1. Сравнение клеток растений и животных. Отличия и разница между клетками

Выполнила: студентка
группы 7401
Николаева Екатерина
2016 г

2. Цитоло́гия – это…

Цитоло́гия (греч. κύτος «клетка» и λόγος — «учение»,
«наука») — раздел биологии, изучающий живые клетки,
их органоиды, их строение, функционирование, процессы
клеточного размножения, старения и смерти.

3.

Кле́тка –это…
Кле́тка

структурно-функциональная
элементарная
единица
строения
и
жизнедеятельности
всех организмов (кроме вирусов и вироидов —
форм жизни, не имеющих клеточного строения).
Обладает собственным обменом веществ,
способна
к
самостоятельному
существованию, самовоспроизведению(животные, р
астения и грибы).
Организм, состоящий из одной клетки,
называется
одноклеточным (многие простейшие и бактерии).

4.


Клетка животных
Клеточная стенка:
Форма:
отсутствует
Клетка растений
есть (формируется из
целлюлозы)
круглая (неправильной
формы)
прямоугольная
(фиксированная форма)
Вакуоли:
одна или несколько мелких
вакуолей (намного меньше,
чем у клеток растений)
Одна большая
центральная вакуоль,
занимают 90% от объема
клетки
Центриоли:
присутствуют во всех
клетках животных
присутствуют только у
низших растений
Хлоропласты:
У клеток животных нет
хлоропластов
У клеток растений
хлоропласты есть для
производства собственных
питательных веществ
Цитоплазма:
есть
есть
Эндоплазматическая сеть (гладкая и
шероховатая):
есть
есть
Рибосомы:
есть
есть

5.

Митохондрии:
есть
есть
Пластиды:
отсутствуют
есть
Аппарат Гольджи:
есть
есть
Плазменные мембраны:
только клеточные мембраны
клеточная стенка и
клеточные мембраны
Микротрубочки /
микрофиламенты:
есть
есть
Жгутики:
можно найти в некоторых
клетках
можно найти в некоторых
клетках
Лизосомы:
лизосомы встречаются
в цитоплазме
лизосомы обычно не видны
Ядро:
есть
есть
Реснички:
есть
очень редко

6. Кратко отличие клеток растений от клеток животных


У растительных клеток есть хлоропласты для фотосинтеза, а у животных
клеток нет хлоропластов.
Еще одно различие между клетками растений и животных — клетки
животных круглые в то время как растительные клетки имеют
прямоугольную форму.
Кроме того, у всех животных клеток есть центриоли, в то время как лишь у
некоторых низших форм растений есть центриоли в клетках.
У животных клеток одна или несколько мелких вакуолей, в то время как у
растительных клеток одна большая центральная вакуоль, которая может
занимать до 90% от объема клетки.
В клетках растений, вакуоль выполняет функции хранения воды и
поддержания упругости клетки. Функции вакуоли в клетках животных:
хранения воды, ионов и отходов.

9. Клеточная стенка

Клеточная стенка — жёсткая оболочка клетки, расположенная снаружи
от цитоплазматической мембраны и выполняющая структурные, защитные и
транспортные
функции.
Обнаруживается
у
большинства бактерий, архей, грибов и растений.
Животные и многие простейшие не имеют клеточной стенки.

11. Вакуо́ль

Вакуо́ль —
одномембранный орган
оид, содержащийся в
некоторых эукариотичес
ких клетках и
выполняющий
различные функции
(секреция, экскреция и
хранение запасных
веществ, аутофагия, авт
олиз и др.).

12. Центрио́ль


Центрио́ль

внутриклеточный органо
ид эукариотической клет
ки,
представляющий
тельца
в
структуре
клетки, размер которых
находится на границе
разрешающей
способности светового
микроскопа.

13. Хлоропла́ст

Хлоропла́сты (от греч.χλωρός — «зелёный» и от πλαστός —
вылепленный) — зелёные пластиды, которые встречаются в
клетках фотосинтезирующих эукариот. С их помощью
происходит фотосинтез.

14. Цитопла́зма

Цитопла́зма (от греч.
κύτος «клетка»
и πλάσμα здесь
«содержимое») —
полужидкое
содержимое клетки,
внутренняя среда
живой или
умершей клетки,
кроме ядра и вакуоли,
ограниченная плазмат
ической мембраной.

15. Эндоплазматическая сеть

Эндоплазмати́ческий рети́кулум (ЭПР) (лат.reticulum —
сеточка), или эндоплазматическая сеть (ЭПС), —
внутриклеточный органоид эукариотической клетки,
представляющий собой разветвлённую систему из окружённых
мембраной уплощённых полостей, пузырьков и канальцев.

16. Рибосо́ма

Рибосо́ма — важнейший
немембранный органоид жи
вой клетки, служащий
для биосинтеза белка
из аминокислот по заданной
матрице на
основе генетической
информации,
предоставляемой
матричной РНК(мРНК).

17. Митохо́ндрии

Митохо́ндрия (от греч.
μίτος — нить и χόνδρος —
зёрнышко, крупинка) —
двумембранный сферический
или
эллипсоидныйорганоид диам
етром обычно около 1
микрометра. Характерна для
большинства эукариотически
х клеток,
как автотрофов(фотосинтези
рующие растения), так
и гетеротрофов (грибы, живо
тные). Энергетическая
станция клетки; основная
функция —
окисление органических
соединений.

18. Пласти́ды

iv>

Пласти́ды (от др.греч. πλαστός —
вылепленный) —
полуавтономные органеллы в
ысших растений, водорослей
и некоторых
фотосинтезирующих
простейших. Пластиды имеют
от двух до четырёх мембран,
собственный геном и
белоксинтезирующий аппарат.

19.

Аппара́т (ко́мплекс)
Го́льджи — мембранная
структура
эукариотической клетки,
органелла, в основном
предназначенная для
выведения веществ,
синтезированных
в эндоплазматическом
ретикулуме. Аппарат
Гольджи был назван так в
честь итальянского
учёного Камилло
Гольджи, впервые
обнаружившего его
в 1898 году.

Источник: ppt-online.org

Вопрос 10 (Как организован наследственный материал у про- и эукариот?):

а) локализация (в прокариотической клетке – в цитоплазме, в эукариотической клетке – ядро и полуавтономные органоиды: митохондрии и пластиды), б) характеристика Геном в прокариотической клетке: 1 кольцевидная хромосома – нуклеоид, состоящая из молекулы ДНК (укладка в виде петель) и негистоновых белков, и фрагменты – плазмиды – внехромосомные генетические элементы. Геном в эукариотической клетке – хромосомы, состоящие из молекулы ДНК и гистоновых белков.

Вопрос 11 (Что такое ген и какова его структура?):


Ген (от греч. génos — род, происхождение), элементарная единица наследственности, представляющая отрезок молекулы дезоксирибонуклеиновой кислоты — ДНК (у некоторых вирусов — рибонуклеиновой кислоты — РНК). Каждый Г. определяет строение одного из белков живой клетки и тем самым участвует в формировании признака или свойства организма.

Вопрос 12 (Что такое генетический код, его свойства?):

Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

Свойства генетического кода: 1. универсальность (принцип записи един для всех живых организмов) 2. триплетность (считываются три, рядом расположенные нуклеотида) 3. специфичность (1 триплет соответствует ТОЛЬКО ОДНОЙ аминокислоте) 4. вырожденность (избыточность) (1 аминокислота может кодироваться несколькими триплетами) 5. неперекрываемость (считывание происходит триплет за триплетом без «пробелов» и областей перекрывания, т.е. 1 нуклеотид НЕ может входить в состав двух триплетов).

Вопрос 13 (Характеристика этапов биосинтеза белка у про- и эукариот):

>

Биосинтез белка у эукариот

Транскрипция ,постранскрипция, трансляция и посттрансляция. 1.Транскрипция заключается в создании «копии одного гена» — молекулы пре-и-РНК (пре-м-РНК).Происходит разрыв водородных связей между азотистыми основаниями, присоединения к гену-промотору РНК полимеразы, которая «подбирает» нуклеотиды по принципу комплементарности, и антипараллельности. Гены у эукариот содержат участки, содержащие информацию, — экзоны и неинформативные участки — экзоны. В результате транскрипции создается «копия» гена, которая содержит как экзоны, так и интроны. Поэтому молекула, синтезирующаяся в результате транскрипции у эукариот — незрелая и-РНК (пре-и-РНК). 2.Период посттранскрипции он называется процессинг, который заключается в созревании и-РНК. Происходит: Вырезание интронов и сшивание (сплайсинг) экзонов ( сплайсинг называется альтернативным, если экзоны соединяются в другой последовательности, чем были изначально в молекуле ДНК). Происходит «модификация концов» пре-и-РНК: на начальном участке — лидере (5′) образуется колпачок или кэп — для узнавания и связывания с рибосомой, на конце 3′ — трейлере образуется polyА (множество адениловых оснований) — для транспорта и-РНК из мембраны ядра в цитоплазму. Это зрелая м РНК.

3. Трансляция: -Инициация -связывание и-РНК с малой субъединицей рибосомы -попадание стартового триплета и-РНК — АУГ в аминоацильный центр рибосомы -объединение 2-ух субъединиц рибосомы (большой и малой).


лонгация АУГ попадает в пептидильный центр , а в аминоацильный центр попадает второй триплет, потом две тРНК с определенными аминокислотами поступают в оба центра рибосомы. В случае комплементарности триплетов на и-РНК (кодона) и т-РНК (антикодон, на центральной петле молекулы т-РНК) между ними образуются водородные связи и данные т-РНК с соответствующими АМК «фиксируются» в рибосоме. Между АМК, прикрепленными к двум т-РНК, возникает пептидная связь, а связь между первой АМК и первой т-РНК разрушается. Рибосмома делает «шаг» по и-РНК («передвигается на один триплет). Таким образом, вторая т-РНК, к которой прикреплены уже две АМК, перемещается в пептидильный центр, а в аминоацильном центре оказывается третий триплет и-РНК, куда из цитоплазмы поступает следующая т-РНК с соответствующей АМК. Процесс повторяется… до тех пор, пока в аминоацильный центр не попадет один из трех стоп-кодонов (УАА, УАГ, УГА), которые не соответствуют ни одной аминокислоте

— Терминация — окончание сборки полипептидной цепи. Результат трансляции — образование полипептидной цепи, т.е. первичной структуры белка. 4. Посттрансляция приобретение молекулой белка соответствующей конформации — вторичной, третичной, четвертичной структур. Особенности биосинтеза белка у прокариот: а) все этапы биосинтеза происходят в цитоплазме, б) отсутствие экзон-интронной организации генов, вследствие чего в результате транскрипции образуется зрелая полицистронная м-РНК, в) транскрипция сопряжена с трансляцией, г) имеется только 1 вид РНК-полимеразы (единый РНК-полимеразный комплекс), тогда как у эукариот 3 вида РНК-полимераз, осуществляющих транскрипцию разных видов РНК.

Источник: StudFiles.net

Основные различия в клетках животных и растений


  • Размер: клетки животных, как правило, меньше, чем растительные клетки. Размер животных клеток колеблются от 10 до 30 микрометров в длину, а клеток растений — от 10 до 100 микрометров.
  • Форма: клетки животных бывают разных размеров и имеют округлые или неправильные формы. Растительные клетки более схожи по размеру и обычно имеют форму прямоугольника или куба.
  • Хранение энергии: животные клетки хранят энергию в виде сложного углеводного гликогена. Растительные клетки хранят энергию в виде крахмала.
  • Белки: из 20 аминокислот, необходимых для синтеза белков, только 10 производятся естественным образом в клетках животных. Другие так называемые незаменимые аминокислоты получаются из пищи. Растения способны синтезировать все 20 аминокислот.
  • Дифференциация: у животных только стволовые клетки способны превращаться в другие типы клеток. Большинство типов растительных клеток способны дифференцироваться.
  • Рост: клетки животных увеличиваются в размерах, увеличивая число клеток. Растительные клетки в основном увеличивают размер клеток, становясь более крупными. Они растут, накапливая больше воды в центральной вакуоли.

  • Клеточная стенка: у клеток животных нет клеточной стенки, но есть клеточная мембрана. Клетки растений имеют клеточную стенку, состоящую из целлюлозы, а также клеточной мембраны.
  • Центриоли: клетки животных содержат эти цилиндрические структуры, которые организуют сборку микротрубочек во время деления клеток. Клетки растений обычно не содержат центриоли.
  • Реснички: встречаются в клетках животных, но, как правило, отсутствуют в растительных клетках. Реснички — это микротрубочки, которые обеспечивают клеточную локомоцию.
  • Цитокинез: разделение цитоплазмы при делении клеток, происходит в клетках животных, когда образуется спайная борозда, которая зажимает клеточную мембрану пополам. В цитокинезе растительных клеток образуется клеточная пластинка, разделяющая клетку.
  • Гликсисомы: эти структуры не встречаются в животных клетках, но присутствуют в растительных. Гликсисомы помогают расщеплять липиды на сахара, особенно в прорастающих семенах.
  • Лизосомы: клетки животных обладают лизосомами, которые содержат ферменты, переваривающие клеточные макромолекулы. Растительные клетки редко содержат лизосомы, поскольку вакуоль растения обрабатывает деградацию молекулы.

  • Пластиды: в животных клетках нет пластид. Растительные клетки имеют такие пластиды, как хлоропласты, необходимые для фотосинтеза.
  • Плазмодесмы: клетки животных не имеют плазмодесм. Растительные клетки содержат плазмодесмы, которые представляет собой поры между стенками, позволяющие молекулам и коммуникационным сигналам проходить между отдельными клетками растений.
  • Вакуоль: животные клетки могут иметь много маленьких вакуолей. Клетки растений содержат большую центральную вакуоль, которая может составляет до 90% объема клетки.

Читайте также: Эукариотические и прокариотические клетки: функции, строение и отличия.

Прокариотические клетки

Эукариотические клетки животных и растений также отличаются от прокариотических клеток, таких как бактерии. Прокариоты обычно являются одноклеточными организмами, тогда как животные и растительные клетки обычно многоклеточные. Эукариоты более сложны и больше, чем прокариоты. К клеткам животных и растений относятся многие органеллы, не обнаруженные в прокариотических клетках. Прокариоты не имеют истинного ядра, поскольку ДНК не содержится в мембране, а свернута в области цитоплазмы, называемой нуклеоидом. В то время как животные и растительные клетки размножаются митозом или мейозом, прокариоты чаще всего размножаются с помощью деления или дробления.

Другие эукариотические организмы

Клетки растений и животных не являются единственными типами эукариотических клеток. Протесты (например, эвглена и амеба) и грибы (например, грибы, дрожжи и плесень) — два других примера эукариотических организмов.

Понравилась статья? Поделись с друзьями:

Источник: NatWorld.info