Клетка – генетическая единица живого. Хромосомы.
Жизненный цикл клетки. Митоз. Мейоз.

При мейозе дочерние клетки имеют набор хромосомХромосомы – структуры клетки, хранящие и передающие наследственную информацию — ДНК(8) и белок (7). Строение хромосомы лучше всего видно в метафазе митоза. Она представляет собой палочковидную структуру и состоит из двух сестринских хроматид (1), удерживаемых центромерой (кинетохором) в области первичной перетяжки (2), которая делит хромосому на 2 плеча (3,4). Иногда бывает вторичная перетяжка (5), в результате которой образуется спутник хромосомы (6).

Отдельные участки молекулы ДНК — гены — ответственны за каждый конкретный признак или свойство организма. Наследственная информация из клетки в клетку передается путем удвоения молекулы ДНК (репликации), транскрипции и трансляции. Главная функция хромосом — хранение и передача наследственной информации, носителем которой является молекула ДНК.


При мейозе дочерние клетки имеют набор хромосомПод микроскопом видно, что хромосомы имеют поперечные полосы, которые чередуются в различных хромосомах по-разному. Распознают пары хромосом, учитывая распределение, светлых и темных полос (чередование АТ и ГЦ – пар). Поперечной исчерченностью обладают хромосомы представителей разных видов. У родственных видов, например у человека и шимпанзе, сходный характер чередования полос в хромосомах.

Во всех соматических клетках любого растительного или животного организма число хромосом одинаково. Половые клетки (гаметы) всегда содержат вдвое меньше хромосом, чем соматические клетки данного вида организмов.
В кариотипе человека 46 хромосом – 44 аутосомы и 2 половые хромосомы. Муж-чины гетерогаметны (половые хромосомы ХУ), а женщины гомогаметны (половые хромосомы XX). У-хромосома отличается от Х-хромосомы отсутствием некоторых аллелей. Хромосомы одной пары называются гомологичными, если они в одинаковых локусах (местах расположения) несут аллельные гены.


При мейозе дочерние клетки имеют набор хромосомУ всех организмов, относящихся к одному виду, число хромосом в клетках одинаково. Число хромосом не является видоспецифическим признаком. Однако хромосомный набор в целом видоспецифичен, т. е. свойствен только одному какому-то виду организмов растений или животных.

Кариотип — совокупность внешних количественных и качественных признаков хромосомного набора (число, форма, размер хромосом) соматической клетки, характерных для данного вида.

Деление клеток — биологический процесс, лежащий в основе раз-множения и индивидуального развития всех живых организмов, а также процесс увеличения числа клеток путем деления исходной клетки.

Способы деления клеток:

При мейозе дочерние клетки имеют набор хромосом1. Амитоз — прямое (простое) деление интерфазного ядра путем перетяжки, которое происходит вне митотического цикла, т.


не сопровождается сложной перестройкой всей клетки, а также спирализацией хромосом. Амитоз может сопровождаться делением клетки, а может ограничиваться лишь делением ядра без разделения цитоплазмы, что приводит к образованию дву- и многоядерных клеток. Клетка, претерпевшая амитоз, в дальнейшем не способна вступить в нормальный митотический цикл. По сравнению с митозом амитоз встречается довольно редко. В норме он наблюдается в высокоспециализированных тканях, клетках, которым предстоит делиться: в эпителии и печени позвоночных, зародышевых оболочках млекопитающих, клетках эндосперма семян растений. Амитоз наблюдается также при необходимости быстрого восстановления тканей (после операций и травм). Амитозом также часто делятся клетки злокачественных опухолей.
2. Митоз — непрямое деление, при котором исходно диплоидная клетка дает две дочерние, также диплоидные клетки; характерен для соматических клеток (клеток тела) всех эукариот (растений и животных); это универсальный тип деления.
3. Мейоз — осуществляется при образовании половых клеток у животных и спор у растений.

Жизненный цикл клетки (клеточный цикл) – время существования клетки от деления до следующего деления, или от деления до смерти. Для разных типов клеток клеточный цикл различен.

В организме млекопитающих и человека различают следующие три группы клеток, локализующиеся в разных тканях и органах:
— часто делящиеся клетки — малодифференцированные клетки эпителия кишечника, базальные клетки эпидермиса и другие;
— редко делящиеся клетки — клетки печени (гепатоциты), почек (клетки нефронов);
— не делящиеся клетки (нервные клетки центральной нервной системы, меланоциты и другие).

iv>

Это деление в значительной степени условно, так как запуск процессов деления осуществляется организмом применительно к конкретным обстоятельствам. К примеру, недавними исследованиями доказано, что нервные клетки на самом деле обновляются, то есть делятся.

Жизненный цикл у часто делящихся клеток – это время их существования от начала деления до следующего деления. Жизненный цикл таких клеток нередко называют митотическим циклом. Такой клеточный цикл подразделяется на два основных периода:
митоз или период деления;
интерфаза – промежуток жизни клетки между двумя делениями.

Интерфаза

Интерфаза – период между двумя делениями, когда клетка готовится к делению: удваивается количество ДНК в хромосомах, увеличивается количество других органоидов, синтезируются белки, происходит рост клетки.


К концу интерфазы каждая хромосома состоит из двух хроматид, которые в процессе митоза станут самостоятельными хромосомами.

Периоды интерфазы:

1. Пресинтетический период (G1) — период подготовки к синтезу ДНК после завершения митоза. Происходит образование РНК, белков, ферментов син-теза ДНК, увеличивается количество органоидов. Содержание хромосом (п) и ДНК (с) равно 2п2с.

2. Синтетический период (S-фаза). Происходит репликация (удвоение, синтез ДНК). В результате работы ДНК-полимераз для каждой из хромосом хромо-сомный набор становится 2п4с. Так образуются двух хроматидные хромосомы.

3. Постсинтетический период (G2) — время от окончания синтеза ДНК до начала митоза. Завершается подготовка клетки к митозу, удваиваются центриоли, синтезируются белки, завершается рост клетки.

Митоз – это форма деления клеточного ядра, происходит он только в эукариотических клетках. В результате митоза каждое из образующихся дочерних ядер получает тот же набор генов, который имела родительская клетка. В митоз могут вступать как диплоидные, так и гаплоидные ядра. При митозе получаются ядра той же плоидности, что и исходное.

>

Открыт с помощью светового микроскопа в 1874 г. русским ученым И. Д. Чистяковым в растительных клетках.

В 1878 г. В. Флеммингом и русским ученым П. П. Перемежко этот процесс обнаружен в животных клетках. У животных клеток митоз длится 30-60 мин, у растительных — 2-3 ч.

При мейозе дочерние клетки имеют набор хромосомМитоз состоит из четырех фаз:

1. профаза — двухроматидные хромосомы спирализуются и становятся заметными, ядрышко и ядерная оболочка распадаются, образуются нити веретена деления. Клеточный центр делится на две центриоли, расходящиеся к полюсам.
2. метафаза — фаза скопления хромосом на экваторе клетки: нити веретена деления идут от полюсов и присоединяются к центромерам хромосом: к каждой хро-мосоме подходят две нити, идущие от двух полюсов.
3. анафаза — фаза расхождения хромосом, в которой центромеры делятся, а однохроматидные хромосомы растягиваются нитями веретена деления к полюсам клетки; самая короткая фаза митоза.
4. телофаза — окончание деления, движение хромосом заканчивается, и происходит их деспирализация (раскручивание в тонкие нити), формируется ядрышко, восстанавливается ядерная оболочка, на экваторе закладывается перегородка (у растительных клеток) или перетяжка (у животных клеток), нити веретена деления растворяются.


Цитокинез – процесс разделения цитоплазмы. Клеточная мембрана в центральной части клетки втягивается внутрь. Образуется борозда деления, по мере углубления которой клетка раздваивается.
В результате митоза образуются два новых ядра с идентичными наборами хромосом, точно копирующими генетическую информацию материнского ядра.
В опухолевых клетках ход митоза нарушается.

В результате митоза из одной диплоидной клетки, имеющей двухроматидные хромосомы и удвоенное количество ДНК (2n4с), образуются две дочерние диплоидные клетки с однохроматидными хромосомами и одинарным количеством ДНК (2n2с), которые затем вступают интерфазу. Так образуются соматические клетки (клетки тела) организма растения, животного или человека.

Таблица фаз митоза

Таблица фаз миоза

Мейоз

При мейозе дочерние клетки имеют набор хромосом


меоза, идущего по типу митоза, и которое называется эквационное деление. Интерфазы в данном случае нет, так как хромосомы двухроматидные, молекулы ДНК удвоены.
д) профаза II – завершение г)
е) в метафазе II двухроматидные хромосомы располагаются по экватору, при этом деление происходит сразу в двух дочерних клетках
ж) в анафазе II к полюсам отходят уже однохроматидные хромосомы
з) в телофазе II в четырех дочерних клетках формируются ядра и перегородки между клетками.

Таким образом, в результате мейоза из исходной клетки (2n2c→2n4c) получаются четыре гаплоидные клетки с однохроматидными хромосомами (nc): это либо половые клетки (гаметы) животных, либо споры растений.

Таблица фаз мейоза

При мейозе дочерние клетки имеют набор хромосом

Биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гаметы сливаются. Если бы редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Одна-ко это противоречит правилу постоянства числа хромосом.


Развитие половых клеток.

Процесс формирования половых клеток называется гаметогенезом. У многоклеточных организмов различают сперматогенез – формирование мужских половых клеток и овогенез – формирование женских половых клеток. Рассмотрим гаметогенез, происходящий в половых железах животных – семенниках и яичниках.

При мейозе дочерние клетки имеют набор хромосом

развития зародыша. У мхов и папоротников яйцеклетки развиваются в архегониях, у цветковых растений – в семяпочках, локализованных в завязи цветка.

При мейозе дочерние клетки имеют набор хромосом
При мейозе дочерние клетки имеют набор хромосом

 

Опыление — перенос пыльцы с пыльников на рыльце пестика (это не оплодотворе-ние!!!!).

Оплодотворение — это процесс слияния яйцеклетки и сперматозоида, в результате чего образуется зигота – зародышевая клетка или первая клетка нового организма.


При мейозе дочерние клетки имеют набор хромосом
При мейозе дочерние клетки имеют набор хромосом

 

 

При мейозе дочерние клетки имеют набор хромосом

 

 

 

 

 

 

 

 

Источник: in-natura.ru

При половом размножении дочерний организм возникает в результате слияния двух половых клеток (гамет) и последующего развития из оплодотворенной яйцеклетки — зиготы.

Половые клетки родителей обладают гаплоидным набором (n) хромосом, а в зиготе при объединении двух таких наборов число хромосом становится диплоидным (2n): каждая пара гомологичных хромосом содержит одну отцовскую и одну материнскую хромосому.

Гаплоидные клетки образуются из диплоидных в результате особого клеточного деления — мейоза.

Мейоз — разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых желез образуются гаплоидные гаметы (1n). При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК.

Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу. В результате мейоза I число хромосом уменьшается вдвое (редукционное деление): при мейозе II гаплоидность клеток сохраняется (эквационное деление). Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр (рис. 1).

В профазе мейоза I происходит постепенная спирализация хроматина с образованием хромосом. Гомологичные хромосомы сближаются, образуя общую структуру, состоящую из двух хромосом (бивалент) и четырех хроматид (тетрада). Соприкосновение двух гомологичных хромосом по всей длине называется конъюгацией. Затем между гомологичными хромосомами появляются силы отталкивания, и хромосомы сначала разделяются в области центромер, оставаясь соединенными в области плеч, и образуют перекресты (хиазмы). Расхождение хроматид постепенно увеличивается, и перекресты смещаются к их концам. В процессе конъюгации между некоторыми хроматидами гомологичных хромосом может происходить обмен участками — кроссинговер, приводящий к перекомбинации генетического материала. К концу профазы растворяются ядерная оболочка и ядрышки, формируется ахроматиновое веретено деления. Содержание генетического материала остается прежним (2n2хр).

В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр).

В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна — число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса.

В телофазе происходит формирование ядер и разделение цитоплазмы — образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома — две хроматиды (1n2хр).

Интеркинез — короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.

meyo3

Рис. 1. Схема мейоза (показана одна пара гомологичных хромосом). Мейоз I: 1, 2, 3. 4. 5 — профаза; 6 —метафаза; 7 — анафаза; 8 — телофаза; 9 — интеркинез. Мейоз II; 10 —метафаза; II —анафаза; 12 — дочерние клетки.

В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости. Изменений содержания генетического материала не происходит (1n2хр). В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp. В телофазе образуются 4 гаплоидные клетки (lnlxp).

Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II — случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.

Биологическое значение мейоза:

1)  является основным этапом гаметогенеза;

2)  обеспечивает передачу генетической информации от организма к организму при половом размножении;

3)  дочерние клетки генетически не идентичны материнской и между собой.

Атак же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются. Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом. Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом (рис. 2 и 3).

shema_ovo_i_spermatogeneza

Рис. 2. Схема гаметогенеза: ? — сперматогенез; ? — овогенез

cxema_mexanizma_coxraneniya_diploidnogo

Рис. 3. Схема, иллюстрирующая механизм сохранения диплоидного набора хромосом при половом размножении

Р.Г. Заяц «Биология для абитуриентов. Вопросы, ответы, тесты, задачи»

 

Источник: xn--90aeobapscbe.xn--p1ai

§23. Мейоз и его биологическое значение
Решебник "Биология 10"

 


 


 

1. Сколько дочерних клеток и с каким набором хромосом образуется из одной диплоидной клетки в результате: а) митоза; б) мейоза?

Две гаплоидные, две диплоидные, четыре гаплоидные, четыре диплоидные.

а) В результате митоза – две диплоидные клетки.

б) В результате мейоза – четыре гаплоидные клетки.

 

2. Что представляет собой конъюгация хромосом? В какую фазу мейоза происходит кроссинговер? Какое значение имеет этот процесс?

Конъюгация хромосом наблюдается в профазе мейоза I. Это – процесс сближения гомологичных хромосом. При конъюгации хроматиды гомологичных хромосом в некоторых местах перекрещиваются. Кроссинговер также происходит в профазе мейоза I и представляет собой обмен участками между гомологичными хромосомами. Кроссинговер ведёт к перекомбинации наследственного материала и является одним из источников комбинативной изменчивости, благодаря которой потомки не являются точными копиями своих родителей и отличаются друг от друга.

 

3. Какие события, протекающие в мейозе, обеспечивают уменьшение вдвое набора хромосом в дочерних клетках?

Уменьшение хромосомного набора происходит в анафазе I мейоза вследствие того, что к разным полюсам делящейся клетки расходятся не сестринские хроматиды (как в анафазе митоза и анафазе II мейоза), а двухроматидные гомологичные хромосомы. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадёт только одна. В конце анафазы I набор хромосом у каждого полюса клетки уже является гаплоидным (1n2c).

 

4. Каково биологическое значение мейоза?

У животных и человека мейоз приводит к образованию гаплоидных половых клеток – гамет. В ходе последующего процесса оплодотворения (слияния гамет) организм нового поколения получает диплоидный набор хромосом, а значит, сохраняет присущий данному виду организмов кариотип. Следовательно, мейоз препятствует увеличению числа хромосом при половом размножении. Без такого механизма деления хромосомные наборы удваивались бы с каждым следующим поколением.

У растений, грибов и некоторых протистов путём мейоза образуются споры.

Процессы, протекающие в мейозе (кроссинговер, независимое расхождение хромосом и хроматид), служат основой комбинативной изменчивости организмов.

 

5. Сравните митоз и мейоз, выявите черты сходства и различия. В чём заключается главное отличие мейоза от митоза?

Главным отличием является то, что в результате мейоза происходит уменьшение в 2 раза набора хромосом дочерних клеток по сравнению с материнской.

Сходство:

● Представляют собой способы деления эукариотических клеток, требуют затрат энергии.

● Сопровождаются точным и равномерным распределением наследственного материала между дочерними клетками.

● Сходные процессы подготовки клетки к делению (репликация, удвоение центриолей и т.п.).

● Сходные процессы, протекающие в соответствующих фазах деления (спирализация хромосом, распад ядерной оболочки, формирование веретена деления и т. д.) и, как следствие, одинаковые названия фаз (профаза, метафаза, анафаза, телофаза). Второе деление мейоза протекает по тому же механизму, что и митоз гаплоидной клетки.

Различия:

● В результате митоза дочерние клетки сохраняют набор хромосом, присущий материнской клетке. В результате мейоза набор хромосом дочерних клеток уменьшается в 2 раза.

● Митоз представляет собой одно деление клетки, а мейоз – два последовательных деления (мейоз I и мейоз II). Поэтому в результате митоза из одной материнской клетки образуются две дочерние, а в результате мейоза – четыре.

● В отличие от митоза, в мейозе происходит конъюгация гомологичных хромосом и кроссинговер. Примечание: на самом деле существует и митотический кроссинговер (открыт К. Штерном в 1936 г), но его изучение не предусмотрено школьной программой.

● В анафазе митоза к разным полюсам клетки расходятся сестринские хроматиды, а в анафазе I мейоза – гомологичные хромосомы.

…и (или) другие существенные признаки.

 

6. Клетка корня берёзы содержит 18 хромосом.

1) Диплоидная клетка пыльника берёзы претерпела мейоз. Образовавшиеся при этом микроспоры поделились митозом. Сколько клеток образовалось? Сколько хромосом содержится в каждой из них?

2) Определите число хромосом и общее количество хроматид в клетках берёзы во время мейотического деления:

а) в экваториальной плоскости клетки в метафазе I;

б) в метафазе II;

в) у каждого полюса клетки в конце анафазы I;

г) у каждого полюса клетки в конце анафазы II.

1) Клетка корня берёзы – соматическая, значит у берёзы 2n = 18. В результате мейоза из одной материнской клетки образуется 4 клетки с уменьшенным в два раза набором хромосом. Следовательно, из диплоидной клетки пыльника образовались 4 гаплоидных микроспоры (n = 9).

Затем каждая микроспора поделилась митозом. В результате митоза из каждой микроспоры образовались по две дочерние клетки с таким же набором хромосом. Таким образом, всего образовалось 8 гаплоидных клеток.

Ответ: Образовалось 8 клеток, в каждой содержится по 9 хромосом.

2) Формула наследственного материала, находящегося в экваториальной плоскости клетки в метафазе I – 2n4c, что для берёзы составляет 18 хромосом, 36 хроматид. Клетка, находящаяся в метафазе II, имеет набор 1n2c – 9 хромосом, 18 хроматид. В конце анафазы I у каждого полюса клетки находится набор 1n2c – 9 хромосом, 18 хроматид, а в конце анафазы II – 1n1c – 9 хромосом, 9 хроматид.

Ответ: а) 18 хромосом, 36 хроматид; б) 9 хромосом, 18 хроматид; в) 9 хромосом, 18 хроматид; г) 9 хромосом, 9 хроматид.

 

7. Почему мейоз не наблюдается у организмов, которым не свойственно половое размножение?

В цикле развития всех организмов, которым свойственно половое размножение, имеет место процесс оплодотворения – слияния двух клеток (гамет) в одну (зиготу). Фактически, оплодотворение увеличивает хромосомный набор в 2 раза. Поэтому должен также существовать механизм, уменьшающий набор хромосом в 2 раза, и этим механизмом является мейоз. Без мейоза хромосомные наборы удваивались бы с каждым следующим поколением.

У организмов, которым не свойственно половое размножение, нет и процесса оплодотворения. Поэтому у них не наблюдается мейоз, в нём нет необходимости.

 

8. Для чего нужно второе деление мейоза, ведь уменьшение числа хромосом в 2 раза уже произошло в результате первого деления?

Дочерние клетки, образовавшиеся в результате первого деления мейоза, имеют набор 1n2c, т.е. уже являются гаплоидными. Однако каждая хромосома такой клетки состоит не из одной хроматиды, как должно быть у молодой клетки, вступающей в новый клеточный цикл, а из двух – как в зрелой клетке, готовой к делению. Следовательно, клетки с набором 1n2c не смогут нормально пройти клеточный цикл (и, прежде всего, репликацию в S-периоде). Поэтому практически сразу после первого деления мейоза начинается второе, в ходе которого происходит расхождение сестринских хроматид с образованием «нормальных» однохроматидных хромосом, характерных для молодых дочерних клеток.

Кроме того, в результате мейоза у животных и человека образуются гаметы, а у растений – споры. Вследствие того, что мейоз представляет собой не одно, а два последовательных деления, количество образующихся гамет (или спор) возрастает в 2 раза.

Дашков М.Л.

Сайт: dashkov.by

Вернуться к оглавлению

 


Источник: dashkov.by

Мейоз I

Стадии мейоза I: профаза, метафаза, анафаза, телофаза

Профаза I

Обычно это самая длинная и сложная фаза мейоза. Протекает намного дольше, чем при митозе. Связано это с тем, что в это время гомологичные хромосомы сближаются и обмениваются участками ДНК (происходят конъюгация и кроссинговер).

Схема кроссинговера

Конъюгация — процесс сцепления гомологичных хромосом. Кроссинговер — обмен идентичными участками между гомологичными хромосомами. Несестринские хроматиды гомологичных хромосом могут обменяться равнозначными участками. В местах, где происходит такой обмен формируется так называемая хиазма.

Спаренные гомологичные хромосомы называются бивалентами, или тетрадами. Связь сохраняется до анафазы I и обеспечивается центромерами между сестринскими хроматидами и хиазмами между несестринскими.

В профазе происходит спирализация хромосом, так что к концу фазы хромосомы приобретают характерную для них форму и размеры.

На более поздних этапах профазы I ядерная оболочка распадается на везикулы, ядрышки исчезают. Начинает формироваться мейотическое веретено деления. Образуются три вида микротрубочек веретена. Одни прикрепляются к кинетохорам, другие — к трубочкам, нарастающим с противоположного полюса (конструкция выполняет функцию распорок). Третьи формируют звезчатую структуру и прикрепляются к мембранному скелету, выполняя функцию опоры.

Центросомы с центриолями расходятся к полюсам. Микротрубочки внедряются в область бывшего ядра, прикрепляются к кинетохорам, находящимся в области центромер хромосом. При этом кинетохоры сестринских хроматид сливаются и действуют единым целым, что позволяет хроматидам одной хромосомы не разъединяться и в дальнейшем вместе отойти к одному из полюсов клетки.

Метафаза I

Окончательно формируется веретено деления. Пары гомологичных хромосом располагаются в плоскости экватора. Они выстраиваются друг против друга по экватору клетки так, что экваториальная плоскость оказывается между парами гомологичных хромосом.

Анафаза I

Гомологичные хромосомы разъединяются и расходятся к разным полюсам клетки. Из-за произошедшего в профазу кроссинговера их хроматиды уже не идентичны друг другу.

Телофаза I

Восстанавливаются ядра. Хромосомы деспирализуются в тонкий хроматин. Клетка делится надвое. У животных впячиванием мембраны. У растений образуется клеточная стенка.

Мейоз II

Интерфаза между двумя мейотическими делениями называется интеркинезом, он очень короткий. В отличие от интерфазы удвоения ДНК не происходит. По-сути она и так удвоена, просто в каждой из двух клеток содержится по одной из гомологичных хромосом. Мейоз II протекает одновременно в двух клетках, образовавшихся после мейоза I. На схеме ниже изображено деление только одной клетки из двух.

Последовательность этапов второго мейотического деления

Профаза II

Короткая. Снова исчезают ядра и ядрышки, а хроматиды спирализуются. Начинает формироваться веретено деления.

Метафаза II

К каждой хромосоме, состоящей из двух хроматид, прикрепляется по две нити веретена деления. Одна нить с одного полюса, другая – с другого. Центромеры состоят из двух отдельных кинетохор. Метафазная пластинка образуется в плоскости перпендикулярной экватору метафазы I. То есть если родительская клетка в мейозе I делилась вдоль, то теперь две клетки будут делиться поперек.

Анафаза II

Белок, связывающий сестринские хроматиды, разделяется, и они расходятся к разным полюсам. Теперь сестринские хроматиды называются сестринскими хромосомами.

Телофаза II

Подобна телофазе I. Происходит деспирализация хромосом, исчезновение веретена деления, образование ядер и ядрышек, цитокинез.

Значение мейоза

В многоклеточном организме мейозом делятся только половые клетки. Поэтому главное значение мейоза – это обеспечение механизма полового размножения, при котором сохраняется постоянство числа хромосом у вида.

Другое значение мейоза – это протекающая в профазе I перекомбинация генетической информации, т. е. комбинативная изменчивость. Новые комбинации аллелей создаются в двух случаях. 1. Когда происходит кроссинговер, т. е. несестринские хроматиды гомологичных хромосом обмениваются участками. 2. При независимом расхождении хромосом к полюсам в обоих мейотических делениях. Другими словами, каждая хромосома может оказаться в одной клетке в любой комбинации с другими негомологичными ей хромосомами.

Уже после мейоза I клетки содержат разную генетическую информацию. После второго деления все четыре клетки отличаются между собой. Это важное отличие мейоза от митоза, при котором образуются генетически идентичные клетки.

Кроссинговер и случайное расхождение хромосом и хроматид в анафазах I и II создают новые комбинации генов и являются одной из причин наследственной изменчивости организмов, благодаря которой возможна эволюция живых организмов.

Источник: biology.su


Adblock
detector