты, которые характерны для конкретного вида клеток.

Микротрубочки и микрофиламенты вместе образуют цитоскелет клетки, который обеспечивает взаимосвязь всех органелл и внутриклеточный метаболизм.

В цитоплазме также выделяют высокомолекулярные биополимеры. Они объединяются в мембранные комплексы, которые пронизывают все внутреннее пространство клетки, предопределяют месторасположение органелл, отграничивают цитоплазму от клеточной стенки.

Особенности строения цитоплазмы заключаются в способности изменять свою внутреннюю среду. Она может пребывать в двух состояниях: полужидком (золь) и вязком (гель). Так, в зависимости от влияния внешних факторов (температура, радиация, химические растворы), цитоплазма переходит из одного состояния в другое.

Функции

  • Наполняет внутриклеточное пространство;
  • связывает между собой все структурные элементы клетки;
  • транспортирует синтезированные вещества между органоидами и за пределы клетки;
  • устанавливает месторасположение органелл;
  • является средой для физико-химических реакций;
  • отвечает за клеточный тургор, постоянство внутренней среды клетки.

Функции цитоплазмы в клетке зависят также от вида самой клетки: растительная она, животная, эукариотическая или прокариотическая. Но во всех живых клетках в цитоплазме происходит важное физиологическое явление – гликолиз. Процесс окисления глюкозы, который осуществляется в аэробных условиях и заканчивается высвобождением энергии.

Движение цитоплазмы

Цитоплазма находится в постоянном движении, эта характеристика имеет огромное значение в жизни клетки. Благодаря движению возможны метаболические процессы внутри клетки и распределение синтезированных элементов между органеллами.

Биологи наблюдали движение цитоплазмы в больших клетках, при этом следя за перемещением вакуоль. За движение цитоплазмы отвечают микрофиламенты и микротрубочки, которые приводятся в действие при наличии молекул АТФ.

Движение цитоплазмы показывает, насколько активны клетки и способны к выживанию. Этот процесс зависим от внешних воздействий, поэтому малейшие изменения окружающих факторов приостанавливают или ускоряют его.

Роль цитоплазмы в биосинтезе белка. Биосинтез белка осуществляется при участии рибосом, они же непосредственно находятся в цитоплазме или на гранулярной ЭПС. Также через ядерные поры в цитоплазму поступает иРНК, которая несет информацию, скопированную с ДНК. В экзоплазме содержатся необходимые аминокислоты для синтеза белка и ферменты, катализирующие эти реакции.

Источник: animals-world.ru