Митохондрия (с греческого μίτος (митос) – нить и χονδρίον (хондрион) – гранула) клеточная – двумембранный органоид, содержит свой собственный генетический материал, митохондриальную ДНК. Они встречаются как сферические или трубчатые клеточные структуры у почти всех эукариотов, но не у прокариотов.

Митохондрии – это органеллы, которые регенерируют высокоэнергетическую молекулу аденозинтрифосфата через дыхательную цепь. В дополнение к этому окислительному фосфорилированию они выполняют другие важные задачи, например, участвуют в образовании кластеров железа и серы. Строение и функции таких органоидов подробно рассмотрены ниже.

  • Общие сведения
  • Схема строения митохондрии
  • Внешняя мембрана
  • Внутренняя мембрана
  • Функции
  • Вывод

Общие сведения


Митохондрия: строение и функцииОсобенно много находится митохондрий в клетках с высоким энергопотреблением. К ним относятся мышечные, нервные, сенсорные клетки и ооциты. В клеточных структурах сердечной мышцы объемная доля этих органоидов достигает 36 %. Они имеют диаметр около 0.5-1.5 мкм и разнообразные формы, от сфер до сложных нитей. Их число корректируется с учетом энергетических потребностей клетки.

Эукариотические клетки, которые теряют свои митохондрии, не могут их восстановить. Существуют также эукариоты без них, например, некоторые простейшие. Количество данных органоидов на клеточную единицу обычно составляет от 1000 до 2000 при объемной доле в 25 %. Но эти значения могут сильно варьироваться в зависимости от типа клеточной структуры и организма. В зрелой клетке спермы их около четырех-пяти, в зрелой яйцеклетке – несколько сотен тысяч.

Митохондрии передаются через плазму яйцеклетки только от матери, что стало причиной исследования материнских линий. В настоящее время установлено, что также через сперму некоторые мужские органоиды импортируются в плазму оплодотворенной яйцеклетки (зиготы). Вероятно, они будут устранены довольно быстро. Однако есть несколько случаев, когда врачи смогли доказать, что митохондрии ребенка были отцовской линии. Заболевания, вызванные мутациями в митохондриальных генах, наследуются только от матери.

Схема строения митохондрии


Рассмотрим особенности строения этих важных структур. Они образованы в результате сочетания нескольких элементов. Оболочка этих органоидов складывается из внешней и внутренней мембраны, они в свою очередь состоят из фосфолипидных бислоев и белков. Обе оболочки отличаются по своим свойствам. Между ними расположено пять различных отсеков: наружная мембрана, межмембранное пространство (промежуток между двумя мембранами), внутренняя, криста и матрикс (пространство внутри внутренней мембраны), в целом – внутренние структуры органоида.

На иллюстрациях в учебниках митохондрия преимущественно выглядит как отдельная бобовидная органелла. Так ли это на самом деле? Нет, они образуют трубчатую митохондриальную сеть, которая может проходить и изменять всю клеточную единицу. Митохондрии в клетке способны сочетаться (путем слияния) и повторно делиться (делением).

Внешняя мембрана

Митохондрия: строение и функцииНаружная оболочка окружает всю органеллу и включает в себя каналы белковых комплексов, что позволяют обмен молекулами и ионами между митохондрией и цитозолем. Крупные молекулы не могут пройти через мембрану.


Внешняя, которая охватывает всю органеллу и не свернута, имеет весовое отношение фосфолипида к белку 1:1 и, таким образом, похожа на эукариотическую плазматическую мембрану. Она содержит множество интегральных белков, поринов. Порины образуют каналы, которые обеспечивают свободную диффузию молекул с массой до 5000 дальтон через оболочку. Более крупные белки могут вторгаться, когда сигнальная последовательность на N-конце связывается с большой субъединицей белка транслоксазы, из которой они затем активно перемещаются по мембранной оболочке.

Если трещины возникают во внешней оболочке, белки из межмембранного пространства могут выходить в цитозоль, что может привести к гибели клетки. Наружная мембрана может сливаться с оболочкой эндоплазматического ретикулума, а затем формировать структуру под названием MAM (ER, ассоциированную с митохондрией). Это важно для обмена сигналами между ER и митохондрией, что также необходимо для переноса липидов.

Межмембранное пространство

Участок представляет собой промежуток посреди внешней и внутренней мембраны. Поскольку внешняя обеспечивает свободное проникновение малых молекул, их концентрация, таких как ионы и сахар, в межмембранном пространстве идентична концентрациям в цитозоле. Однако для больших белков требуется передача специфической сигнальной последовательности, так что состав белков различается между межмембранным пространством и цитозолем. Таким образом, белок, который удерживается в межмембранном промежутке, является цитохромом.

Внутренняя мембрана

Внутренняя митохондриальная мембрана содержит белки с четырьмя видами функций:

  • Белки – проводят реакции оксидации респираторной цепочки.
  • Аденозинтрифосфатсинтаза, которая производит в матрице АТФ.
  • Специфические транспортные белки, которые регулируют проход метаболитов между матрицей и цитоплазмой.
  • Системы импорта белков.

Внутренняя имеет, в частности, двойной фосфолипид, кардиолипин, замещенный четырьмя жирными кислотами. Кардиолипин обычно характерен для митохондриальных мембран и бактериальных плазматических мембран. В организме человека он в основном присутствует в областях с высокой метаболической активностью или высокой энергетической активностью, таких как сократительные кардиомиоциты, в миокарде.

Митохондрия: строение и функцииРазделяется на многочисленные кристы, они расширяют внешнюю область внутренней митохондриальной оболочки, поднимая ее способность вырабатывать АТФ.

В типичной митохондрии печени, например, внешняя область, в частности кристы, примерно в пять раз превышает площадь наружной мембраны. Энергетические станции клеток, которые имеют более высокие потребности в АТФ, например, мышечные клетки, содержат больше крист, чем типичная митохондрия печени.

Внутренняя оболочка охватывает матрикс, внутреннюю жидкость митохондрии. Он соответствует цитозолю бактерий и содержит митохондриальную ДНК, ферменты цитратного цикла и их собственные митохондриальные рибосомы, которые отличаются от рибосом в цитозоле (но также и от бактерий). Межмембранное пространство содержит ферменты, которые могут фосфорилировать нуклеотиды под потреблением АТФ.

Функции


  • Важные пути деградации: цитратный цикл, для которого пируват вводится из цитозоля в матрикс. Затем пируват декарбоксилируют пируватдегидрогеназой до ацетилкофермента А. Другим источником ацетилкофермента А является деградация жирных кислот (β-окисление), которая происходит в клетках животных в митохондриях, но в растительных – только в глиоксисомах и пероксисомах. С этой целью ацилкофермент А переносят из цитозоля путем связывания с карнитином через внутреннюю митохондриальную мембрану и превращают в ацетилкофермента А. Из него большинство восстановительных эквивалентов в цикле Кребса (также известный как цикл Кребса или цикл трикарбоновой кислоты), которые затем превращаются в АТФ в окислительной цепи.
  • Окислительная цепь. Установлен электрохимический градиент между межмембранным пространством и митохондриальным матриксом, который служит для получения АТФ с помощью АТФ-синтазы, с помощью процессов переноса электронов и накопления протонов. Электроны и протоны, необходимые для создания градиента, получают путем окислительной деградации из питательных веществ (например, глюкозы), поглощаемых организмом. Первоначально гликолиз происходит в цитоплазме.

  • Апоптоз (запрограммированная гибель клеток)
  • Хранение кальция: благодаря способности абсорбировать ионы кальция и затем высвобождать их, митохондрии вмешиваются в гомеостаз кальция клетки.
  • Синтез кластеров железа-серы, требуемый, среди прочего, многими ферментами дыхательной цепи. Эта функция теперь считается существенной функцией митохондрий, т.е. как это причина, по которой почти все клетки эукариотов полагаются на энергетические станции для выживания.

Матрикс

Это пространство, включенное во внутреннюю митохондриальную мембрану. Содержит около двух третей общего белка. Играет решающую роль в производстве АТФ с помощью синтазы АТФ, включенной во внутреннюю мембрану. Содержит высококонцентрированную смесь сотен различных ферментов (главным образом, участвующих в деградации жирных кислот и пирувата), митохондриально-специфических рибосом, передаточной РНК и нескольких копий ДНК митохондриального генома.

Данные органоиды имеют свой собственный геном, а также ферментативное оборудование, необходимое для осуществления собственного биосинтеза белка.

Митохондрия Что такое Митохондрия и её функции

Строение и функционирование митохондрий

Вывод


Таким образом, митохондриями называются клеточные электростанции, которые производят энергию и занимают ведущее место в жизни и выживаемости отдельной клетки в частности и живого организма в целом. Митохондрии – это неотъемлемая часть живой клетки, в том числе растительной, которые до конца еще не изучены. Особенно много митохондрий в тех клетках, которым требуется больше энергии.

Источник: uchim.guru

Митохондрии (от греч. mitos– нить, chondrion- зернышко) — органеллы эукариотических клеток, обладающие собственной ДНК и выполняющие функцию синтеза АTP.
Размеры и форма митохондрий сильно варьирует у разных видов. Обычно ширина ~0,5 мкм, длина 7-60 мкм.
Митохондрии подвижные, пластичные, постоянно изменяют форму, могут ветвиться, сливаться друг с другом, и расходится. Перемещение митохондрий связано с микротрубочками.
В культуре клеток эндотелия сердца головастика ксенопуса наблюдали до 40 случаев слияния и деления митохондрий за 1 час.
Митохондрии расположены около мест высокого потребления АТФ (между миофибриллами в сердечной мышце, вокруг жгутика сперматозоида).
Число митохондрий зависит от потребности клетки в энергии, чем больше потребность, тем больше митохондрий в клетке и тем более они развиты.
Сложная форма митохондрий затрудняет их микроскопическое исследование. На срезе одна извитая митохондрия может быть представлена
несколькими сечениями (3-5), и только пространственная трехмерная реконструкция, построенная на изучении серийных срезов, может решить вопрос, имеем ли мы дело с 3-6 отдельными митохондриями или же с одной изогнутой или разветвленной.
В некоторых клетках имеется одна сильно разветвленная митохондрия (одноклеточные зеленые водоросли Polytomella, Engiena, Chlorella).
инные ветвящиеся митохондрии были описаны в клетках культуры ткани млекопитающих, в клетках многих растений как в нормальных, так и в анаэробных условиях.
В последнее время стал широко применяться для изучения свойств митохондрий флуорохром родамин. Этот краситель обладает способностью люминисцировать в фиолетовом свете, если он связывается с мембранами активных митохондрий. При этом в люминисцентном микроскопе видна единая митохондриальнвя система – митохондриальный ретикулум.
Печеночную клетку приходится около 200 митохондрий. Это составляет более 20% от общего объема цитоплазмы и около 30-35% от общего
количества белка в клетке. Площадь поверхности всех митохондрий печеночной клетки в 4-5 раз больше поверхности ее плазматической мембраны. Больше всего митохондрий в ооцитах (около 300000) и у гигантской амебы Chaos chaos (до 500000).
В клетках зеленых растений число митохондрий меньше, чем в клетках животных, так как часть их функций могут выполнять хлоропласты. В спермиях часто присутствуют гигантские митохондрии, спирально закрученные вокруг осевой части жгутика.
Отсутствуют митохондрии у кишечных энтамеб, живущих в условиях анаэробиоза, и у некоторых других паразитических простейших.
Обычно митохондрии скапливаются вблизи тех участков цитоплазмы, где возникает потребность в АТФ, образующейся в митохондриях.
к, в скелетных мышцах митохондрии находятся вблизи миофибрилл. В сперматозоидах митохондрии образуют спиральный футляр вокруг оси жгутика; вероятно, это связано с необходимостью использования АТФ для движения хвоста сперматозоида. Аналогичным образом
у простейших и в других клетках, снабженных ресничками, митохондрии локализуются непосредственно под клеточной мембраной у основания ресничек, для работы которых необходим АТФ. В аксонах нервных клеток митохондрии располагаются около синапсов, где происходит процесс передачи нервного импульса.

Строение митохондрий.

Внешняя мембрана
Внутренняя мембрана
Матрикс м-на, матрикс, кристы. она имеет ровные контуры, не образует впячиваний или складок. На нее приходится около 7% от площади всех клеточных мембран. Ее толщина около 7 нм, она не бывает связана ни с какими другими мембранами цитоплазмы и замкнута сама на себя, так что представляет собой мембранный мешок. Наружнюю мембрану от внутренней отделяет межмембранное пространство шириной около 10-20 нм. Внутренняя мембрана (толщиной около 7 нм) ограничивает собственно внутреннее содержимое митохондрии,
ее матрикс или митоплазму. Характерной чертой внутренней мембраны митохондрий является их способность образовывать многочисленные впячивания внутрь митохондрий.
кие впячивания чаще всего имеют вид плоских гребней, или крист. Расстояние между мембранами в кристе составляет около 10-20 нм. Часто кристы могут ветвиться или образовывать пальцевидные отростки, изгибаться и не иметь выраженной ориентации. У простейших, одноклеточных водорослей, в некоторых клетках высших растений и животных выросты внутренней мембраны имеют вид трубок (трубчатые кристы).
Матрикс митохондрий имеет тонкозернистое гомогенное строение, в нем иногда выявляются тонкие собранные в клубок нити (около 2-3 нм) и гранулы около 15-20нм. Теперь стало известно, что нити матрикса митохондрий представляют собой молекулы ДНК в составе митохондриального нуклеоида, а мелкие гранулы – митохондриальные рибосомы.

Функции митохондрий

1. В митохондриях происходит синтез ATP (см. Окислительное фосфорилирование)

pH межмембранного пространства ~4, pH матрикса ~8 | содержание белков в м: 67% — матрикс, 21% -наруж м-на, 6% — внутр м-на и 6% — в межм-ном пр-ве
Хандриома – единая система митохондрий
наружная м-на: порины-поры позволяют проходить до 5 kD | внутренняя м-на: кардиолипин-делает непроницаемой м-ну для ионов |
межм-ное пр-во: группы ферментов фосфорилируют нуклеотиды и сахара нуклеотидов
внутренняя м-на:
матрикс: метаболические ферменты – окисление липидов, окисление углеводов, цикла трикарбоновых к-т, цикла Кребса
Происхождение от бактерий: амеба Pelomyxa palustris единств из эукариот не содержит м., живет в симбиозе с аэробными бактериями | собственная ДНК | схожие с бактериями оx процессы

Митохондриальная ДНК

Деление миохондрий

реплицируется
в интерфазе | репликация не связана с S-фазой | во время кл цикла митох один раз делятся надвое, образуя перетяжку, перетяжка сначала на внутр м-не | ~16,5 kb | кольцевая, кодирует 2 рРНК 22 тРНК и 13 белков |
транспорт белков: сигнальный пептид | амфифильный завиток | митохондриальный распознающий рецептор |
Окислительное фосфорилирование
Цепь переноса электронов
АТР-синтаза
в кл печени, м живут ~20 дней деление митохондрий путем образования перетяжки

16569пн=13белков,22тРНК,2pРНК | гладкая внешняя м-на (порины – проницаемость белков до 10 кДа) складчатая внутренняя (кристы) м-на (75% -белков: транспортные белки-переносчики, ф-ты, компаненты дыхат. цепи и АТФ-синтаза, кардиолипин) матрикс (обогащен ф-тами цитратного цикла) межм-ное пр-во
От чего зависит число митохондрий в клетке

От чего зависит число митохондрий в клетке

Источник: www.cellbiol.ru

Что такое митохондрии

Термин имеет греческое происхождение. В переводе это слово означает «нить» (mitos), «зернышко» (chondrion). Митохондрии являются постоянными органоидами, которые имеют огромное значение для нормального функционирования клеток и делают возможным существование всего организма в целом.

От чего зависит число митохондрий в клетке

«Станции» имеют специфическую внутреннюю структуру, которая изменяется в зависимости от функционального состояния митохондрии. Их форма может быть двух видов – овальная или продолговатая. Последняя нередко имеет ветвящийся вид. Число органоидов в одной клетке колеблется от 150 до 1500.

Особый случай – половые клетки. В сперматозоидах присутствует всего лишь одна спиральная органелла, в то время как женских гаметах содержится в сотни тысяч больше митохондрий. В клетке органоиды не зафиксированы в одном месте, а могут передвигаться по цитоплазме, совмещаться друг с другом. Их размер составляет 0,5 мкм, длина может достигать 60 мкм, в то время как минимальный показатель – 7 мкм.

От чего зависит число митохондрий в клетке

Определить размер одной «энергетической станции» – непростая задача. Дело в том, что при рассмотрении в электронный микроскоп на срез попадает только часть органеллы. Случается так, что спиральная митохондрия имеет несколько сечений, которые можно принять за отдельные, самостоятельные структуры.

Только объемное изображение позволит выяснить точное клеточное строение и понять, идет речь о 2-5 отдельных органоидах или же об одной, имеющей сложную форму митохондрии.

Особенности строения

Оболочка митохондрии состоит из двух слоев: наружного и внутреннего. Последний включает в себя различные выросты и складки, которые имеют листовидную и трубчатую форму.

Каждая мембрана имеет особенный химический состав, определенное количество тех или иных ферментов и конкретное предназначение. Наружную оболочку от внутренней отделяет межмембранное пространство толщиной 10-20 нм.

Весьма наглядно выглядит строение органеллы на рисунке с подписями.

Посмотрев на схему строения, можно сделать следующее описание. Вязкое пространство внутри митохондрии называется матриксом. Его состав создает благоприятную среду для протекания в ней необходимых химических процессов. В его составе присутствуют микроскопические гранулы, которые содействуют реакциям и биохимическим процессам (например, накапливают ионы гликогена и других веществ).

В матриксе находятся ДНК, коферменты, рибосомы, т-РНК, неорганические ионы. На поверхности внутреннего слоя оболочки располагаются АТФ-синтаза и цитохромы. Ферменты способствуют таким процессам, как цикл Кребса (ЦТК), окислительное фосфорилирование и т. д.

Таким образом, главная задача органоида выполняется как матриксом, так и внутренней стороной оболочки.

Функции митохондрий

Предназначение «энергетических станций» можно охарактеризовать двумя основными задачами:

  • выработка энергии: в них осуществляются окислительные процессы с последующим выделением молекул АТФ;
  • хранение генетической информации;
  • участие в синтезе гормонов, аминокислот и других структур.

Процесс окисления и выработки энергии проходят в несколько стадий:

  1. На первом этапе (подготовительном) сложные органические соединения разделяются на простые. Кратко это можно изобразить на схеме расщепления органических веществ.От чего зависит число митохондрий в клетке
  2. Вторая стадия, где отсутствует кислород, заключается в окислении углеводов без участия такового (анаэробное окисление, гликолиз). Главным субстратом на данном этапе служит глюкоза. В результате гликолиза происходит неполное ее окисление, что дает всего две молекулы АТФ.
  3. Следующий этап – кислородный, осуществляется в самих митохондриях: в процессе расщепления молочной кислоты и потребления кислорода выделяется углекислый газ, и синтезируется большое количество энергии.

Таблица «Функции и строение митохондрий»

От чего зависит число митохондрий в клетке

От чего зависит число митохондрий в клетке

Превалирующее число органоидов скапливается рядом с теми участками клетки, где возникает необходимость в энергетических ресурсах. В частности, большое количество органелл собирается в зоне нахождения миофибрилл, которые являются частью мышечных клеток, обеспечивающих их сокращение.

От чего зависит число митохондрий в клетке

В мужских половых клетках структуры локализуются вокруг оси жгутика – предполагается, что потребность в АТФ обусловлена постоянным движением хвоста гаметы. Точно так же выглядит расположение митохондрий у простейших, которые для передвижения используют специальные реснички – органеллы скапливаются под мембраной у их основания.

Что касается нервных клеток, то локализация митохондрий наблюдается вблизи синапсов, через которые передаются сигналы нервной системы. В клетках, синтезирующих белки, органеллы скапливаются в зонах эргастоплазмы – они поставляют энергию, которая обеспечивает данный процесс.

Кто открыл митохондрии

Автором данного события стал ученый из Германии Рихард Альтман. Произошло это в 1890-1894 годах, в это же время немецкий анатом и гистолог составил подробное описание органоида.

Свое название клеточная структура обрела в 1897-1898 годах благодаря К. Бренду. Связь процессов клеточного дыхания с митохондриями сумел доказать Отто Вагбург в 1920 году.

Заключение

Митохондрии являются важнейшей составляющей живой клетки, выступая в роли энергетической станции, которая производит молекулы АТФ, обеспечивая тем самым процессы клеточной жизнедеятельности.

Работа митохондрий основана на окислении органических соединений, в результате чего происходит генерация энергетического потенциала.

Источник: 1001student.ru

Строение

Митохондрии состоят из трёх взаимосвязанных компонентов:

  • наружной мембраны;
  • внутренней мембраны;
  • матрикса.

Внешняя гладкая мембрана состоит из липидов, между которых находятся гидрофильные белки, образующие канальцы. Сквозь эти канальцы проходят молекулы при транспорте веществ.

Наружная и внутренняя мембраны находятся на расстоянии 10-20 нм. Межмембранное пространство заполнено ферментами. В отличие от ферментов лизосом, участвующих в расщеплении веществ, ферменты межмембранного пространства переносят остатки фосфорной кислоты к субстрату с затратой АТФ (процесс фосфорилирования).

Внутренняя мембрана упакована под внешней мембраной в виде многочисленных складок – крист.
Они образованы:

  • липидами, проницаемыми только для кислорода, углекислого газа, воды;
  • ферментными, транспортными белками, участвующими в окислительных процессах и транспорте веществ.

Здесь за счёт дыхательной цепи происходит вторая стадия клеточного дыхания и образование 36 молекул АТФ.

Между складками находится полужидкое вещество – матрикс.
В состав матрикса входят:

  • ферменты (сотни разных видов);
  • жирные кислоты;
  • белки (67 % белков митохондрий);
  • митохондриальная кольцевая ДНК;
  • митохондриальные рибосомы.

Наличие рибосом и ДНК свидетельствует о некоторой автономности органоида.

Строение митохондрий

Рис. 1. Строение митохондрий.

Значение

Основная функция митохондрий в клетке – синтез АТФ, т.е. генерация энергии. В результате клеточного дыхания (окисления) образуется 38 молекул АТФ. Синтез АТФ происходит на основе окисления органических соединений (субстрата) и фосфорилирования АДФ. Субстратом для митохондрий являются жирные кислоты и пируват.

Образование пирувата в результате гликолиза

Рис. 2. Образование пирувата в результате гликолиза.

Общее описание процесса дыхания представлено в таблице.

Процесс клеточного дыхания

Рис. 3. Процесс клеточного дыхания.

Источник: obrazovaka.ru

Отличительные характеристики

Митохондрии имеют характерную продолговатую или овальную форму и покрыты двойной мембраной. Они встречаются как в животных, так и в растительных клетках. Количество митохондрий внутри клетки изменяется в зависимости от типа и функции клетки. Некоторые клетки, такие как зрелые эритроциты, вообще не содержат митохондрий. Отсутствие митохондрий и других органелл оставляет место для миллионов молекул гемоглобина, необходимых для транспортировки кислорода по всему телу. С другой стороны, клетки мышц могут содержать тысячи митохондрий, генерирующих энергию, необходимую для мышечной активности. Митохондрии также обильны в жировых клетках и клетках печени.

Митохондриальная ДНК

Митохондрии имеют собственную ДНК (мтДНК), рибосомы и могут синтезировать свои собственные белки. мтДНК кодирует белки, участвующие в переносе электронов и окислительном фосфорилировании, которые происходят при клеточном дыхании. При окислительном фосфорилировании в матрице митохондрий генерируется энергия в виде АТФ. Протеины, синтезированные из мтДНК, также кодируются для продуцирования молекул РНК, передающих РНК и рибосомную РНК.

Митохондриальная ДНК отличается от ДНК, обнаруженной в ядре клетки, тем, что она не обладает механизмами восстановления ДНК, которые помогают предотвратить мутации в ядерной ДНК. В результате мтДНК имеет гораздо более высокую скорость мутаций, чем ядерная ДНК. Воздействие реактивного кислорода, образующегося при окислительном фосфорилировании, также повреждает мтДНК.

Строение митохондрий

Митохондрии окружены двойной мембраной. Каждая из этих мембран представляет собой фосфолипидный бислой со встроенными белками. Внешняя мембрана гладкая, а внутренняя мембрана имеет много складок. Эти складки называются кристами. Они повышают «производительность» клеточного дыхания за счет увеличения доступной площади поверхности.

Двойные мембраны делят митохондрию на две различные части: межмембранное пространство и матрицу митохондрий. Межмембранное пространство представляет собой узкую часть между двумя мембранами, в то время как митохондриальная матрица является частью, заключенной внутри мембран.

Митохондриальная матрица содержит мтДНК, рибосомы и ферменты. Некоторые из этапов клеточного дыхания, включая цикл лимонной кислоты и окислительное фосфорилирование, происходят в матрице из-за высокой концентрации ферментов.

Митохондрии полуавтономны, так как лишь частично зависят от клетки, чтобы реплицировать и расти. У них есть свои ДНК, рибосомы, белки и контроль над их синтезированием. Подобно бактериям, митохондрии имеют циркулярную ДНК и реплицируются репродуктивным процессом, называемым бинарным делением. До репликации митохондрии сливаются вместе в процессе, называемом слияние. Это необходимо для поддержания стабильности, так как без него митохондрии будут уменьшаться по мере их деления. Уменьшенные митохондрии не способны продуцировать достаточное количество энергии, необходимой для нормального функционирования клетки.

Источник: natworld.info