Гипермаркет знаний>>Биология>>Биология 10 класс>> Сходства и различия в строении прокариотических и эукариотических клеток

Сходства и различия в строении прокариотических и эукариотических клеток


1.    Вспомните примеры многоядерных клеток.
2.    Какую форму могут иметь бактерии?

Прокариоты.

Древнейшие на Земле организмы не имеют клеточного ядра и называются прокариотами, т. е, доядерными. Они объединяются в отдельное царство — Дробянки, к которому относятся бактерии и сине-зеленые водоросли.

Каковы же отличительные признаки прокариотических клеток по сравнению с эукариотическими?

Строение прокариотических клеток

Клетки прокариот, как правило, значительно меньше, чем у эукариот — их размеры редко превышают 10 мкм, а бывают клетки размером даже 0,3 X 0,2 мкм. Правда, есть и исключения — описана огромная бактериальная клетка размером 100 х 10 мкм.


Строение и обмен веществ прокариот. Прокариоты, как следует из их названия, не имеют оформленного ядра.

Единственная кольцевая молекула ДНК, находящаяся в клетках прокариот и условно называемая бактериальной хромосомой, находится в центре клетки, однако эта молекула ДНК не имеет оболочки и располагается непосредственно в цитоплазме (рис. 36).

Снаружи клетки прокариот, так же как и эукариотические клетки, покрыты плазматической мембраной. Строение мембран у двух этих групп организмов одинаковое. Клеточная мембрана прокариот образует многочисленные впячивания внутрь клетки — мезосомы. На них располагаются ферменты, обеспечивающие реакции обмена веществ в прокариотической клетке. Поверх плазматической мембраны клетки прокариот покрыты оболочкой, состоящей из углеводов, напоминающей клеточную стенку растительных клеток. Однако эта стенка образована не клетчаткой, как у растений, а другими полисахаридами — пектином и муреином.

Образование спор

В цитоплазме прокариотических клеток нет мембранных органоидов: митохондрий, пластидов, ЭПС, комплекса Гольджи, лизосом. Их функции выполняют складки и впячивания наружной мембраны — мезосомы. В цитоплазме прокариот беспорядочно располагаются мелкие рибосомы. Цитоскелета в прокариотических клетках тоже нет, но иногда встречаются жгутики.


Большинство эукариот являются аэробами, т. е. используют в энергетическом обмене кислород воздуха.

Напротив, многие прокариоты являются анаэробами, и кислород для них вреден. Некоторые бактерии, называемые азотфиксирующими, способны усваивать азот воздуха, чего эукариоты делать не могут.

Те виды прокариот, которые получают энергию благодаря фотосинтезу, содержат особую разновидность хлорофилла, который может располагаться на мезосомах.

Образование спор.

В неблагоприятных условиях (холод, жара, засуха и т, д.) многие бактерии способны образовывать споры. При спорообразовании вокруг бактериальной хромосомы образуется особая плотная оболочка, а остальное содержимое клетки отмирает (рис. 37). Спора может десятилетиями находиться в неактивном состоянии, а в благоприятных условиях из нее снова прорастает активная бактерия. Недавно немецкие исследователи сообщили, что им удалось «оживить» споры бактерий, которые образовались 180 млн лет назад при высыхании древних морей!

Размножение прокариот.

Чаще всего прокариоты размножаются бесполым путем: ДНК удваивается, и далее клетка делится в поперечной плоскости пополам. В благоприятных условиях бактерии способны делиться каждые 20 минут; при этом потомство от одной клетки через трое суток теоретически имело бы массу 7500 тонн! К счастью, таких условий в принципе быть не может.


Половое размножение у прокариот наблюдается гораздо реже, чем бесполое, однако оно очень важно, так как при обмене генетической информацией бактерии передают друг другу устойчивость к неблагоприятным воздействиям (например, к лекарствам). При половом процессе бактерии могут обмениваться как участками бактериальной хромосомы, так и особыми маленькими кольцевыми двуцепочечными молекулами ДНК — лазмидами. Обмен может происходить через цитоплазматический мостик между двумя бактериями или с помощью вирусов, усваивающих участки ДНК одной бактерии и переносящих их в другие бактериальные клетки, которые они заражают.

Основные различия между прокариотической и эукариотической клетками приведены в таблице 3.

Сравнение прокариотических и эукариотических клеток

Мезосома. Аэробы. Анаэробы. Споры. Плазмиды.

1.    Какую форму имеет ДНК у бактерий?
2.    Могут ли бактерии размножаться половым путем?
3.    Когда у бактерий образуются споры и какова их функция?
4.    Что такое мезосомы и какие функции они выполняют?

Рассмотрите таблицу 3. Выделите основные отличия прокариотических и эукариотических клеток.

По-видимому, прокариоты были первыми живыми существами на Земле, и возникли они миллиарды лет тому назад. Однако, несмотря на свои кажущиеся простоту и примитивность, прокариоты прекрасно приспосабливаются к изменениям в окружающей среде, заселив все оболочки Земли. Жизнеспособные споры бактерий были обнаружены во льдах Антарктиды на глубине 30 м, в атмосфере на высоте 41 км. Бактерии обитают в воде, охлаждающей ядерные реакторы, а один из «рекордсменов» выдерживает дозу облучения 6,5 млн рентген, что в 10 ООО раз больше дозы, cmертельной для человека.

iv>

Hекоторые бактерии могут активно двигаться, вращаясь вокруг своей оси с огромной скоростью. При этом они преодолевают за секунду расстояние в 100 мкм, тогда kak длина их не превышает 2 мкм. Если бы человек мог так двигаться, он развивал бы скорость до 350 км/ч!

Каменский А. А., Криксунов Е. В., Пасечник В. В. Биология 10 класс
Отправлено читателями с интернет-сайта

Онлайн библиотека с учениками и книгами, плани-конспекти уроков с Биологии 10 класса, книги и учебники согласно календарного плана планирование Биологии 10 класса

Содержание урока 1236084776 kr.jpg конспект уроку и опорный каркас  1236084776 kr.jpg презентация урока  1236084776 kr.jpg акселеративные методы и интерактивные технологии  

1236084776 kr.jpg закрытые упражнения (только для использования учителями) 1236084776 kr.jpg оценивание Практика 1236084776 kr.jpg задачи и упражнения,самопроверка 1236084776 kr.jpg практикумы, лабораторные, кейсы 1236084776 kr.jpg уровень сложности задач: обычный, высокий, олимпиадный 1236084776 kr.jpg домашнее задание Иллюстрации 1236084776 kr.jpg иллюстрации: видеоклипы, аудио, фотографии, графики, таблицы, комикси, мультимедиа 1236084776 kr.jpg рефераты 1236084776 kr.jpg фишки для любознательных 1236084776 kr.jpg шпаргалки
>
1236084776 kr.jpg юмор, притчи, приколы, присказки, кроссворды, цитаты Дополнения 1236084776 kr.jpg внешнее независимое тестирование (ВНТ) 1236084776 kr.jpg учебники основные и дополнительные 1236084776 kr.jpg тематические праздники, слоганы 1236084776 kr.jpg статьи 1236084776 kr.jpg национальные особенности 1236084776 kr.jpg словарь терминов 1236084776 kr.jpg прочие Только для учителей 1236084776 kr.jpg идеальные уроки 1236084776 kr.jpg календарный план на год

1236084776 kr.jpg методические рекомендации 1236084776 kr.jpg программы 1236084776 kr.jpg обсуждения

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

Источник: www.edufuture.biz

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ПРОКАРИОТИЧЕСКОЙ И ЭУКАРИОТИЧЕСКОЙ КЛЕТОК


Клеточные структуры Эукариотическая клетка Прокариотическая клетка
Цитоплазматическая мембрана Есть Есть; впячивания мембраны образуют мезосомы
Ядро Имеет двумембранную оболочку, содержит одно или несколько ядрышек Нет; имеется эквивалент ядра — нуклеоид — часть цитоплазмы, где содержится ДНК, не окруженная мембраной
Генетический материал Линейные молекулы ДНК, связанные с бе ками Кольцевые молекулы ДНК, не связанные с белками
Эндоплазматическая сеть Есть Нет
Комплекс Гольджи Есть Нет
Лизосомы Есть Нет
Митохондрии Есть Нет
Пластиды Есть Нет
Центриоли, микротрубочки, микрофиламенты Есть Нет
Жгутики Если есть, то состоят из микротрубочек, окруженных цитоплазматической мембраной Если есть, то не содержат микротрубочек и не окружены цитоплазматической мембраной
Клеточная стенка Есть у растений (прочность, придает целлюлоза) и грибов (прочность придает хитин) Есть (прочность придает пептидогликан)
Капсула или слизистый слой Нет Есть у некоторых бактерий
Рибосомы Есть, крупные (80S) Есть, мелкие (70S)

Тесты:

1.Поддержка жизни на каком-либо уровне связано с явлением репродукции. На каком уровне организации, репродукция осуществляется на основе матричного синтеза

А. Молекулярном

Б. Субклеточном

В. Клеточном

Г. Тканевом

Д. На уровне организма

2. Установлено, что в клетках организмов отсутствуют мембранные органеллы и их наследственный материал не имеет нуклеосомной организации. Что это за организмы?

А. Простейшие

Б. Вирусы

В. Аскомицеты


Г. Эукариоты

Д. Прокариоты

3. На занятии по биологии преподаватель попросил указать в лабораторной работе степень увеличения микроскопа, которая использовалась при изучении микропрепаратов. Один из студентов не смог самостоятельно справиться с поставленной задачей. Как правильно подсчитать этот показатель?

А. Умножить показатели, указанные на всех объективах микроскопа

Б. Разделить показатель объектива с меньшим увеличением на показатель объектива с большим увеличением

В. Умножить показатели увеличения объектива и окуляра

Г. Разделить показатели увеличения объектива на показатель окуляра

Д. Вычесть показатели, указанные на всех объективах микроскопа, из значения увеличения окуляра

4. При изучении микропрепарата студент после его фиксации на предметном столике и достижения оптимальной освещённости поля зрения установил объектив «х40» и посмотрел в объектив. Преподаватель остановил студента и сказал, что при работе допущена принципиальная ошибка. Какая ошибка была допущена?

А. Не стоило фиксировать микропрепарат

Б. Изучение микропрепарата нужно было начать с помощью объектива с малым увеличением

В. Освещение регулируется в последнюю очередь

Г. Фиксация препарата производится перед завершением исследования

Д. Все манипуляции стоило проводить в обратном порядке

5. Существование жизни на всех уровнях определяется структурой более низкого уровня. Какой уровень организации предшествует и обеспечивает существование жизни на клеточном уровне:


А. Популяционно-видовой

Б. Тканевой

В. Молекулярный

Г. Организменный

Д. Биоценотический

Задачи для контроля знаний:

1. При попытке изучения микропрепарата с помощью светового микроскопа исследователь обнаружил, что всё поле зрения затемнено. Что может быть причиной этого явления? Как устранить эту проблему?

2. При попытке изучения микропрепарата с помощью светового микроскопа исследователь обнаружил, что освещена только половина поля зрения. Что может быть причиной этого явления? Как устранить эту проблему?

3. Какие манипуляции необходимо провести в случае, если при использовании светового микроскопа наблюдаемый объект виден нечётко?

4. Расчитать кратность увеличения светового микроскопа:

А) если на окуляре есть обозначение «х15», а на объективе «х8»

Б) если кратность увеличения линзы окуляра «х10» , а объектива «х40»

6. Материалы для разбора с преподавателем и контроля его усвоения:

6.1. Разбор с преподавателем узловых вопросов для освоения темы занятия.

6.2. Демонстрация преподавателем методик практических приемов по теме.

6.3. Материал для контроля усвоения материала:

Вопросы для разбора с преподавателем:

1. Медицинская биология как наука об основах жизнедеятельности человека, изучающая закономерности наследственности, изменчивости, индивидуального и эволюционного развития, а также вопросы морфофизиологической и социальной адаптации человека к условиям окружающей среды в связи с его биосоциальной сущностью.

2. Современный этап развития общей и медицинской биологии. Место биологии в системе медицинского образования.

3. Сущность жизни. Свойства живого. Формы жизни, ее фундаментальные свойства и атрибуты. Определение понятия жизни на современном уровне развития биологической науки.

4. Эволюционно обусловленные структурные уровни организации жизни; элементарные структуры уровней и основные биологические явления, их характеризующие.

5. Значение представлений об уровнях организации живого для медицины.

6. Особое место человека в системе органического мира.

7. Соотношение физико-химических, биологических и социальных явлений в жизнедеятельности человека.

8. Оптические системы в биологических исследованиях. Строение светового микроскопа и правила работы с ним.

9. Техника изготовления временных микропрепаратов, их изучение и описание. Методы изучения структуры клетки

Практическая часть

1. Используя методические указания изучить строение микроскопа и правила работы с ним.

2. Отработать навыки работы с микроскопом и изготовления временных препаратов волокон ваты, чешуек крыла бабочки. Изучить микропрепараты: кожица луковицы, лист элодеи, мазок крови лягушки, изучить типографский шрифт.

3. Занести в протокол граф логической структуры “Строение микроскопа”.

4. Занести в протокол “Правила работы с микроскопом”

5. Заполнить таблицу «Уровни организации и исследования многоклеточного организма».

Дата добавления: 2016-11-20; просмотров: 542 | Нарушение авторских прав

Похожая информация:

Поиск на сайте:

Прокариотические клетки по своему строению мельче и проще клеток эукариот. Среди них не бывает многоклеточных организмов, лишь иногда образуют подобие колоний. У прокариот нет ни только клеточного ядра, но и всех мембранных органелл (митохондрий, хлоропластов, ЭПС, комплекса Гольджи, центриолей и др.).

К прокариотам относятся бактерии, синезеленые водоросли (цианобактерии), археи и др. Прокариоты были первыми живыми организмами на Земле.

Функции мембранных структур выполняют выросты (впячивания) клеточной мембраны во внутрь цитоплазмы. Они бывают трубчатыми, пластинчатыми, иной формы. Ряд из них называют мезосомами. Фотосинтезирующие пигменты, дыхательные и другие ферменты располагаются на таких различных образованиях и таким образом выполняют свои функции.

У прокариот в центральной части клетки находится только одна большая хромосома (нуклеоид), которая имеет кольцевое строение. В ее состав входит ДНК. Вместо белков, придающих форму хромосоме как у эукариот, здесь находится РНК. Хромосома не отделена от цитоплазмы мембранной оболочкой, поэтому говорят, что прокариоты — безъядерные организмы. Однако в одном месте хромосома прикреплена к клеточной мембране.

Кроме нуклеоида в строении прокариотических клеток отмечается наличие плазмид (малых хромосом также кольцевой структуры).

В отличие от эукариот цитоплазма прокариот неподвижна.

У прокариот есть рибосомы, однако они мельче рибосом эукариот.

Прокариотические клетки отличаются сложным строением своих оболочек. Кроме цитоплазматической мембраны (плазмалеммы), у них есть клеточная стенка, а также капсула и другие образования, в зависимости от типа прокариотического организма. Клеточная стенка выполняет опорную функцию и препятствует проникновению вредных веществ. В состав клеточной стенки бактерий входит муреин (гликопептид).

На поверхности прокариот часто имеются жгутики (один или множество) и различные ворсинки.

С помощью жгутиков клетки перемещаются в жидкой среде. Ворсинки выполняют разные функции (обеспечивают несмачиваемость, прикрепление, переносят вещества, участвуют в половом процессе, образуя конъюгационный мостик).

Прокариотические клетки делятся бинарным делением. У них нет митоза и мейоза. Перед делением нуклеоид удваивается.

Прокариоты часто образуют споры, которые являются способом переживания неблагоприятных условий. Споры ряда бактерий сохраняют жизнеспособность при высокой и крайне низкой температурах. При образовании споры прокариотическая клетка покрывается толстой плотной оболочкой. Ее внутреннее строение несколько изменяется.

Строение эукариотической клетки

Клеточная стенка эукариотической клетки, в отличие от клеточной стенки прокариот состоит главным образом из полисахаридов. У грибов основным является азотсодержащий полисахарид хитин. У дрожжей 60–70% полисахаридов представлены глюканом и маннаном, которые связаны с белками и липидами. Функции клеточной стенки эукариот те же, что и у прокариот.

Цитоплазматическая мембрана (ЦПМ) также имеет трехслойную структуру. Поверхность мембраны имеет выпячивания, близкие к мезосомам прокариот. ЦПМ регулирует процессы обмена веществ клетки.

У эукариот ЦПМ способна захватывать из окружающей среды большие капли, содержащие углеводы, липиды и белки. Это явление называется пиноцитозом. ЦПМ эукариотической клетки способна также захватывать из среды твердые частицы (явление фагоцитоза). Кроме того, ЦПМ ответственна за выброс в среду продуктов обмена.

Различия строения клеток эукариот и прокариот

Рис. 2.2 Схема строения эукариотической клетки:

1 – клеточная стенка; 2 – цитоплазматическая мембрана;

3 – цитоплазма; 4 – ядро; 5 – эндоплазматическая сеть;

6 – митохондрии; 7 – комплекс Гольджи; 8 – рибосомы;

9 – лизосомы; 10 – вакуоли

Ядро отделено от цитоплазмы двумя мембранами, в которых имеются поры. Поры у молодых клеток открыты, служат они для миграции из ядра в цитоплазму предшественников рибосом, информационной и транспортной РНК. В ядре в нуклеоплазме имеются хромосомы, состоящие из двух нитевидных цепочных молекул ДНК, соединенных с белками. В ядре имеется также ядрышко, богатое матричной РНК и связанное со специфической хромосомой – ядрышковым организатором.

Основной функцией ядра является участие в размножении клетки. Это носитель наследственной информации.

В эукариотической клетке ядро – важнейший, но не единственный носитель наследственной информации. Часть такой информации содержится в ДНК митохондрии и хлоропластов.

Митохондрии – мембранная структура, содержащая две мембраны – наружную и внутреннюю, сильно складчатую. На внутренней мембране сосредоточены окислительно-восстанови-тельные ферменты. Основной функцией митохондрии является снабжение клетки энергией (образование АТФ). Митохондрии – саморепродуцирующая система, так как в ней имеется собственная хромосома – кольцевая ДНК и другие компоненты, которые входят в состав обычной прокариотической клетки.

Эндоплазматическая сеть (ЭС) – мембранная структура, состоящая из канальцев, которые пронизывают всю внутреннюю поверхность клетки. Бывает гладкой и шероховатой. На поверхности шероховатой ЭС располагаются рибосомы, более крупные, чем рибосомы прокариот. На мембранах ЭС расположены также ферменты, осуществляющие синтез липидов, углеводов и ответственных за транспорт веществ в клетке.

Комплекс Гольджи – пакеты уплощенных мембранных пузырьков – цистерн, в которых осуществляется упаковка и транспорт белков внутри клетки. В комплексе Гольджи происходит также синтез гидролитических ферментов (место образования лизосом).

В лизосомах сосредоточены гидролитические ферменты. Здесь происходит расщепление биополимеров (белков, жиров, углеводов).

Вакуоли отделены от цитоплазмы мембранами. В запасных вакуолях содержатся запасные питательные вещества клетки, а в шлаковых – ненужные продукты обмена и токсические вещества.

Самое очевидное отличие прокариот от эукариот заключается в наличии у последних ядра, что отражено в названии этих групп: «карио» с древнегреческого переводится как ядро, «про» — до, «эу» — хорошо. Отсюда прокариоты — это доядерные организмы, эукариоты — ядерные.

Однако это далеко не единственное и возможно не главное отличие прокариотических организмов от эукариот. В клетках прокариот вообще нет мембранных органоидов (за редким исключением) — митохондрий, хлоропластов, комплекса Гольджи, эндоплазматической сети, лизосом.

Их функции выполняют выросты (впячивания) клеточной мембраны, на которых располагаются различные пигменты и ферменты, обеспечивающие процессы жизнедеятельности.

У прокариот нет характерных для эукариот хромосом. Их основной генетический материал — это нуклеоид, обычно имеющий форму кольца. В эукариотических клетках хромосомы представляют собой комплексы ДНК и белков-гистонов (играют важную роль в упаковке ДНК). Эти химические комплексы называются хроматином. Нуклеоид прокариот не содержит гистонов, а форму ему придают связанные с ним молекулы РНК.

Хромосомы эукариот находятся в ядре. У прокариот нуклеоид находится в цитоплазме и обычно крепится в одном месте к мембране клетки.

Кроме нуклеоида в прокариотических клетках бывает разное количество плазмид — нуклеоидов существенно меньшего размера, чем основной.

Количество генов в нуклеоиде прокариот на порядок меньше, чем в хромосомах. У эукариот есть множество генов, выполняющих регуляторную функцию по отношению к другим генам. Это дает возможность эукариотическим клеткам многоклеточного организма, содержащим одну и ту же генетическую информацию, специализироваться; изменяя свой метаболизм, более гибко реагировать на изменения внешней и внутренней среды. Отличается и структура генов. У прокариот гены в ДНК располагаются группами — оперонами. Каждый оперон транскрибируется как единое целое.

Отличия прокариот от эукариот есть и в процессах транскрипции и трансляции. Самое главное заключается в том, что в прокариотических клетках эти процессы могут протекать одновременно на одной молекуле матричной (информационной) РНК: в то время как она еще синтезируется на ДНК, на готовом ее конце уже «сидят» рибосомы и синтезируют белок. В эукариотических клетках мРНК после транскрипции претерпевает так называемое созревание. И только после этого на ней может синтезироваться белок.

Рибосомы прокариот меньше (коэффициент седиментации 70S), чем у эукариот (80S). Отличается количество белков и молекул РНК в составе субъединиц рибосом. Следует отметить, что рибосомы (а также генетический материал) митохондрий и хлоропластов схожи с прокариотами, что может говорить об их происхождении от древних прокариотических организмов, оказавшихся внутри клетки-хозяина.

Прокариоты отличаются обычно более сложным строением своих оболочек. Кроме цитоплазматической мембраны и клеточной стенки у них также имеется капсула и другие образования, в зависимости от типа прокариотического организма. Клеточная стенка выполняет опорную функцию и препятствует проникновению вредных веществ. В состав клеточной стенки бактерий входит муреин (гликопептид). Среди эукариот клеточная стенка есть у растений (ее основной компонент — целлюлоза), у грибов — хитин.

Прокариотические клетки делятся бинарным делением. У них нет сложных процессов клеточного деления (митоза и мейоза), характерных для эукариот. Хотя перед делением нуклеоид удваивается, так же как хроматин в хромосомах. В жизненном цикле эукариот наблюдается чередование диплоидной и гаплоидной фаз. При этом обычно преобладает диплоидная фаза. В отличие от них у прокариот такого нет.

Для всего многообразия прокариотических организмов характерно большее, по сравнению с эукариотами, количество способов метаболизма. Среди прокариот есть не только фотосинтетики, но и хемосинтетики (синтез органики без участия солнечной энергии, а за счет энергии, выделяемой при различных химических реакциях). Кроме аэробного дыхания нередко встречается анаэробное (когда кислород не участвует в окислении органики). Анаэробные эукариоты — огромная редкость (например, у некоторых паразитических червей нет кислородного дыхания).

Клетки эукариот различны по размерам, но в любом случае существенно крупнее прокариотических (в десятки раз).

Питательные вещества в клетки прокариот поступают только с помощью осмоса. У эукариотических клеток кроме этого может также наблюдаться фаго- и пиноцитоз («захват» пищи и жидкости с помощью цитоплазматической мембраны).

В целом отличие прокариот от эукариот заключается в однозначно более сложном строении последних. Считается, что клетки прокариотического типа возникли путем абиогенеза (длительной химической эволюции в условиях ранней Земли). Эукариоты появились позже от прокариотов, путем их объединения (симбиотическая, а также химерная гипотезы) или эволюции отдельно взятых представителей (инвагинационная гипотеза). Сложность клеток эукариот позволила им организовать многоклеточный организм, в процессе эволюции обеспечить все основное разнообразие жизни на Земле.

Таблица отличий прокариот от эукариот

ПризнакПрокариотыЭукариотыКлеточное ядро

Мембранные органоиды

Оболочки клетки

Генетический материал

Деление

Многоклеточность

Рибосомы

Обмен веществ

Происхождение

Нет Есть
Нет. Их функции выполняют впячивания клеточной мембраны, на которых располагаются пигменты и ферменты. Митохондрии, пластиды, лизосомы, ЭПС, комплекс Гольджи
Более сложные, бывают различные капсулы. Клеточная стенка состоит из муреина. Основной компонент клеточной стенки целлюлоза (у растений) или хитин (у грибов). У клеток животных клеточной стенки нет.
Существенно меньше. Представлен нуклеоидом и плазмидами, которые меют кольцевую форму и находятся в цитоплазме. Объем наследственной информации значительный. Хромосомы (состоят из ДНК и белков). Характерна диплоидность.
Бинарное деление клетки. Есть митоз и мейоз.
Для прокариот не характерна. Представлены как одноклеточными, так и многоклеточными формами.
Мельче Крупнее
Более разнообразный (гетеротрофы, фотосинтезирующие и хемосинтезирующие различными способами автотрофы; анаэробное и аэробное дыхание). Автотрофность только у растений за счет фотосинтеза. Почти все эукариоты аэробы.
Из неживой природы в процессе химической и предбиологической эволюции. От прокариот в процессе их биологической эволюции.

Эукариотических клеток

Наиболее сложная организация присуща эукариотическим клеткам животных и растений. Строение клеток животных и растений характеризуется принципиальным сходством, но форма, размеры и масса их чрезвычайно разнообразны и зависят от того, является ли организм одноклеточным или многоклеточным. Например, диа-томовые водоросли, эвгленовые, дрожжи, миксомицеты и простейшие являются одноклеточными эукариотами, тогда как организмы подавляющего большинства других типов являются многоклеточными эукариотами, количество клеток у которых составляет от нескольких (например, у некоторых гельминтов) до миллиардов (у млекопитающих) на организм. Организм человека состоит из около 10 различных клеток, которые различаются между собой по осуществляемым ими функциям.

В случае человека насчитывают более 200 типов разных клеток. Наиболее многочисленными клетками в организме человека являются эпителиальные клетки, среди которых различают орого-вевающие клетки (волос и ногтей), клетки, обладающие всасывательной и барьерной функциями (в желуд очно-кишечном тракте, мочеполовых путях, роговице, влагалище и других системах органов), клетки, выстилающие внутренние органы и полости (пневмо-циты, серозные клетки и многие другие). Различают клетки, обеспечивающие метаболизм и накопление резервных веществ (гепатоциты, жировые клетки). Большую группу составляют эпителиальные и соединительнотканные клетки, секретизирующие внеклеточный матрикс (амилобласты, фибробласты, остеобласты и другие) и гормоны, а также сократительные клетки (скелетных и сердечных мышц, радужной оболочки и других структур), клетки крови и иммунной системы (эритроциты, нейтрофилы, эозинофилы, базофилы, Т-лимфоциты и другие). Существуют также клетки, выполняющие роль сенсорных преобразователей (фоторецепторы, осязательные, слуховые, обонятельные, вкусовые и другие рецепторы). Значительное число клеток представлено нейронами и гли-альными клетками центральной нервной системы. Существуют также специализированные клетки хрусталика глаза, пигментные клетки и питающие клетки, далее следует назвать подовые клетки. Известны и многие другие типы клеток человека.

В природе не существует некой типичной клетки, ибо все они характеризуются чрезвычайным разнообразием. Тем не менее все эукариотические клетки существенно отличаются от прокариотических клеток по ряду свойств и прежде всего по объему, форме и размерам. Объем большинства эукариотических клеток превышает объем прокариотов в 1000-10 000 раз. Такой объем прокариотических клеток связан с содержанием в них различных органелл, осуществляющих всевозможные клеточные функции. Для эукариотических клеток характерно также наличие большого количества генетического материала, сосредоточенного в основном в относительно большом количестве хромосом, что обеспечивает им большие возможности в дифференцировке и специализации.

Не менее важной особенностью эукариотических клеток является то, что им присуща компартментализация, обеспеченная наличием внутренних мембранных систем. В результате этого многие ферменты локализуются в определенных компартментах. Например, почти все ферменты, катализирующие синтез белков в животных клетках, локализованы в рибосомах, тогда как ферменты, катализирующие синтез фосфолипидов, в основном сосредоточены на клеточной ци-топлазматической мембране. В отличие от прокариотических клеток в эукариотических клетках имеется ядрышко.

Эукариотические клетки по сравнению с прокариотическими обладают более сложной системой восприятия веществ из окружающей среды, без чего невозможна их жизнь. Существуют и другие различия между эукариотическими и прокариотическими клетками.

Форма клеток бывает самой разнообразной и часто зависит также от выполняемых ими функций. Например, многие простейшие имеют овальную форму, тогда как эритроциты являются овальными дисками, а мышечные клетки млекопитающих вытянуты. Размеры эукариотических клеток являются микроскопическими (табл. 3).

Некоторые виды клеток характеризуются значительными размерами. Например, размеры нервных клеток у крупных животных достигают нескольких метров в длину, а у человека — до 1 метра. Клетки отдельных тканей растений достигают нескольких миллиметров в длину.

Считают, что чем крупнее организм в пределах вида, тем крупнее его клетки. Однако для родственных видов животных, различающихся по размерам, характерны и сходные по размерам клетки. Например, у всех млекопитающих сходны по размерам эритроциты.

Клетки различаются также и по массе. Например, одиночная клетка печени (гепатоцит) человека весит 19-9 г.

Соматическая клетка человека (типичная эукариотическая клетка) представляет собой образование, состоящее из множества структурных компонентов микроскопических и субмикроскопических размеров(рис. 46).

Использование электронной микроскопии и других методов позволило установить чрезвычайное разнообразие в структуре как оболочки и цитоплазмы, так и ядра. В частности, был установлен мембранный принцип строения внутриклеточных структур, исходя из которого различают ряд структурных компонентов клетки, а именно:

Таблица 3

Дата добавления: 2016-05-30; просмотров: 1408;

Источник: magictemple.ru

Эукариотические клетки имеют все многоклеточные и некоторые одноклеточные организмы. Они называются эукариоты. То есть организмы, которые содержат ядро.

Различия строения клеток эукариот и прокариот

Однако, большинство организмов, населяющих нашу планету имеют безъядерное строение клетки. Они не имеют оформленного ядра и поэтому называются прокариотами. К прокариотам относятся бактерии, в том числе цианобактерии (или синезеленые водоросли) и архебактерии (или археи).

Различия строения клеток эукариот и прокариот

Археи живут в широком диапазоне сред обитания и являются важной частью глобальной экосистемы. Они могут составлять до 20 % общей биомассы. Многие археи выживают при высоких температурах, часто свыше 100 °C. Они были обнаружены в местах где не могут выжить другие организмы.

Прокариотические клетки и эукариотические клетки имеют ряд отличий. И сегодня на уроке мы их определим.

Различия строения клеток эукариот и прокариот

Рассмотрим строение прокариотической клетки.

Для начала стоит сказать, что прокариотические клетки не имеют органоидов, которые имеются у эукариот.

У них нет ядра, эндоплазматической сети, комплакса Гольжди, митохондрий, лизосом.

Сверху бактериальную клетку защищает клеточная стенка, которая фиксирует форму клетки и придаёт ей прочность.

Прочность клеточной стенки придаёт муреин − это сложный полимер.  

Различия строения клеток эукариот и прокариот

Он имеет сетчатую структуру и образует жёсткий наружный каркас клетки. Состоит из углеводов и белков. Муреин важнейший компонент клеточной стенки бактерий, который выполняет опорную и защитную функции клетки. У архей муреина нет.

Строение клеточной стенки определяет форму микроорганизма и является чем-то вроде внешнего скелета.

Сверху клеточную стенку многих прокариот окружает слизистая структура – капсула бактерий. Она делает оболочку клетки более плотной и прочной.

Под клеточной стенкой располагается цитоплазматическая (внутренняя) мембрана, которая, отделяет цитоплазму от клеточной стенки.

Различия строения клеток эукариот и прокариот

Цитоплазматическая мембрана состоит из двойного слоя фосфолипидов с внедренными поверхностными, а также интегральными белками, как бы пронизывающими насквозь структуру мембраны.

Между наружной и внутренней мембранами располагается периплазматическое пространство – полость. Которое заполнено ферментами.

У некоторых микроорганизмов мембрана выпячивается внутрь клетки, и образует складки ─ мезосомы. Которые могут выполнять роль эндоплазматической сети, так как у прокариот её нет.

Различия строения клеток эукариот и прокариот

На мембранах мезосом прокариотических клеток располагаются ферменты, которые осуществляют различные химические реакции, а у фотоситезирующих прокариот располагаются светочувствительные пигменты. Благодаря этому мезосомы также могут выполнять функции митохондрий, хлоропластов и других органоидов.

У цианобактерий и некоторых пурпурных бактерий – множество мембранных тилакоидов. Благодаря которым они могут осуществлять процесс фотосинтеза.

Цитоплазматическая мембрана окружает цитоплазму.

Цитоплазма состоит из растворимых белков, рибонуклеиновых кислот и включений.

Из всех органоидов, свойственных эукариотам, в клетках прокариот имеются только многочисленные и более мелкие по размерам рибосомы. Они ответственны за синтез белков.

Так как прокариоты не имеют обособленного ядра, их наследственный материал располагается прямо в цитоплазме и представлен одной хромосомой − кольцевой молекулой ДНК, не связанной с белками. Место где располагается ДНК называют – нуклеоидом.

Различия строения клеток эукариот и прокариот

Деление прокариот

Так как прокариоты не имеют ядра, делятся они простым бинарным делением. Где материнская клетка делиться на две примерно одинаковые по размерам дочерние клетки. Перед делением клетки происходит репликация и образуются две одинаковые молекулы ДНК, каждая из них прикреплена к цитоплазматической мембране.

Во время деления плазмалемма врастает между двумя молекулами ДНК таким образом, что в итоге разделяет клетку надвое.

В каждой образовавшейся клетке оказывается по одной идентичной молекуле ДНК.

Прокариоты представлены одноклеточными организмами и для передвижения они используют жгутики и реснички.

Это тонкие нити, берущие начало от цитоплазматической мембраны, они имеют большую длину, чем сама клетка. Они остоят из 3 частей: спиралевидной нити, крюка и базального тельца.

Число жгутиков у бактерий различных видов варьирует от одного и тогда их называют монотрихи; до десятка и сотен жгутиков − перитрихи, например, как у кишечной палочки. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

Различия строения клеток эукариот и прокариот

Так же многое прокариоты содержат пили или ворсинки — нитевидные образования, более тонкие и короткие, чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина, который обладает способностью прикрепляться к различным поверхностям.

В отличие от эукариот многим прокариотам для существования не нужен кислород. По этой причине их называют анаэробами. Анаэробы обладают способностью разлагать в бескислородной среде органические соединения и таким образом получать необходимую энергию для своей жизнедеятельности.

Анаэробы широко распространены в природе: они обитают в почве, иле водоёмов, компостных кучах, в кишечнике людей и животных — всюду, где происходит разложение органических веществ без доступа кислорода.

Некоторые Анаэробы также выполняют полезные функции: способствуют перевариванию и усвоению питательных веществ в кишечнике людей и животных (бактерии маслянокислого и молочнокислого брожения), участвуют в круговороте веществ в природе.

В отличие от эукариотических организмов некоторые прокариоты способны фиксировать азот. Это очень важно для всех обитателей нашей планеты.

Так как атомы в молекуле азота связаны прочной тройной ковалентной связью, азот практически не вступает в реакции окисления-восстановления и в нормальных условиях без применения катализаторов не может использоваться растениями и животными.

Азотфиксация — это способность микроорганизмов восстанавливать стабильную молекулу азота до аммиака.

Азотфиксаторы восстанавливают азот при помощи фермента – нитрогеназы. Нитрогеназа разрушается под действием кислорода. Поэтому процесс восстановления проходит в бескислородной среде.

Азот в форме аммиака и соединений аммония, получающийся в процессах биогенной азотфиксации, быстро окисляется до нитратов и нитритов (этот процесс носит название нитрификации). В форме нитратов и нитритов он и усваивается организмами.

Фиксация азота осуществляется главным образом некоторыми свободно живущими бактериями, потребляющими органическое вещество почвы.

К ним относятся, например бактерии рода — клостридии.

Бактерии рода ризобиум, которые тоже участвуют в фиксации азота, живут в корневых клубенькАх бобовых растений. Клубеньковые бактерии ризобиум в корнях бобовых, фиксируют азот и превращают его в нитраты.

Цианобактерии или синезелёные водоросли за счёт того, что они имеют ген, который отвечает за синтез фермента, нитрогеназы, так же способны фиксировать азот.

Попадая в неблагоприятные условия существования бактерии образуют споры.

Различия строения клеток эукариот и прокариот

Спо́ры — особый тип клеток с плотной оболочкой.

Переход бактерий к спорообразованию наблюдается при истощении питательного субстрата, недостатке углерода, азота, фосфора, накоплении в среде катионов калия и марганца, изменении рН, повышении содержания кислорода, то есть при неблагоприятных условиях существования.

Процесс образования спор проходит ряд последовательных стадий:

Первая стадия подготовительная.

Во время неблагоприятных условий изменяется метаболизм бактерии, завершается репликация ДНК и происходит её уплотнение (сжатие).

Различия строения клеток эукариот и прокариот

Клетка содержит два или более нуклеоида, один из них локализуется в спорогенной зоне, остальные — в цитоплазме спорангия. Уменьшается количество воды и уплотняется цитоплазма.

Стадия проспоры является первой стадией спорообразования. Она характеризуется появлением проспоровой перегородки, которая делит клетку на маленькую проспору и большую материнскую клетку.

В результате чего образуется проспора, окруженная двумя мембранами;

Слудующий этап − образование оболочек.

Внутри мембранной структуры проспоры образуется плотная споровая оболочка – кортекс, на поверхности которой происходит сгущение белков.

Различия строения клеток эукариот и прокариот

Следом идет стадия созревания споры. Заканчивается образование всех структур споры, она становится устойчивой к высоким и низким температурам. Спора приобретает характерную форму и занимает определённое положение в клетке.

Так внутри бактериальной клетки образуется одна спора.

Различия строения клеток эукариот и прокариот

После этого бактериальная клетка разрушается, а спора выходит наружу.

Основная функция спор — сохранение бактерии (а точнее ее генетического материала) от неблагоприятных условий внешней среды.

Строение зрелой споры сложное и одинаковое у разных видов бактерий. Центральная ее часть представлена сердцевиной, или спороплазмой, в состав которой входят нуклеиновые кислоты, белки. Она содержит рибосомы и нечётко выраженные мембранные структуры.

Спороплазма окружена цитоплазматической мембраной, к ней прилегает зачаточный пептидогликановый слой, затем располагается специфический для спор массивный слой кортекса, или коры. На поверхности кортекса имеется внешняя мембрана. Снаружи спора одета многослойной оболочкой.

Таким образом благодаря многослойной оболочки спора может существовать долгое время и переживать неблагоприятные условия. Она не боится высыхания, холода и жары.

Только прямые солнечные лучи, то есть ультрофиолетовое облучение способно разрушить спору.

Поэтому ультрафиолет часто используется для абсолютной дезинфекции.

В благоприятных условиях споры прорастают, проходя последовательные стадии:

Различия строения клеток эукариот и прокариот

Процесс прорастания спор начинается с поглощения воды. Они набухают, увеличиваются в размерах. Из оболочки на полюсе, в центре или между полюсом и центром появляется отросток, из которого вытягивается палочка.

Затем спора лопается в произвольном месте и из неё выходит вегетативная клетка, снабжённая у подвижных видов жгутиковым аппаратом.

Процесс прорастания спор идёт значительно быстрее и занимает 4-5 часов.

Итак, как видно из всего вышесказанного прокариотические клетки – бактерии очень живучи и многочисленны Несмотря, на то что в отличие от эукариотических клеток они не имеют многих органелл.

Бактерии могут приносить либо вред человеку, либо пользу.

Первыми микроорганизмами, которые были использованы человеком для своих нужд, были бактерии молочнокислого и спиртового брожения.

Именно они готовили для нас и готовят до сих пор сыр, хлеб и вино. Причём пользоваться продуктом их работы люди начали задолго до открытия бактерий.

Так же бактерии используют и в фермерском хозяйстве. Кислотоустойчивые штаммы бактерий ускоряют переработку компоста и животноводческих отходов на удобрение и для многих других целей.

Многие генетически модифицированные бактерии участвуют в процессах производства лекарственных препаратов.

 

Источник: videouroki.net

Прокариоты

Прокариоты — организмы, состоящие из клеток, которые не имеют клеточного ядра или любых мембранных органелл. Это означает, что генетический материал ДНК у прокариот не связан в ядре. Кроме того, ДНК прокариот менее структурирована, чем у эукариот. В прокариотах ДНК одноконтурная. ДНК эукариот организована в хромосомы. Большинство прокариот состоят только из одной клетки (одноклеточные), но есть несколько и многоклеточных. Ученые разделяют прокариот на две группы: бактерии и археи.

Типичная клетка прокариота включает:

  • клеточную стенку;
  • плазматическую (клеточную) мембрану;
  • цитоплазму;
  • рибосомы;
  • жгутики и пили;
  • нуклеоид;
  • плазмиды;

Эукариоты

Эукариоты — живые организмы, клетки которых содержат ядро и мембранные органеллы. Генетический материал у эукариот находится в ядре, а ДНК организована в хромосомы. Эукариотические организмы могут быть одноклеточными и многоклеточными. Все животные являются эукариотами. Также эукариоты включают растения, грибы и простейших.

Типичная клетка эукариота включает:

  • плазматическую (клеточную) мембрану;
  • ядрышко;
  • ядро;
  • хромосомы;
  • рибосомы;
  • эндоплазматический ретикулум;
  • аппарат (комплекс) Гольджи;
  • цитоскелет;
  • цитоплазму;
  • лизосомы;
  • центриоль;
  • митохондрии.

Понравилась статья? Поделись с друзьями:

Источник: NatWorld.info