Мейоз – это деление, при котором получаются половые клетки (у растений – споры). Биологическое значение мейоза:

  • рекомбинация (перемешивание наследственной информации)
  • редукция (уменьшение количества хромосом в 2 раза).

Отличия мейоза от митоза по итогам

1. После митоза получается две клетки, а после мейоза – четыре.

2. После митоза получаются соматические клетки (клетки тела), а после мейоза – половые клетки (гаметы – сперматозоиды и яйцеклетки; у растений после мейоза получаются споры).

3. После митоза получаются одинаковые клетки (копии), а после мейоза – разные (происходит рекомбинация наследственной информации).

4. После митоза количество хромосом в дочерних клетках остается таким же, как было в материнской, а после мейоза уменьшается в 2 раза (происходит редукция числа хромосом; если бы её не было, то после каждого оплодотворения число хромосом возрастало бы в два раза; чередование редукции и оплодотворения  обеспечивает постоянство числа хромосом).


Отличия мейоза от митоза по ходу

1. В митозе одно деление, а в мейозе – два (из-за этого получается 4 клетки).

2. В профазе первого деления мейоза происходит конъюгация (тесное сближение гомологичных хромосом) и кроссинговер (обмен участками гомологичных хромосом), это приводит к перекомбинации (рекомбинации) наследственной информации.

3. В анафазе первого деления мейоза происходит независимое расхождение гомологичных хромосом (к полюсам клетки расходятся двуххроматидные хромосомы). Это приводит к рекомбинации и редукции.

4. В интерфазе между двумя делениями мейоза удвоения хромосом не происходит, поскольку они и так двойные.

Второе деление мейоза ничем не отличается от митоза. Как и в митозе, в анафазе II мейоза к полюсам клетки расходятся одинарные сестринские хромосомы (бывшие хроматиды).

Еще можно почитать

БОЛЬШЕ ИНФОРМАЦИИ: Митоз, Мейоз, Отличия митоза от мейоза, Одинарные и двойные наборы и хромосомы
ЗАДАНИЯ С ПО ЭТОЙ ТЕМЕ: Мейоз, Постоянство ЧВР хромосом, Изменение количества хромосом в ходе мейоза

Тесты и задания

Все приведённые ниже термины используются для описания мейоза. Определите два термина, «выпадающих» из общего списка, и запишите в цифры, под которыми они указаны.
1) биваленты
2) редукционное деление
3) клонирование
4) оплодотворение
5) кроссинговер


1. Установите соответствие между способами деления клеток и их особенностями: 1) митоз, 2) мейоз. Запишите цифры 1 и 2 в правильном порядке.
А) редукционное деление
Б) обеспечивает рост, регенерацию
В) дочерние клетки идентичны родительской
Г) образуются четыре гаплоидные клетки
Д) увеличивает генетическое разнообразие
Е) непрямое деление

2. Установите соответствие между процессами, происходящими во время деления клетки, и способами деления: 1) митоз, 2) мейоз. Запишите цифры 1 и 2 в правильном порядке.
А) обеспечивает рост и развитие организма
Б) в результате деления образуются соматические клетки
В) поддерживает постоянство числа хромосом в клетках особей одного вида при половом размножении
Г) лежит в основе комбинативной изменчивости
Д) лежит в основе вегетативного размножения
Е) в процессе деления образуются биваленты

3. Установите соответствие между характеристикой процессов и способом деления клетки: 1) митоз, 2) мейоз. Запишите цифры 1 и 2 в правильном порядке.
А) образование половых клеток у млекопитающих
Б) рост организма
В) деление зиготы
Г) конъюгация и кроссинговер
Д) уменьшение числа хромосом вдвое

4. Установите соответствие между процессами и способом деления клетки: 1) митоз, 2) мейоз. Запишите цифры 1 и 2 в правильном порядке.
А) происходит деление соматических клеток
Б) хромосомный набор уменьшается вдвое
В) образуется новое сочетание генов
Г) происходят конъюгация и кроссинговер
Д) по экватору клетки располагаются биваленты


5. Установите соответствие между процессами и способами деления: 1) мейоз, 2) митоз. Запишите цифры 1 и 2 в правильном порядке.
А) происходит образование бивалентов
Б) происходит образование диплоидных клеток
В) количество хромосом изменяется
Г) происходит кроссинговер
Д) содержание генетического материала не изменяется
Е) происходит расхождение двухроматидных хромосом к полюсам клетки

6. Установите соответствие между особенностями клеточного деления и его видом: 1) Митоз, 2) Мейоз. Запишите цифры 1 и 2 в правильном порядке.
А) происходит в два этапа
Б) после деления образуются диплоидные клетки
В) образовавшиеся клетки имеют набор хромосом и ДНК 2n2с
Г) сопровождается конъюгацией хромосом
Д) образовавшиеся клетки имеют набор хромосом и ДНК nс
Е) происходит кроссинговер

7. Установите соответствие между типом деления клеток и биологическим значением: 1) митоз, 2) мейоз. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) генетическая стабильность
Б) комбинативная изменчивость
В) регенерация
Г) рост организма
Д) бесполое размножение
Е) половое размножение

iv>

8. Установите соответствие между характеристиками процесса и способами деления клетки: 1) митоз, 2) мейоз. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
1) образуются пары гомологичных хромосом
2) к полюсам расходятся гомологичные хромосомы
3) происходят конъюгация и кроссинговер
4) происходит редукция числа хромосом
5) по окончании процесса образуются две дочерние клетки
6) соблюдается идентичность наследственной информации новых клеток материнской клетке

9. Установите соответствие между характеристиками процесса и способами деления клетки: 1) митоз, 2) мейоз. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) образуются клетки с хромосомным набором nc
Б) к полюсам расходятся двухроматидные хромосомы
В) происходит конъюгация и кроссинговер
Г) число хромосом остается неизменным
Д) по окончании процесса образуются четыре дочерние клетки
Е) редукция числа хромосом

10. Установите соответствие между характеристиками и способами деления клетки: 1) митоз, 2) мейоз. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) уменьшение числа хромосом в клетке
Б) образование клеток, идентичных материнской
В) образование соматических клеток
Г) образование гамет у животных
Д) обеспечение роста организмов
Е) формирование спор у растений


СОБИРАЕМ 11:
А) сохраняет кариотип исходной клетки

Выберите один, наиболее правильный вариант. Двухроматидные хромосомы во время мейоза отходят к полюсам клетки в
1) анафазе I деления
2) анафазе II деления
3) профазе I деления
4) профазе II деления

Выберите один, наиболее правильный вариант. Первое деление мейоза отличается от второго деления мейоза
1) расхождением дочерних хроматид в образующиеся клетки
2) расхождением гомологичных хромосом и образованием двух гаплоидных клеток
3) делением на две части первичной перетяжки хромосом
4) образованием двух диплоидных клеток

Все приведенные ниже признаки, кроме двух, можно использовать для характеристики процессов и биологического значения мейоза. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) образование клеток с удвоенным числом хромосом
2) образование гаплоидных клеток
3) образование бивалентов
4) появление новых комбинаций генов
5) появление большего числа соматических клеток

Мейоз II
Рассмотрите рисунок с изображением клеточного деления и определите (А) его вид, (Б) набор хромосом в клетке, изображенной слева, и (В) какие специфические клетки образуются у животных в результате такого деления. Для каждой буквы выберите соответствующий термин из предложенного списка.
1) митоз
2) транскрипция
3) диплоидный
4) мейоз
5) прямое
6) гаплоидный
7) гамета
8) соматическая

>

Выберите три варианта. Какие признаки характеризуют мейоз?
1) наличие двух следующих одно за другим делений
2) образование двух клеток с одинаковой наследственной информацией
3) расхождение гомологичных хромосом в разные клетки
4) образование диплоидных дочерних клеток
5) отсутствие интерфазы перед первым делением
6) конъюгация и кроссинговер хромосом

1. Установите последовательность процессов, происходящих в ходе мейоза
1) расположение пар гомологичных хромосом в экваториальной плоскости
2) конъюгация, кроссинговер гомологичных хромосом
3) расположение в плоскости экватора и расхождение сестринских хромосом
4) образование четырёх гаплоидных ядер
5) расхождение гомологичных хромосом

2. Установите последовательность процессов первого деления мейоза. Запишите соответствующую последовательность цифр.
1) конъюгация хромосом
2) кроссинговер
3) расположение пар (бивалентов) гомологичных хромосом на экваторе клетки
4) расхождение гомологичных хромосом, состоящих из двух хроматид, к противоположным полюсам клетки
5) спирализация хромосом с образованием бивалентов
6) формирование ядер, деление цитоплазмы – образование двух дочерних клеток


3. Установите последовательность процессов, происходящих в мейозе.
1) расхождение гомологичных хромосом к полюсам клетки
2) расхождение сестринских хромосом (хроматид) к полюсам клетки
3) обмен генами между гомологичными хромосомами
4) образование четырёх клеток с гаплоидным набором хромосом
5) конъюгация гомологичных хромосом

4. Установите последовательность процессов мейоза. Запишите соответствующую последовательность цифр.
1) расположение пар хромосом по экватору клетки
2) расхождение сестринских хроматид к противоположным полюсам клетки
3) конъюгация и кроссинговер
4) образование ядер с набором хромосом и ДНК nc
5) расхождение двухроматидных хромосом к противоположным полюсам клетки

5. Установите последовательность процессов, происходящих при мейотическом делении клетки животного. Запишите соответствующую последовательность цифр.
1) образование двух клеток с гаплоидным набором хромосом
2) расхождение гомологичных хромосом
3) конъюгация с возможным кроссинговером гомологичных хромосом
4) расположение в плоскости экватора и расхождение сестринских хромосом
5) расположение пар гомологичных хромосом в плоскости экватора клетки
6) образование четырех гаплоидных ядер

Мейоз I
Рассмотрите рисунок с изображением клеточного деления и определите А) вид деления, Б) набор хромосом в исходной клетке, В) какие специфичные клетки образуются. Запишите три цифры (номера терминов из предложенного списка) в правильном порядке.
1) митоз
2) транскрипция
3) диплоидный
4) мейоз
5) прямое
6) гаплоидный
7) гамета
8) соматическая


Выберите один, наиболее правильный вариант. Споры у цветковых растений в отличие от спор бактерий образуются в процессе
1) адаптации к жизни в неблагоприятных условиях
2) митоза гаплоидных клеток
3) мейоза диплоидных клеток
4) полового размножения

Выберите один, наиболее правильный вариант. Удвоение ДНК и образование двух хроматид при мейозе происходит в
1) профазе первого деления мейоза
2) профазе второго деления мейоза
3) интерфазе перед первым делением
4) интерфазе перед вторым делением

Мейоз II
Рассмотрите рисунок с изображением клеточного деления и определите (А) его фазы, (Б) набор хромосом в дочерних клетках и (В) какие специфические клетки образуются в результате такого деления у растений.
1) профаза, метафаза, телофаза
2) соматическая
3) диплоидный
4) профаза 2, метафаза 2, анафаза 2, телофаза 2
5) профаза 1, метафаза 1 ,анафаза 1, телофаза 1
6) гаплоидный
7) спора
8) первое мейотическое деление


Мейоз I
Рассмотрите рисунок с изображением клеточного деления и определите: А) какие фазы деления изображены, Б) набор хромосом клеток в каждой фазе, В) какие специфические клетки образуются у растений в результате такого деления. Запишите три цифры (номера терминов из предложенного списка) в правильном порядке.
1) профаза, метафаза, телофаза
2) интерфаза
3) диплоидный
4) профаза 2, метафаза2, анафаза 2
5) профаза 1, метафаза 1,анафаза 1
6) гаплоидный
7) спора
8) соматическая

Метафаза митоза
Все перечисленные ниже признаки, кроме двух, используются для описания изображенной на рисунке клетки. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) присутствуют гомологичные хромосомы
2) каждая хромосома содержит одну молекулу ДНК
3) в клетке отсутствует клеточный центр
4) происходит образование митотического веретена деления
5) образовалась метафазная пластинка

Все приведенные ниже признаки, кроме двух, можно использовать для описания процессов первого деления мейоза. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) образование двух гаплоидных ядер
2) расхождение однохроматидных хромосом к противоположным полюсам клетки
3) образование четырех клеток с набором nc
4) обмен участками гомологичных хромосом
5) спирализация хромосом


Выберите один, наиболее правильный вариант. В первом делении мейоза образуются
1) полиплоидные клетки
2) диплоидные клетки
3) гаметы
4) гаплоидные клетки

Выберите один, наиболее правильный вариант. При половом размножении поддержание постоянства хромосомного набора в череде поколений вида обеспечивается
1) перекомбинацией генов в хромосомах
2) образованием идентичных дочерних клеток
3) расхождением сестринских хромосом
4) уменьшением числа хромосом в гаметах

Чем профаза первого деления мейоза отличается от профазы митоза? В ответ запишите цифры двух верных вариантов из пяти предложенных.
1) исчезает ядерная оболочка
2) происходит спирализация хромосом
3) происходит конъюгация хромосом
4) хромосомы располагаются беспорядочно
5) происходит кроссинговер

Анафаза I мейоза
Все перечисленные ниже признаки, кроме двух, используются для описания изображенной на рисунке фазы мейоза. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) биваленты хромосом располагаются на экваторе клетки
2) гомологичные хромосомы, состоящие из двух хроматид, расходятся к противоположным полюсам
3) дочерние хроматиды расходятся к противоположным полюсам клетки
4) происходит редукция числа хромосом
5) хромосомный набор в клетке n2с у каждого полюса клетки

Анафаза I мейоза
Рассмотрите рисунок и определите (А) тип деления, (Б) фазу деления, (В) количество генетического материала в клетке. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка. Запишите выбранные цифры, в порядке, соответствующем буквам.
1) анафаза II
2) n2c (у каждого полюса клетки)
3) метафаза
4) мейоз
5) 2n2c
6) митоз
7) анафаза I

Сколько сперматозоидов образуется в результате сперматогенеза из одной диплоидной первичной половой клетки? В ответе запишите только соответствующее число.

Все перечисленные ниже признаки, кроме двух, можно использовать для описания мейоза. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) образуются две диплоидные клетки
2) образуются четыре гаплоидные клетки
3) происходит одно деление, состоящее из четырех фаз
4) происходит два деления, каждое из которых состоит из четырех фаз
5) к полюсам клетки расходятся гомологичные хромосомы, содержащие по две хроматиды

Все приведённые ниже признаки, кроме двух, можно использовать для описания процессов, которые происходят в профазе первого деления мейоза. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.
1) образование двух ядер
2) расхождение гомологичных хромосом
3) сближение гомологичных хромосом
4) обмен участками гомологичных хромосом
5) спирализация хромосом

Выберите три особенности митотического деления клетки.
1) к полюсам расходятся двухроматидные хромосомы
2) к полюсам расходятся сестринские хроматиды
3) в дочерних клетках оказываются удвоенные хромосомы
4) в результате образуются две диплоидные клетки
5) процесс проходит в одно деление
6) в результате образуются гаплоидные клетки

Выберите три отличия первого деления мейоза от второго
1) на экваторе клетки располагаются пары гомологичных хромосом
2) отсутствует телофаза
3) происходит конъюгация и кроссинговер хромосом
4) отсутствует конъюгация и кроссинговер хромосом
5) к полюсам клетки расходятся сестринские хроматиды
6) к полюсам клетки расходятся гомологичные хромосомы

Какие процессы протекают во время мейоза?
1) транскрипция
2) редукция
3) денатурация
4) кроссинговер
5) конъюгация
6) трансляция

Биологическая сущность мейоза состоит в:
1) появлении новой последовательности нуклеотидов;
2) образовании клеток с удвоенным числом хромосом;
3) образовании гаплоидных клеток;
4) рекомбинации участков негомологичных хромосом;
5) новых комбинациях генов;
6) появлении большего числа соматических клеток.

Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. В процессе мейоза происходит
1) образование половых клеток
2) формирование прокариотических клеток
3) уменьшение числа хромосом вдвое
4) сохранение диплоидного набора хромосом
5) образование двух дочерних клеток
6) развитие четырёх гаплоидных клеток

Установите соответствие между характеристиками и фазами деления клетки: 1) метафаза митоза, 2) анафаза митоза, 3) профаза I мейоза. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) обмен участками хромосом
Б) выстраивание хромосом по экватору клетки
В) формирование веретена деления
Г) набор хромосом и число молекул ДНК в клетке – 4n4c
Д) деление центромер хромосом

Установите соответствие между особенностью процесса и фазой мейоза, для которой она характерна: 1) анафаза I, 2) анафаза II, 3) телофаза II. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) расхождение сестринских хромосом к разным полюсам клетки
Б) образование четырёх гаплоидных ядер
В) расхождение двухроматидных хромосом к противоположным полюсам
Г) увеличение вдвое числа хромосом в клетке при расхождении сестринских хроматид
Д) независимое расхождение хромосом из каждой гомологичной пары

Установите соответствие между характеристиками и фазами мейоза: 1) профаза первого деления, 2) анафаза второго деления. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) конъюгация гомологичных хромосом
Б) образование бивалентов
В) расхождение хроматид
Г) сокращение микротрубочек веретена деления
Д) растворение кариолеммы

Метафаза II мейоза
Определите фазу и тип деления, изображенного на рисунке. Запишите два числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).
1) анафаза
2) метафаза
3) профаза
4) телофаза
5) митоз
6) мейоз I
7) мейоз II

Профаза I мейоза
Определите фазу и тип деления, изображенного на рисунке. Запишите два числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).
1) анафаза
2) метафаза
3) профаза
4) телофаза
5) митоз
6) мейоз I
7) мейоз II

Анафаза I мейоза
Определите фазу и тип деления, изображенного на рисунке. Запишите два числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).
1) анафаза
2) метафаза
3) профаза
4) телофаза
5) митоз
6) мейоз I
7) мейоз II

Метафаза I мейоза
Определите фазу и тип деления, изображенного на рисунке. Запишите два числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).
1) анафаза
2) метафаза
3) профаза
4) телофаза
5) митоз
6) мейоз I
7) мейоз II

Источник: www.bio-faq.ru

Центральным событием гаметогенеза является особая форма клеточного

деления — мейоз. В отличие от широко распространенного митоза, сохраняющего в

клетках постоянное диплоидное число хромосом, мейоз приводит к образованию из

диплоидных клеток гаплоидных гамет. При последующем оплодотворении гаметы

формируют организм нового поколения с диплоидным кариотипом (пс + пс ==

2n2c). В этом заключается важнейшее биологическое значение мейоза, который

возник и закрепился в процессе эволюции у всех видов, размножающихся половьм

путем .

Мейоз состоит из двух быстро следующих одно за другим делений,

происходящих в периоде созревания. Удвоение ДНК для этих делений

осуществляется однократно в периоде роста. Второе деление мейоза следует за

первым практически сразу так, что наследственный материал не синтезируется в

промежутке между ними (рис. 5.5).

Первое мейотическое деление называют редукционным, так как оно приводит

к образованию из диплоидных клеток (2п2с) гаплоидных клеток п2с. Такой

результат обеспечивается благодаря особенностям профазы первого деления мейоза.

В профазе I мейоза, так же как в обычном митозе, наблюдается компактная упаковка

генетического материала (спирализация хромосом). Одновременно происходит

событие, отсутствующее в митозе: гомологичные хромосомы конъюгируют друг с

другом, т.е. тесно сближаются соответствующими участками.

В результате конъюгации образуются хромосомные пары, или биваленты,

числом п. Так как каждая хромосома, вступающая в мейоз, состоит из двух

хроматид, то бивалент содержит четыре хроматиды. Формула генетического

материала в профазе I остается 2n4c. К концу профазы хромосомы в бивалентах,

сильно спирализуясь, укорачиваются. Так же как в митозе, в профазе I мейоза

начинается формирование веретена деления, с помощью которого хромосомный

материал будет распределяться между дочерними клетками. Процессы, происходящие в профазе I мейоза и определяющие его результаты,обусловливают более продолжительное течение этой фазы деления по сравнению с митозом и дают возможность выделить несколько стадий в ее пределах .

Лептотена —наиболее ранняя стадия профазы I мейоза, в которой начинается

спирализация хромосом, и они становятся видимыми в микроскоп как длинные и

тонкие нити. Зиготена характеризуется началом конъюгации гомологичных

хромосом, которые объединяются синаптонемальным комплексом в бивалент. Пахитена — стадия, в которой на фоне продолжающейся спирализации

хромосом и их укорочения, между гомологичными хромосомами осуществляется

кроссинговер — перекрест с обменом соответствующими участками. Диплотена

характеризуется возникновением сил отталкивания между гомологичными

хромосомами, которые начинают отдаляться друг от друга в первую очередь в

области центромер, но остаются связанными в областях прошедшего кроссинговера

—хиазмах .Диакинез — завершающая стадия профазы I мейоза, в которой гомологичные

хромосомы удерживаются вместе лишь в отдельных точках хиазм. Биваленты

приобретают причудливую форму колец, крестов, восьмерок и т.д.

Таким образом, несмотря на возникающие между гомологичными

хромосомами силы отталкивания, в профазе I не происходит окончательного

разрушения бивалентов. Особенностью мейоза в овогенезе является наличие

специальной стадии — диктиотены, отсутствующей в сперматогенезе. На этой

стадии, достигаемой у человека еще в эмбриогенезе, хромосомы, приняв особую

морфологическую форму «ламповых щеток», прекращают какие-либо дальнейшие 221

структурные изменения на многие годы. По достижении женским организмом

репродуктивного возраста под влиянием лютеинизирующего гормона гипофиза, как

правило, один овоцит ежемесячно возобновляет мейоз.

В метафазе I мейоза завершается формирование веретена деления. Его нити

прикрепляются к центромерам хромосом, объединенных в биваленты, таким

образом, что от каждой центромеры идет лишь одна нить к одному из полюсов

веретена. В результате нити, связанные с центромерами гомологичных хромосом,

направляясь к разным полюсам, устанавливают бивалентны в плоскости экватора

веретена деления. Стадии диплотены в мейозе кузнечика В анафазе I мейоза ослабляются связи между гомологичными хромосомами в бивалентах и они отходят друг от друга, направляясь к разным полюсам веретена деления. При этом к каждому полюсу отходит гаплоидный набор хромосом, состоящих из двух хроматид. В телофазе I мейоза у полюсов веретена собирается одинарный, гаплоидный

набор хромосом, каждая из них содержит удвоенное количество ДНК.

Формула генетического материала образующихся дочерних клеток

соответствует п2с.

Второе мейотическое (эквационное) деление приводит к образованию клеток,

в которых содержание генетического материала в хромосомах будет

соответствовать их однонитчатой структуре пс (см. рис. 5.5). Это деление протекает,

как митоз, только клетки, вступающие в него, несут гаплоидный набор хромосом. В

процессе такого деления материнские двунитчатые хромосомы, расщепляясь,

образуют дочерние однонитчатые.

Одна из главных задач мейоза — создание клеток с гаплоидным набором

однонитчатых хромосом —достигается благодаря однократной редупликации ДНК

для двух последовательных делений мейоза, а также благодаря образованию в

начале первого мейотического деления пар гомологичных хромосом и дальнейшего

их расхождения в дочерние клетки.

Процессы, протекающие в редукционном делении, обеспечивают также не

менее важное следствие — генетическое разнообразие гамет, образуемых

организмом. К таким процессам относят кроссинговер, расхождение гомологичных

хромосом в разные гаметы и независимое поведение бивалентов в первом

мейотическом делении .

Кроссинговер обеспечивает перекомбинацию отцовских и материнских

аллелей в группах сцепления . Ввиду того что перекрест хромосом

может происходить в разных участках, кроссинговер в каждом отдельном случае

приводит к обмену разным по количеству генетическим материалом. Необходимо

отметить также возможность возникновения нескольких перекрестов между двумя

хроматидами (рис. 5.9) и участия в обмене более чем двух хроматид бивалента (рис.

Хроматидами и участия в перекресте более чем двух хроматид. Отмеченные особенности кроссинговера делают этот процесс эффективным механизмом перекомбинации аллелей.

Расхождение гомологичных хромосом в разные гаметы в случае

гетерозиготности приводит к образованию гамет, различающихся по аллелям

отдельных генов .Случайное расположение бивалентов в плоскости экватора веретена деленияи последующее их расхождение в анафазе I мейоза обеспечивают перекомбинацию родительских групп сцепления в гаплоидном наборе гамет.

Источник: StudFiles.net

Гаплоидные растения (греч. haplos — единый, простой) имеют одинарный набор хромосом, в котором каждая представлена в единственном числе и не имеет гомолога. Гаплоидный набор хромосом называется также непарным, или неполным, в отличие ют двойного, или диплоидного, набора в обычных соматических клетках, содержащего пары гомологичных хромосом.[ …]

Гаплоидный набор у дурмана состоит из 12 хромосом. На основе этого Блексли выделили 12 первичных мутантов, отличающихся между собой как по одной лишней хромосоме, так и по некоторым морфологическим признакам, вполне согласующимся с индивидуальными особенностями каждой из 12 хромосом.[ …]

Гаплоидная фаза короткая: базидиоспоры и мицелий, выросший из нее и существующий небольшой период. Плодовые тела базидиомицетов различны по форме и консистенции. Они могут быть паутинистыми, рыхлыми, плотно-войлочными, кожистыми, деревянистыми, мягкомясистыми, могут иметь форму пленок, корочек, могут быть копытообразными или состоять из шляпки и ножки.[ …]

Совокупность генов, локализованных в хромосомах гаплоидного набора, называют геномом, нередко этим термином обозначают комплекс ядерно-генетических свойств клетки (организма). Число геномов, состоящих из различающихся по форме и величине гомологичных хромосом, можно определять по морфологическим признакам последних. Число хромосом — один из наиболее постоянных признаков при определении таксономического положения видов растений и животных. Закон специфичности числа хромосом был сформулирован впервые Т. Бовери в 1909 г. Начиная с этого времени морфологию хромосом стали использовать наряду с другими признаками в систематике. В некоторых случаях этим методом удавалось разрешить сложные таксономические проблемы.[ …]

Для большого числа грибов, встречающихся в природе в гаплоидной конидиальной стадии, половые стадии неизвестны. Такие грибы относят к классу дейтеромицетов, или несовершенных грибов.[ …]

ГЕН0М [гр. genos происхождение] — совокупность генов, содержащихся в гаплоидном (одинарном) наборе хромосом данного организма.[ …]

Овогенез — это процесс формирования яйцеклеток. Его функциями являются обеспечение гаплоидного набора хромосом в ядре яйцеклетки и обеспечение питательных потребностей зиготы. Овогенез в своем проявлении в основном сопоставим со сперматогенезом.[ …]

Комплекс хромосом в клетке называют хромосомным набором. Различают два типа наборов: гаплоидный и диплоидный.[ …]

На нейроспоре густой был особенно успешно применен тетрадный анализ, т. е. анализ, проводимый по гаплоидным продуктам мейоза. Этот метод дает возможность анализировать гаплоидные особи, развивающиеся из аскоспор; он впервые позволил непосредственно доказать, что менделевское расщепление является закономерным ходом мейоза, что оно представляет не статистическую, а биологическую закономерность. Этот метод позволил определить результаты кроссинговера непосредственно по гаплоидным продуктам мейоза, что необходимо для доказательства соответствия рекомбинантных зигот кроссинговерным гаметам.[ …]

Формирование пыльцы. В пыльнике пыльцевые материнские клетки проходят мейоз и образуют микроспоры — гаплоидные мужские споры, которые по окончании развития известны как пыльца. Пыльцевое зерно можно считать как бы отдельным растением, мужским гаметофи-том (рис. 117). Такое гаплоидное «растение», образующее мужские гаметы, является пережитком гаметофитного поколения, которое может быть хорошо развито у более примитивных растений, например у папоротников и мхов. У семенных растений эта стадия сильно редуцирована. Гаплоидное ядро микроспоры делится митотически, образуя генеративное ядро и ядро в пыльцевой трубке. Нередко генеративное ядро оказывается связанным с цитоплазмой, что выглядит как бы клетка в клетке. Генеративное ядро 1 для образования двух ядер (мужских гамет) делится митотически либо в пыльцевом зерне, либо в пыльцевой трубке.[ …]

Течение мейоза у различных гаплоидов во многом сходно, что позволяет дать общее описание этого процесса. В гаплоидных клетках в профазе I наблюдается несоответствие хромомер спаренных нитей вследствие ассоциации негомологичных хромосом (см. рис. 68). Спаривание негомологщных хромосом непродолжительно, не дает хиазм и вскоре заканчивается их разъединением. В этот период число хромосом в материнских клетках микроспор может быть и менее гаплоидного набора (п) из-за конъюгации двух или даже т рех хромосом.[ …]

В геноме человека найдена последовательность Alu длиной порядка 300 пар оснований и повторяющаяся в 100 000-300 000 копиях на гаплоидный набор хромосом, что составляет около 5% генома человека. Alu-последовательности сходны с прямыми копиями ДНК на молекулах мРНК, ибо они содержат «отрезок» по-лидезоксиаденозина на их З -концах, а сходство Alu-последователь-ностей с транспозонами определяется тем, что они фланкированы прямыми повторами 7-20 пар оснований.[ …]

Головневые грибы можно легко вырастить без растения-хозяина на искусственных питательных средах, где они произрастают в гаплоидном состоянии. Это обстоятельство позволяет исследователям изучать многие стороны их биологии, особенно касающиеся их наследственных признаков.[ …]

Эуплоидия (греч. ей — хороший, настоящий и ploos — складывать) означает наличие в клеточных ядрах целых хромосомных наборов, равных гаплоидному или кратных ему. Гаплоидный набор хромосом обозначается символом п, а кратные ему — соответственно 2п, 3п и т. д.[ …]

Ганлоидный набор, входящий в состав диплоидного и происходящий из отцовской гаметы, несет отцовскую наследственность с ее индивидуальными чертами, а гаплоидный набор из материнской гаметы — материнскую. Сложное взаимодействие однородных, но не всегда тождественных генов двух гаплоидных наборов, в сумме образующих один диплоидный, определяет, какие признаки проявятся у диплоидпого потомства, которое, по существу, является гибридом отца и матери.[ …]

Каждый сперматозоид человека состоит из трех отделов — головки, средней части и хвоста (рис. 85). В головке сперматозоида располагается ядро. В нем содержится гаплоидный набор хромосом. Головка снабжена акросомой, которая содержит литические ферменты, необходимые сперматозоиду для вступления в яйцеклетку. В головке локализуется также две центриоли — проксимальная, которая побуждает деление оплодотворенной сперматозоидом яйцеклетки, и дистальная, которая дает начало аксимальному стержню хвоста. В средней части сперматозоида располагаются базальное тельце хвоста и митохондрии. Хвост (отросток) сперматозоида образован внутренним аксимальным стержнем и внешним футляром, имеющим цитоплазматическое происхождение. Сперматозоиды человека характеризуются значительной подвижностью.[ …]

У цветковых растений в мегаспорапгии образуется обычно одна материнская клетка мегаспор. Она претерпевает два деления мейоза, в результате чего аналогично появлению тетрады гаплоидных микроспор образуется тетрада гаплоидных мегаспор. Как и при формировании микроспор, появляются каллозовыо оболочки, обеспечивающие изоляцию материнской клетки и мегаспор от окружающих клеток.[ …]

По существу мейоз представляет собой два деления, в которых клетки делятся дважды, а хромосомы только один раз. Это приводит к образованию четырех клеток, каждая из которых имеет гаплоидное число хромосом, т. е. половинный набор хромосом соматических клеток. Каждая из этих четырех клеток потенциально является гаметой. Оплодотворение (слияние двух гамет) восстанавливает диплоидное число хромосом.[ …]

Образованию спор из спорогенной ткани (археспория) спорангия предшествует мейоз. При этом, как мы уже знаем, число хромосом уменьшается вдвое, и спора имеет одинарный набор хромосом, она гаплоидна. Гаплоидными являются протонема, гаметофоры, органы полового размножения (архегонии и антеридии) и, конечно, гаметы. Все эти структуры относятся к половому поколению — га-метофазе.[ …]

Как уже отмечалось, каждый вид растений и животных имеет определенное и постоянное число хромосом, причем в клетках соматических тканей оно вдвое больше, чем в генеративных. Наличие в клетках более двух целых гаплоидных хромосомных наборов, например трех, четырех, пяти и т, д., относят к явлению полиплоидии. Полиплоидия наблюдается в природе, особенно среди цветковых растений, это также довольно частое явление в опухолевых тканях.[ …]

В животном царстве мейоз ведет к образованию половых клеток — гамет и обычно только эти клетки содержат гаилоидный набор хромосом. У растений мейоз может происходить на разных этапах жизненного цикла, причем в качестве гаплоидных продуктов у них образуются как половые клетки — гаметы, так и бесполовые споры. Продолжительность жизни гамет ограничена и составляет от нескольких минут до нескольких суток, после чего неоплодотворенные гаметы пропадают.[ …]

Аскомицеты представляют собой наиболее многочисленную группу грибов (более 30 ООО видов), различающихся между собой прежде всегоразмерами. Встречаются как одноклеточные, так и многоклеточные формы. Тело их представлено гаплоидным мицелием. Образуют аски (сумки), содержащие аскоспоры, что является характерным признаком этих грибов. Среди грибов данной группы наиболее известными являются дрожжи (пивные, винные, кефирные и другие). Например, дрожжи Saccharomices cerevisiae влияют на ферментацию глюкозы (СвН12Ов). Одна молекула глюкозы дает в ходе этого ферментативного процесса две молекулы этилового спирта.[ …]

В диплоидиом наборе две хромосомы каждой пары одинаковы по форме, внутреннему строению, содержат гены, управляющие появлением однородных признаков (рис. 36). Они называются гомологичными хромосомами. Одна из них происходит из гаплоидного набора отцовской гаметы, другая — материнской. Поэтому у раздельнополых организмов одна из них несет гены, определяющие развитие подведомственных ей признаков по отцовскому типу, вторая — по материнскому.[ …]

Каждый вид растения содержит определенное число хромосом, известное как 2 п, или соматическое число (2 п= = 12 у шпината, 14 у гороха, 16 у лука, 18 у капусты, 20 у кукурузы, 22 у арбуза, 24 у томатов и т. д.). Репродуктивные клетки, или гаметы, содержат гаплоидное число (п) хромосом. В вегетативных клетках хромосомы присутствуют парами, составляя соматическое число. При мейозе одна хромосома из каждой пары переходит в гаметы, снижая диплоидное число наполовину. Впоследствии оплодотворение восстанавливает диплоидное число в зиготе (оплодотворенная яйцеклетка). Таким образом, в соматических клетках диплоидных растений каждый геи присутствует попарно. Отдельный ген, например С и его аллель с, может присутствовать в любом из трех сочетаний — СС, Сс или сс. Растение, содержащее два идентичных гена СС или сс, является гомозиготным по аллелям. Растение будет гетерозиготным, если аллели различны, например Сс.[ …]

Редуцированную апогаметию, при которой зародыши развивались из синергид и антипод, впервые описал Я. С. Модилевский (1925, 1931) у Allium odorum. Позднее она обнаружена у некоторых рас Linum usitatissimum и Oryza sativa, у различных видов лилий, огурца и .др. У лилий гаплоидные зародыши, возникшие из синергид, отличались от обычных меньшими размерами, часто дегенерировали и только в редких случаях развивались в гаплоидные растения. Редуцированная апогаметия описана также у кукурузы и льна, у которых одновременно с зародышем, образовавшимся после нормального полового процесса из зиготы, формируются зародыши из синергид.[ …]

В дальнейшем важнейший вклад в развитие клеточной теории был обеспечен открытием хромосом и наблюдениями в 1879-1883 гг. деления клеток путем митоза (В. Флеминг, 1844-1905; В. Рут 1850-1924 и другие). Уже к концу XIX в. были описаны хромосомы, определено их гаплоидное и диплоидное число у ряда организмов, а также были определены и получили название фазы митоза. Тогда же состоялся синтез цитологии и генетики, а также вычленение самостоятельной проблематики под названием «Биология клетки».[ …]

Для базидиальных грибов характерен половой процесс, называемый соматогамия. Он состоит в слиянии двух клеток вегетативного мицелия. Половой продукт — б а з и-д и я, на которой образуются 4 базидио-споры, поровну с разными половыми знаками. Путем образования анастамозов между нитями мицелия или другим путем происходит слияние гаплоидных мицелиев и образование дикариотического мицелия, на котором происходит образование базидий с базидиоспорами.[ …]

У папоротников известны также случаи так называемого девственного размножения, или партеногенеза (от греч. parthenos — девственница и genesis — происхождение). Такой случай известен, в частности, у марсилеи (Marsilea). Некоторые женские гаметофиты марсилеи возникают не из гаплоидной споры, а из диплоидных материнских клеток спор и поэтому сами также диплоидны. Диплоидная яйцеклетка таких гаметофитов, минуя стадию оплодотворения, развивается прямо в диплоидный спорофит.[ …]

При половом размножении слиянию половых клеток предшествует два последовательно протекающих деления, на которые приходится лишь одно воспроизводство хромосом. Поэтому ядра половых клеток содержат вдвое уменьшенное против исходного число хромосом и называются гаплоидными. При слиянии гаплоидных ядер возникает клетка с двойным, диплоидным числом хромосом, одна половина которых происходит от одной родительской клетки, другая — от другой. .[ …]

Торулопсис — бесцветные почкующиеся дрожжи, обладающие слабой (большинство видов) или активной бродильной способностью. Некоторые образуют капсулы, но во внеклеточных полисахаридах, в отличие от криптококков, нет крахмалоподобных веществ. Выделяются эти дрожжи из природных источников и из очагов, связанных с деятельностью человека. Специфические субстраты и местообитания отдельных видов исследованы мало.[ …]

Цикл развития гименомицетов сходен с общей схемой развития базидиальных грибов (рис. 154). Плодовые тела их, так же как и грибница, пронизывающая субстрат, состоят из дикариофитных гиф. Только молодые бази-дии, базидиоспоры и развившийся из них и существующий небольшой период мицелий гаплоидные. Очень быстро мицелий становится двухъядерным — дикариофитньш — за счет слияния его клеток, начинает интенсивно разрастаться в субстрате и образовывать плодовые тела. В случае гомоталличных видов, которых значительно меньше, могут сливаться клетки одного и того же гаплоидного мицелия.[ …]

Для высших аскомицетов (подклассы Еиавсо-тусеШае и Ьоси1оа8сотусеШае) характерны дифференциация и усложнение строения гаметангиев. Образуются одноклеточный антеридий и аскогон, обычно с трихогиной. При оплодотворении содержимое антеридия по трихогине переходит в аскогон. После плазмогамии гаплоидные ядра разного пола не сливаются сразу, а объединяются попарно, образуя дикарионы. Из аско-гона вырастают аскогенные гифы, в которых ядра дикариона синхронно делятся. На концах аскогенных гиф развиваются сумки (см. рис. 50). Конечная клетка аскоген-ной гифы загибается крючком, ядра дикариона располагаются в месте перегиба и одновременно делятся. Пара ядер разного пола остается в месте перегиба крючка, одно ядро переходит в его кончик, а другое — в основание. Затем образуются две перегородки, отделяющие одноядерные конечную и базальную клетки крючка. В результате слияния этих клеток восстанавливается дикарион и может происходить повторное образование крючка. Средняя двухъядерная клетка крючка развивается в сумку. Она увеличивается в размерах, ядрадикариона сливаются. Образовавшееся диплоидное ядро делится редук-ционно, за мейозом следует еще одно, митотическое деление, и вокруг восьми гаплоидных ядер формируются аскоспоры.[ …]

Органеллами общего назначения являются ядро, митохондрии, рибосомы, центриоли, комплекс Гольджи, лизосомы и др. Наиболее крупные простейшие — многоядерны, мелкие — одноядерны. Ядро окружено двойной мембраной. Количество хромосом различно у организмов разных видов и колеблется в пределах от двух (вероятно, гаплоидное число) до более чем 160.[ …]

Мейоз состоит из двух делений клеточного ядра, которые называют мейотическими. Первое мейотическое деление ядра разделяет членов каждой пары гомологичных хромосом после того, как они спарились одна с другой (синапсис) и обменялись генетическим материалом (кроссинговер). В результате этого разделения образуется два гаплоидных ядра. Второе мейотическое деление разделяет две продольные половины хромосом (хроматиды) в каждом из этих ядер, продуцируя четыре гаплоидных ядра.[ …]

Изучение морфологических признаков различных гаплоидов показало, что они, как правило, сходны с теми диплоидными растениями, от которых произошли, и отличаются от них лишь более мелкими размерами клеток и вегетативных органов. Однако есть немало исключений из этого правила, при которых гаплоиды по ряду признаков не уступают исходным диплоидам. Разнородность гаплоидных форм, возникающих из одного и того же однородного диплоидного материала, зависит от многих причин и прежде всего от сочетания хромосом при мейозе, в результате которого клетки с одинарным набором хромосом иногда получают геном, настолько богатый генетической информацией, что фенотипически не уступают исходным диплоидным растениям. В других случаях полученное клеткой сочетание хромосом не может обеспечить жизнеспособности возникающего из нее организма и он погибает уже на первых фазах развития.[ …]

В развитии мхов характерно чередование полового (гаметофи-та) и бесполого (спорофита) поколений. На растениях полового поколения образуются споры разных размеров. После оплодотворения женских половых клеток мужскими развивается спорофит (спорангий со спорами), клетки которого имеют диплоидный набор хромосом. Образующиеся в результате мейоза в спорангии споры имеют гаплоидный набор хромосом. Высыпаясь на почву, споры прорастают, давая начало растению, гаметофиту, имеющему в размножающихся митозом клетках гаплоидный набор хромосом. Гаплоидный гаметофит доминирует в цикле развития. На гаметофите вновь образуются половые клетки, и процесс повторяется. Специфической особенностью этих растений является не только доминирование гаплоидного гаметофита, но также и то, что гаметофит (половое поколение) и спорофит (бесполое поколение) представляют собой одно растение.[ …]

Головка спермия представляет собой (преобразованное в процессе гаметогенеза ядро ш ер м а тог он и а л ь но й клетки и состоит в основном из дезоксирибонуклеопротеида (ДНП). У черноморско-азовского осетра Acipenser güldenstàdti colchi-cus в спермиях на долю ДНП приходится 90,5%, а у лосося Salmo sedar — 98,1% вещества головки (Георгиев и др., 1960; Збарский, Ермолаева, 1961; Ермолаева, 1964). Здесь содержится материал гаплоидного набора -хромосом, в силу чего абсолютное количество ДНК в головке спермия вдвое ниже, чем в ядрах соматических клеток (Mirsky, Ris, 1949, и др.).[ …]

Следует отметить, что второе деление мейоза, сходное с митозом, имеет и свои специфические особенности. Главным его отличием, несомненно, является неидентичность хроматид вследствие кроссинговера, поскольку они состоят не целиком из материала исходных отцовской или материнской хромосом, а из отдельных их сегментов. Далее в результате деспирализации хромосом происходит образование гаплоидных ядер.[ …]

Основной признак аскомицетов — образование в результате полового процесса сумок (или асков) — одноклеточных структур, содержащих фиксированное число аскоспор, обычно 8 (рис. 50). Сумки образуются или непосредственно из зиготы (у низших аскомицетов), или на развивающихся из зиготы аскогенных гифах. В сумке происходит слияние ядер зиготы, а затем мейотическое деление диплоидного ядра и образование гаплоидных аскоспор. У высших аскомицетов сумка представляет не только место образования аскоспор, но и активно участвует в их распространении.[ …]

Поскольку при половом процессе в результате слияния гамет и их ядер происходит удвоение набора хромосом в ядре, то в последующем в какой-то момент цикла развития наступает редукционное деление ядра (мейоз), в результате которого дочерние ядра получают одинарный набор хромосом. Спорофиты многих водорослей диплоидные, и мейоз в цикле их развития совпадает с моментом образования спор, из которых развиваются гаплоидные гаметоспо-рофиты или гаметофиты. Такой мейоз называют спорической редукцией (рис. 2Ъ,1).[ …]

Мейоз представляет логически необходимую часть жизненного цикла, размножающегося половым путем, Мейоз обеспечивает расщепление генов — отдельных участков ДНК по отдельным гаметам, в результате чего происходит разнообразное сочетание генов в гаметах. В отношении поддержания постоянства хромосом в клетке оплодотворение составляет антитезу (противоположное) мейозу, о процессе оплодотворения происходит слияние гаплоидных ядер двух разнополых гамет с образованием одной клетки — зиготы с диплоидным ядром.[ …]

Среди сахаромицетов есть и природные виды, распространенные главным образом в субстратах, содержащих сахар: на поверхности плодов, ягод и фруктов, в нектаре цветов, в сокотече-ниях деревьев. Некоторые виды ассоциированы с насекомыми и встречаются в местах их обитания. Так называемые осмофильные дрожжи, известные как S.rouxii, обитают в пчелином меде. Эти дрожжи лучше используют фруктозу (сахар меда), чем глюкозу. Раньше гаплоидные осмофильные дрожжи выделяли в особый род зигосахаромицетов (Zygosaccharomyces). Осмофильные дрожжи часто являются причиной порчи меда, варений, джемов, а также скисания вин.[ …]

Редуцированный партеногенез отличается полной стерильностью образующихся растений и не передается из поколения в поколение, т. е. является нерегулярным и ненаследственным. Редуцированный партеногенез тесно связан с псевдогамией, поскольку партеногенетическое развитие зародыша из яйцеклетки всегда происходит после опыления своей или чужой пыльцой без слияния гамет. Растения, имеющие свойственное гаметам уменьшенное вдвое число хромосом, получены многими исследователями. В частности, гаплоидные растения были выращены из пыльцевых зерен при культуре на искусственной питательной среде у 20 видов покрытосеменных растений. Редуцированный партеногенез, вызываемый действием низкой температуры на растение, впервые был описан у дурмана (Datura stramonium). За последнее время в роде Datura разными способами было получено более 200 гаплоидных растений, главным образом при межродовых и межвидовых скрещиваниях, а также при действии во время процесса оплодотворения низкой или высокой температуры, Х-лучей, опылении пыльцой, облученной рентгеновскими лучами.[ …]

Каковы бы ни были причины, способствующие возникновению ауксоспор, установлено главное: ауксоспорообразование всегда связано с половым процессом. У диатомовых водорослей встречаются все три типа полового процесса, вообще известные у водорослей,— изогамный, анизогамный и оогамный, а также некоторые формы редуцированного полового процесса (рис. 91). У пеннатных диатомей половой процесс во всех случаях состоит в сближении двух клеток, в каждой из которых створки раздвигаются и происходит редукционное деление ядра, после чего гаплоидные ядра попарно сливаются и образуется одна или две ауксоспоры. У центрических диатомей попарное сближение клеток отсутствует и ауксоспора образуется из одной клетки, в которой сначала происходит деление материнского диплоидного ядра на четыре гаплоидных ядра, два из них затем редуцируются, а два сливаются в одно диплоидное ядро и образуется ауксоспора.[ …]

У низших аскомицетов (подкласс Негтавсо-mycetidae) половой процесс сходен с зигогамией у зигомицетов. Гаметангии разного пола морфологически сходны или малоразличимы и представляют выросты или веточки мицелия. После их слияния сразу происходит кариогамия и сумка развивается непосредственно из зиготы. Однако, в отличие от зигомицетов, в многоядерных гаметангиях сливаются только два ядра (нет множественной кариогамии), зигота не переходит в состояние покоя, а сразу развивается в сумку. В цикле развития низших аскомицетов, следовательно, есть только гаплоидная и диплоидная стадии (рис. 52).[ …]

Разработка способа инактивации генетического аппарата спермиев путем воздействия на них рентгеновскими лучами в дозах 100—¡200 кр дала возможность изыскать пути получения жизнеспособного диплоидного гиногенетического потомства у рыб (Ромашов« др., 1960, 1963; Головинская и др., 1963; Ромашов, Беляева, 1965а; Головинская, 1969, и др.). Воздейст-йием температуры на икру перед ее осеменением облученными спермиями удалось добиться значительного увеличения выхода диплоидного потомства у некоторых видов осетровых и карповых рыб (Ромашов и др., 1960, 1963).[ …]

В субэпидермальном слое нуцеллуса семяпочки закладывается женский археспорий. У покрытосеменных растений он бывает двух типов: одноклеточный и многоклеточный. Многоклеточный археспорий встречается у примитивных форм покрытосеменных и является исходным типом. Одноклеточный археспорий, встречающийся у большинства видов покрытосеменных, возник из многоклеточного и считается более прогрессивным. В одних случаях клетка женского археспория сразу превращается в материнскую клетку макроспор, в других — после образования одной, двух или более кроющих париетальных клеток. В материнской клетке макроспор происходит мейоз, причем заложение перегородок во время первых двух делений происходит последовательно, в результате чего образуется тетрада макроспор с гаплоидным числом хромосом. Расположение макроспор в тетраде чаще бывает линейным или Т-образным.[ …]

Ядерный аппарат спермия обнаруживает большую по сравнению со структурами, ответственным« за движение, радиочувствительность. Спермии вьюна сохраняют способность к движению и оплодотворению в широком диапазоне доз рентгеновского облучения — от 100 р до 1000 кр. Падение оплодотворяющей способности наблюдается лишь при дозе 200 кр. Даже при облучении 1000 кр около 1% спермиев сохраняют способность оплодотворять яйцеклетки (Бакулина и др., 1962), в то время как 100 р уже вызывает заметное повышение числа хромосомных нарушений, учитываемых на стадии гаструляции, и снижает жизнеспособность эмбрионов. Осеменение икры спермой, облученной в дозе 2—5 кр, вызывает максимальную гибель зародышей (рис. 61). Дальнейшее повышение дозы облучения приводит ко все большему повреждению хромосомного аппарата спермия и, в конечном итоге, — к полной инактивации ядра. Степень повреждения зигот при этом резко понижается (эффект Гертвига) (рис. 61). Развивающиеся эмбрионы в большинстве своем представлены гаплоидными уродами.[ …]

Проблеме плодовитости полиплоидов придается громадное значение. Тем не менее, бывают случаи, когда стерильность гамет не вызывает опасений и даже желательна. Так, возделываемая в качестве салата триплоидная настурция (Nasturtium officinale) отличается пониженной плодовитостью, но прекрасно размножается вегетативным путем.. Многие культурные растения, размножаемые луковицами (тюльпаны, нарциссы, канна и желтые лилии), также являются триплоидами. Например, значительное число ценных американских сортов яблонь является триплоидами. У двулетних овощных культур, образующих в 1-й год жизни корнеплоды и клубни, стерильность не является препятствием при промышенном возделывав нии. Так обстоит дело и с триплоидным гибридом сахарной свеклы, отличающимся высоким содержанием сахара в соке, большой массой корня, а следовательно, и большой урожайна-стью сахара с 1 га. Триплоидные гибриды, полученные таким образом, по урожайности превышают диплоидные сорта.[ …]

Источник: ru-ecology.info