Строение животной клетки

Сложноорганизованный животный организм состоит из большого количества тканей. Форма и назначение клетки зависит от вида ткани, в состав которой она входит. Несмотря на их разнообразие, можно обозначить общие свойства в клеточном строении:

  • мембрана состоит из двух слоёв, которые отделяют содержимое от внешней среды. По своей структуре она эластична, поэтому клетки могут иметь разнообразную форму;
  • цитоплазма находится внутри клеточной мембраны. Это вязкая жидкость, которая постоянно двигается;
  • ядро – имеет большие размеры, по сравнению с растениями. Располагается в центре, внутри него находится ядерный сок, ядрышко и хромосомы;
  • митохондрии состоят из множества складок – крист;
  • эндоплазматическая сеть имеет множество каналов, по ним питательные вещества поступают в аппарат Гольджи;

  • комплекс трубочек, именуемый аппаратом Гольджи, накапливает питательные вещества;
  • лизосомы регулируют количество углеродов и других питательных веществ;
  • рибосомы расположены вокруг эндоплазматической сети. Их наличие делает сеть шероховатой, гладкая поверхность ЭПС свидетельствует об отсутствии рибосом;
  • центриоли – особые микротрубочки, которые отсутствуют у растений.

Рис. 1. Строение животной клетки.

Функции органоидов клетки

Каждый органоид выполняет определённые функции, совместная их работа составляет единый сплочённый организм. Так, например:

  • клеточная мембрана обеспечивает транспортирование веществ внутрь клетки и из неё;
  • внутри ядра находится генетический код, который передаётся из поколения в поколение. Именно ядро регулирует работу других органелл клетки;
  • энергетическими станциями организма являются митохондрии. Именно здесь образуется вещество АТФ, при расщеплении которого выделяется большое количество энергии.

Рис. 2. Строение митохондрий

  • на стенках аппарата Гольджи синтезируются жиры и углеводы, которые необходимы для построения мембран других органоидов;
  • лизосомы расщепляют ненужные жиры и углеводы, а также вредные вещества;
  • рибосомы синтезируют белок;
  • клеточный центр (центриоли) играют важную роль в образовании веретена деления во время митоза клетки.

Рис. 3. Центриоли.

Источник: obrazovaka.ru

Клетка растения

Растительная клетка, наряду с общими признаками и схожестью в строении с животной, имеет и свои отличительные особенности, присущие только ей:

  • наличие клеточной стенки (оболочки),
  • наличие пластид,
  • наличие вакуоли.

Строение растительной клетки

На рисунке схематично показана модель растительной клетки, из чего она состоит, как называются основные её части.

Cтроение растительной клетки рисунок с подписями

Ниже будет подробно рассказано о каждой из них.

Органоиды клетки и их функции описательная таблица

В таблице собрана важная информация об органоидах клетки. Она поможет школьнику составить план рассказа по рисунку.



Органоид Описание Функция Особенности
Клеточная стенка Покрывает цитоплазматическую мембрану, состав – в основном целлюлоза. Поддержание прочности, механическая защита, создание формы клетки, поглощение и обмен различных ионов, транспорт веществ. Характерна для растительных клеток (отсутствует в животной клетке).
Цитоплазма Внутренняя среда клетки. Включает полужидкую среду, расположенные в ней органоиды и нерастворимые включения. Объединение и взаимодействие всех структур (органоидов). Возможно изменение агрегатного состояния.
Ядро Самый крупный органоид. Форма шаровидная или яйцевидная. В нем расположены хроматиды (молекулы ДНК). Ядро покрыто двумембранной ядерной оболочкой. Хранение и передача наследственной информации. Двумембранный органоид.
Ядрышко Сферическая форма, d – 1-3 мкм. Являются основными носителями РНК в ядре. В них синтезируются рРНК и субъединицы рибосом. Ядро содержит 1-2 ядрышка.
Вакуоль Резервуар с аминокислотами и минеральными солями. Регулировка осмотического давления, хранение запасных веществ, аутофагия (самопереваривание внутриклеточного мусора). Чем старше клетка, тем большее пространство в клетке занимает вакуоль.
Пластиды 3 вида: хлоропласты, хромопласты и лейкопласты. Обеспечивает автотрофный тип питания, синтез органических веществ из неорганических. Иногда могут переходить из одного вида пластид в другой.
Ядерная оболочка Содержит две мембраны. К внешней прикрепляются рибосомы, в некоторых местах происходит соединение с ЭПР. Пронизана порами (обмен между ядром и цитоплазмой). Разделяет цитоплазму от внутреннего содержимого ядра. Двумембранный органоид.

Цитоплазматические образования органеллы клетки

Поговорим подробнее о составляющих растительной клетки.

Ядро

Ядро осуществляет хранение генетической информации и реализацию наследуемой информации. Местом хранения являются молекулы ДНК. При этом в ядре присутствуют репарационные ферменты, которые способны контролировать и ликвидировать самопроизвольное повреждение молекул ДНК.

Cтроение растительной клетки рисунок с подписями

Кроме этого, сами молекулы ДНК в ядре подвержены редупликации (удвоению). В этом случае клетки, образованные при делении исходной, получают одинаковый и в качественном и количественном соотношении объем генетической информации.


Эндоплазматическая сеть (ЭПС)

Выделяют два типа: шероховатый и гладкий. Первый тип синтезирует белки на экспорт и клеточные мембраны. Второй тип способен осуществлять детоксикацию вредных продуктов обмена.

Аппарат Гольджи

Открыт исследователем из Италии К. Гольджи в 1898 году. В клетках располагается вблизи ядра. Эти органоиды представляют собой мембранные структуры, укомплектованные вместе. Такую зону скопления называют диктиосомой.

Cтроение растительной клетки рисунок с подписями

Они принимают участие в накоплении продуктов, которые синтезируются в эндоплазматическом ретикулуме и являются источником клеточных лизосом.

Лизосомы

Не являются самостоятельными структурами. Они представляют собой результат деятельности эндоплазматического ретикулума и аппарата Гольджи. Их главное предназначение участвовать в процессах расщепления внутри клетки.

Cтроение растительной клетки рисунок с подписями

В лизосомах насчитывается около четырех десятков ферментов, которые разрушают большинство органических соединений. При этом сама мембрана лизосом устойчива к действию таких ферментов.

Митохондрии

Двумембранные органеллы. В каждой клетке их число и размеры могут варьироваться. Они окружены двумя высокоспециализированными мембранами. Между ними расположено межмембранное пространство.

Внутренняя мембрана способна образовывать складки кристы. Благодаря наличию крист, внутренняя мембрана превосходит в 5 раз площадь внешней мембраны.

Cтроение растительной клетки рисунок с подписями

Повышенная функциональная активность клетки обусловлена увеличенным числом митохондрий и большим количеством крист в них, тогда как в условиях гиподинамиии количество крист в митохондрии и число митохондрий резко и быстро изменяется.

Обе мембраны митохондрий отличаются по своим физиологическим свойствам. При повышенном или пониженном осмотическом давлении внутренняя мембрана способна сморщиваться или растягиваться. Для наружной мембраны характерно только необратимое растяжение, которое может привести к разрыву. Весь комплекс митохондрий, наполняющих клетку, называют хондрионом.

Пластиды

По своим размерам эти органоиды уступают только ядру. Существует три вида пластид:

  • отвечающие за зелёную окраску растений хлоропласты,
  • ответственные за осенние цвета — оранжевый, красный, жёлтый, охра хромопласты,
  • не влияющие на окрашивание, бесцветные лейкопласты.

Cтроение растительной клетки рисунок с подписями

Стоит отметить: установлено, что в клетках одновременно может быть только какой-то один из видов пластид.

Строение и функции хлоропластов

В них осуществляются процессы фотосинтеза. Присутствует хлорофилл (придает зеленую окраску). Форма – двояковыпуклая линза. Количество в клетке – 40-50. Имеет двойную мембрану. Внутренняя мембрана формирует плоские пузырьки – тилакоиды, которые упакованы в стопки – граны.

Это важно: основной функцией хлоропластов является фотосинтез – синтез органических веществ из неорганических при участии световой.

Хромопласты

За счет ярких пигментов придают органам растений яркие цвета: разноцветным лепесткам цветов, созревшим плодам, осенним листьям и некоторым корнеплодам (морковь).

Хромопласты не имеют внутренней мембранной системы. Пигменты могут накапливаться в кристаллическом виде, что придает пластидам разнообразные формы (пластина, ромб, треугольник).

Функции данного вида пластид пока до конца не изучены. Но по имеющейся информации, это устаревшие хлоропласты с разрушенным хлорофиллом.


Лейкопласты

Присущи тем частям растений, на которые солнечные лучи не попадают. Например, клубни, семена, луковицы, корни. Внутренняя система мембран развита слабее, чем у хлоропластов.

Ответственны за питание, накапливают питательные вещества, принимают участие в синтезе. При наличии света лейкопласты способны переродиться в хлоропласты.

Рибосомы

Мелкие гранулы, состоящие из РНК и белков. Единственные безмембранные структуры. Могут располагаться одиночно или в составе группы (полисомы).

Cтроение растительной клетки рисунок с подписями

Рибосому формируют большая и малая субъединица, соединенные ионами магния. Функция – синтез белка.

Микротрубочки

Это длинные цилиндры, в стенках которых расположен белок тубулин. Этот органоид – динамическая структура (может происходить его наращивание и распад). Принимают активное участие в процессе деления клеток.

Источник: tvercult.ru

 Исторические открытия
                                                                                            
1609 — изготовлен первый микроскоп (Г. Галилей)


1665 — обнаружена клеточная структура пробковой ткани (Р. Гук)

1674 — открыты бактерии и простейшие (А. Левенгук)

1676 — описаны пластиды и хроматофоры (А. Левенгук)

1831 — открыто клеточное ядро (Р. Броун)

1839 — сформулирована клеточная теория  (Т. Шванн, М. Шлейден)

1858- сформулировано положение «Каждая клетка из клетки» (Р. Вирхов)

1873 — открыты хромосомы  (Ф. Шнейдер)

1892 — открыты вирусы (Д. И. Ивановский)

1931 — сконструирован электронный микроскоп (Е. Руске, М.Кноль)

1945 — открыта эндоплазматическая сеть (К. Портер)

1955 — открыты рибосомы (Дж. Палладе)



Раздел:Учение о клетке
Тема: Клеточная теория. Прокариоты и эукариоты

Клетка (лат.»цкллюла» и греч.
171;цитос») — элементарная жи
вая система, основная структурная единица растительных и животных организмов, способная к самовозобнавлению, саморегуляции и самовоспроизведению. Открыта английский ученым  Р. Гуком в 1663г., им же предложена этот термин. Клетка эукариотов представлена двумя системами — цитоплазмой и ядром. Цитоплазма состоит из различных органелл, которые можно классифицировать  на: двухмембраные  — митохондрии и пластиды;  и одномембранные — эндоплазматическая сеть (ЭПС), Аппарат Гольджи, плазмалемма, тонопласты, сферосомы, лизосомы; немембранные — рибосомы, центросомы, гиалоплазма. Ядро состоит из ядерной оболочки (двухмембранной) и немембранных структур — хромосом, ядрышка и ядерного сока. Кроме того, в клетках имются различные включения.

 КЛЕТОЧНАЯ ТЕОРИЯ: Создатель этой теории — немецкий ученый Т. Шванн, который опираясь на работы М. Шлейдена, Л. Окена, в 1838 -1839 гг. сформулировал следующие положения:

  1. все организмы растений  и животных состоят из клеток
  2. каждая клетка функционирует независимо от других,  но вместе со всеми
  3. все клетки возникают из безструктурного вещества неживой материи.

 Позднее Р. Вирхов ( 1858 ) внес существенное уточнение в последнее положение теории:
     4. все клетки возникают только из клеток путем их деления.

СОВРЕМЕННАЯ КЛЕТОЧНАЯ ТЕОРИЯ:

  1. клеточная организация возникла на заре жизни и прошла длительный путь эволюции от прокариотов до эукариотов, от предклеточных организмов до одно- и многоклеточных.
  2. новые клетки образуются путем деления от ранее существовавших
  3. клетка является микроскопической живой системой, состоящей из цитоплазмы и ядра, окруженных мембраной(за исключением прокариотов)
  4. в клетке осуществляются : 
  • метаболизм — обмен веществ;
  • обратимые физиологические процессы — дыхание, поступление и выделение веществ, раздражимость , движение;
  • необратимые процессы — рост и развитие.

    5. клетка может быть самостоятельным организмом. Все многоклеточные организм также состоят из клеток и их производных. Рост, развитие и размножение  многоклеточного организма — следствие жизнедеятельности одной или нескольких клеток.


Прокариоты (предъядерные, доядерные) составляют надцарство, включающее одно царство — дробянки, объединяющее подцарство архебактерии, бактерии и оксобактерии (отдел цианобактерий и хлороксибактерии)

Эукароты(ядерные) также составляют надцарство. Оно объединяет царства грибы, животные, растения.
 


Тема: Строение и функции клетки

 


                          Растительная клетка :                                              Животная клетка :


 Органеллы  Строение  Функции
 Наружная клеточная мембрана
 ультромикроскопическая пленка, состоящая из бимолекулярного слоя липидов. Цельность липидного слоя может прерываться белковыми молекулами — порами. Кроме того, белки лежат мозаично по обе стороны мембраны, образуя ферментные системы.
 изолирует клетку от окружающей среды, обладает избирательной проницаемостью, регулирует процесс поступления веществ в клетку; обеспечивает обмен веществ и энергии с внешней средой, способствует соединению клеток в ткани, участвует в пиноцитозе и фагоцитозе; регулирует водный баланс клетки и выводит из нее конечные продукты жизнедеятельности.
 Эндоплазматичкская сеть ЭПС

 Ультрамикроскопическая система мембран, образующих трубочки, канальцы, цистерны пузырьки. Строение мембран универсальное, вся сеть объединена в единое целое с наружной мембраной ядерной оболочки и наружной клеточной мембраной. Гранулярная ЭПС несет рибосомы, гладкая лишена их.
Обеспечивает транспорт веществ как внутри клетки, так и между соседними клетками.  Делит клетку на отдельные секции, в которых одновременно происходят различные физиологические  процессы и химические реакции. Гранулярная ЭПС участвует в синтезе белка. В каналах ЭПС молекулы белка приобретают вторичную, третичную и четвертичную структуры, синтезируются жиры, транспортируется АТФ
 Митохондрии

 Микроскопические органеллы, имеющие двухмембраное строение. Внешняя мембрана гладкая, внутренняя — образует различной формы выросты — кристы. В матриксе митохондрий (полужидкое вещество) находятся ферменты, рибосомы, ДНК, РНК. Размножаются делением.
Универсальная органелла, являющаяся дыхательным и энергетическим центром. В процессе кислородного этапа диссимиляции в матриксе с помощью ферментов происходит  расщеплении органических веществ с освобождением энергии, которая идет на синтез  АТФ (на кристах)
 Рибосомы

 Ультрамикроскопические органеллы округлой или грибовидной формы, состоящие из двух частей- субъединиц. Они не имеют мембранного строения и состоят из белка и рРНК. Субъединицы образуются в ядрышке. Объединяются вдоль молекул иРНК в цепочки -полирибосомы — в цитоплазме  Универсальные органеллы всех клеток животных и растений. Находятся в цитоплазме в свободном состоянии или на мембранах ЭПС; кроме того, содержаться в митохондриях и хлоропластах. В рибосомах синтезируются белки по принципу матричного синтеза; образуется полипептидная цепочка — первичная структура молекулы белка.
 Лейкопласты

 Микроскопические органеллы, имеющие двухмембранное строение. Внутренняя мембрана образует 2-3 выроста Форма округлая. Бесцветны. Как и все пластиды, способны к делению. Характерны для растительных клеток. Служат местом отложения запасных питательных веществ, главным образом крахмальных зерен. На свету их строение усложняется и они преобразуют  в хлоропласты. Образуются из пропластид.
 Аппарат Гольджи (диктиосома)

 микроскопические одномембранные органеллы, состоящие из стопочки плоских цистерн, по кроям которых ответвляются трубочки, отделяющие мелкие пузырьки. Имеет два полюса : строительный и секреторный  наиболее подвижная и изменяющаяся органелла. В цистернах накапливаются продукты синтеза, распада и вещества, поступившие в клетку, а так же вещества, которые выводятся из клетки. Упакованные в пузырьки, они поступают в цитоплазму. в растительной клетке участвуют в построении клеточной стенки.
 Хлоропласты  Микроскопические органеллы, имеющие двухмембранное строение. Наружная мембрана гладкая. Внутренняя мембрана образует систему  двухслойных пластин — тилакоидов  стромы и тилакоидов гран.  В мембранах тилакоидов гран между слоями молекул белков и липидов           сосредоточены  пигменты — хлорофилл и каротиноиды. В белково — липидном матриксе находятся собственные рибосомы, ДНК, РНК. Форма хлоропластов чечевицеобразная. Окраска зеленая.
 Характерны для растительных клеток. Органеллы фотосинтеза, способные создавать из неорганических веществ (СО2 и Н2О) при наличии световой энергии и пигмента хлорофилла  органические вещества — углеводы и свободный кислород. Синетз собственных белков. Могут образовываться из пропластид или лейкопластов, а осенью преобразоваться в хромопласты (красные и оранжевые плоды, красные и желтые листья). Способны к делению.
 Хромопласты

Микр-ие органеллы, имеющие двухмембранное строение. Собственно хромопласты имеют  шаровидную форму, а образовавшиеся из хлоропластов принимают форму кристаллов каротиноидов, типичную для данного вида растения. Окраска красная. оранжевая, желтая 
 Характерны для растительных клеток.  Придают лепесткам цветков окраску, привлекательную для насекомых —  опылителей. В осенних листьях и зрелых плодах,  отделяющихся от растения, содержатся кристаллические каротиноиды — конечные продукты обмена
 Лизосомы   

   Микроскопические одномембраные органеллы  округлой формы. их число зависит от жизнедеятельности клетки и ее физиологического состояния. в лизосомах находится лизируещее (растворяющее) ферменты, синтезированные на рибосомах. обособляются от диктисом в виде пузырьков                       
 Клеточный центр   
(Центросома)

  Ультромикроскопическая органелла немембраного строения. состоит из двух центриолей. каждая имеет цилиндрическую форму ,  стенки образованы девятью                           триплетами трубочек, а в середине находится однородное вещество. центриоли расположены перпендикулярно друг другу. 
     Принимает участие в деление клеток животных и низших растений . в начале деления центриоли расходятся к разным полюсам клетки. от центриолей к центромерам хромосом отходят нити веретена деления. в анафазе эти нити притягиваются хроматидами к полюсам. после окончания деления центриоли остаются в дочерних клетках, удваиваются и образуют клеточный центр.
 Органоиды движения
реснички — многочисленные цитоплазматические выросты на поверхности мембраны

жгутики — единичные цитоплазматические  выросты на поверхности клетки

ложные ножки (псевдоподии)- амебовидные выступы цитоплазмы



миофибриллы — тонкие нити длиной 1 см и более

цитоплазма осуществляющая струйчатое и круговое движение

 удаление частичек пыли. передвижение

передвижение

образуются у одноклеточных животных в разных местах цитоплазмы для захвата пищи, для передвижения. Характерны для лейкоцитов крови, а так же клеток энтодермы кишечнополостных.

служат для сокращения мышечных волокон

перемещение органелл клетки по отношению к источнику света, тепла, химического раздражителя.

                

Источник: www.sites.google.com

Справочная таблица содержит особенности строения животной клетки, локализация и функции ее органойдов.

Клетка  — это основная структурная и функциональная единица живых организмов, которая осуществляет рост, развитие, обмен веществ и энергии, хранящей и реализующей генетическую информацию.

Клетка — это сложная система биополимеров, отделяющих от внешней среды цитолемой (плазматической мембраной) и состоящую из ядра и цитоплазмы, в которой распологаются органелы и включения.

строение животной клетки схема

1 — агранулярная (гладкая) эндоплазматическая сеть; 2 — гликокаликс; 3 — цитолемма (плазматическая мембрана); 4 — кортикальный слой цитоплазмы; 2+3+4 = поверхностный комплекс клетки; 5 — пиноцитозные пузырьки; 6 — митохондрия; 7 — промежуточные филаменты; 8 — секреторные гранулы; 9 — выделение секрета; 10 — комплекс Гольджи; 11 — транспортные пузырьки; 12 — лизосомы; 13 — фагосома; 14 — свободные рибосомы; 15 — полирибосома; 16 — гранулярная эндоплазматическая сеть; 17 — окаймленный пузырек; 18 — ядрышко; 19 — ядерная ламина; 20 — перинуклеарное пространство, ограниченное наружной и внутренней мембранами кариотеки; 21 — хроматин; 22 — поровый комплекс; 23 — клеточный центр; 24 — микротрубочка; 25 — пероксисома

Таблица строение животной клетки, особенности и функции органойдов

Органойд

Особенности строения органойдов животной клетки

Функции органойдов

Ядро животной клетки

1) оболочка (кариолемма):

— две мембраны, пронизанные порами

— между мембранами находится перенук­леарное пространство

— наружная мембрана связана с НПС

2) ядерные поры

— защита

— транспорт

— хранение генет информации

— регуляция процессов обмена веществ:

а) биосинтез

б) деление

в) активность клетки

3) ядерный сок: 

— по физическому состоянию близок к гиалоплазме

— по химическому состоянию содержит больше нуклеиновых кислот

 

4) ядрышки:

— немембранные компоненты ядра

— может быть одно или несколько

— образуются на определенных участками хромосом (ядрышковые организаторы)

— синтез рРНК

— синтез тРНК

— образование рибосом

5) хроматин – нити ДНК+белок

 

6) хромосома – сильно спирализованный хроматин, кт. содержит гены

Хромосома → 2 хроматиды (соединения в области центромеры) → 2 полухроматиды → хромонемы → микрофибриллы (30-45% ДНК+белок)

Хранение, передача и реали­зация наслед­ственной информации

7) вязкая кариоплазма

 

Эндоплазматическая сеть — ЭПС (ЭПР — ретикулум)

1) шероховатая (гранулярная) — поверхность покрыта рибосомами

синтез белка

— разграни­чительная

— транс­портная

— выведение из клетки ядовитых веществ

— синтез стероидов

2) гладкая (агранулярная) — покрыта липидами (гликоген и холестерин)

синтез и расщепление углеводов и липидов

Аппарат (комплекс) Гольджи (пластинчатый комплекс)

Уплощенные цистерны и канальца уложены в стопки (диктосомы)

— сортировка и упаковка макромолекул

— склад для хранения веществ

— образование первичных лизосом

— концентрация, освобождение и уплотнение межклеточного секрета

— синтез глико- и липопротеидов

— накопление и выведение из клетки веществ

— образование борозды деления при митозе

Видоизме­нённый аппарат Гольджи – акросома у спермато­зоидов

Хранение веществ, растворяющих оболочку яйцеклетки.

Лизосомы

Пузырек, заполне­нный пищевари­тельными (гидролити­ческими) ферментами

— перева­ривание поглощен­ного материала (клеточное пищеварение)

— распад продуктов обмена

— разрушение бактерий и вирусов

— автолиз (разрушение частей клетки и отмерших органелл)

— удаление целых клеток и межкле­точного вещества

Пероксисома

Пузырек, содержащий пероксидазу

окисление органических веществ

Сферосома

Овальный органоид, содержащий жир

синтез и накопление липидов

Вакуоль

Полость в цитоплазме, содержащая клеточный сок

Клеточный сок:

— это содержимое вакуоли – водный раствор различных органических и неорганических веществ

— основная часть Н2О – 70-90 %

— вакуольный сок имеет кислую реакцию

— химический состав клеточного сока различен. Зависит от вида растения, состояния клетки и расположения клетки в теле растения

— резервуар для H2O и растворенных соединений

— функция лизосом (пищева­ри­тельная вакуоль)

— осморе­гуляция и выделение (сократи­тельная вакуоль)

Митохондрии  

1) наружная (гладкая) мембрана имеет выпячивания – кристы

2) кристы – ферменты, участвующие в преобразовании энергии

3) внутреннее пространство – матрикс:

— ДНК

— рибосомы

— белки – ферменты

— РНК

Органеллы, в которых происходит процесс
аэробного дыхания.

— синтез АТФ

— синтез митохон­дриальных белков

— синтез нуклииновых кислот

— синтез углеводов и липидов

— образование митохон­дриальных рибосом

Рибосома

В типичной эукариотической клетке имеется порядка 50000 свободных рибосом

1) состоит из рРНК, белка и магния

2) две субъединицы: большая и малая

— представляют собой места синтеза белка (для внутриклеточного использования)

Центросома (клеточный центр)

1) состоит из 2-х центриолей и лучистой сферы

2) центриоли расположены перпендикулярно друг другу и образованы 9-ю триплетами микротрубочек

3) имеют свою собственную молекулу ДНК

— центриоли определяют полюса при делении клетки

— центросферы формируют короткие и длинные нити веретена деления

Микрофиламенты

Нитевидные структуры состоящие из белков актина и миозина.

— сократительная, обеспечивают подвижность клетки

— образуют цитоскелет

Микротрубочки

Нитевидные структуры животной клетки, состоящие из белка тубулина

— опорная

Микрофибриллы

Нити, состоящие из белка керотина

— опорная

Включения

Непостоянные компоненты: минеральные (соли), витаминные, пигментные

Непостоянные компоненты животной клетки, которые накапливаются и исчезают в процессе жизнедеятельности клетки

Трофические (питательные вещества):

— Углеводы (крахмала). Зерна крахмала находятся в лейкопластах (амилопластах)→цитоплазма→клетки

— Белки.  Находятся в семенах, кристалоподобных структурах в цитоплазме и ядре. Чаще накапливаются в вакуолях (в клеточном соке)

— Жиры. Находятся в гиалоплазме в виде бесцветных капель.

— секреторные (гормоны)

— экскреторные (продукты обмена):

а) оксалат кальция

б) карбонат кальция или кремнезем (кристалический песок)

Цитоплазма

Состоит главным образом из воды, в которой растворены разнообразные вещества, включая глюкозу, белки и ионы.

Цитоплазма пронизана цитоскелетом, образующим «каркас» клетки.

Плазмалемма (плазматическая мембрана)

Замыкает поверхность клетки и контактирует с окружающей средой.

Она обладает выборочной проницаемостью и регулирует перемещение растворенных веществ между клеткой и ее окружением. Плазматическая мембрана выполняет целый ряд функций, многие из которых обеспечиваются белками, входящими в ее состав.

Источник: infotables.ru

Как нарисовать растительную клетку?

  • Жизненные формы стали активно размножаться методом деления телесной оболочки, на части. Далее образовались организмы, у которых ядро отделено от цитоплазмы, в ядре содержится информация о наследственности, и подается в цитоплазму. Так появились первые растения, животные и грибы.
  • Относятся данные виды к классу – ядерных организмов. Все живые организмы, состоят из множества клеток, объединенных в целостный механизм, благодаря которому – осуществляется ход развития данного организма. У растений, имеющих многоклеточные части – функции физиологических процессов в клетках, разделены по степени их назначения и расположения в теле. Клетки растений, в отличие от животных, обладают упругой оболочкой, всесторонне окутывающей внутренний слой. Природное строение клетки имеет обтекаемую форму, которую часто изображают плоской, в схематическом рисунке.
Нарисовать
Нарисовать
  • Оболочка растительной клетки является достаточно сложной конфигурацией. Внешний слой растительной клетки укрыт непроницаемым слоем клетчатки – клеточной стенкой, имеющей мелкие поры. Дальше располагается тонкая пленочная оболочка, охватывающая  внутренность клетки – плазматическая мембрана.
  • Жидкое вещество в клетке – цитоплазма, составленная из вакуолей – частиц, наполненных жидким содержимым. В центральной зоне клетки или возле мембраны, размещено – ядро, тельце, имеющее внутри ядерный сок и ядрышко. Ядро также, окаймлено отдельной пленкой и соседствует с пластидами, маленькими телами, расположенными вокруг него по цитоплазме.
Растительная и животная клетка
Растительная и животная клетка

Клеточное строение растений — из чего состоит живая растительная клетка: оболочка, цитоплазма, ядро, рибосомы, органоиды, структура

Клетка – важная часть организма, снабженная системой мембранных структур и биополимеров, отвечающих за энергетические и метаболические процессы. Благодаря своему внутреннему механизму, клетка является поддерживающим и продуцирующим элементом для всего организма. Следует отметить, что клетка лишена наличия раскрытых мембран – они всегда имеют замкнутый вид, полностью обрамляют клеточные зоны.

Растительная клетка имеет следующее описание:

  • Внешняя мембрана – плазмалемма. Тонкий пленочный покров, образованный из воды, белков и фосфолипидов. Оболочка имеет прочную влажную и эластичную поверхность, со способностью к ускоренному воссозданию собственных границ. Ее строение, одинаково характерно для всех растительных мембран. Клеточная мембрана окружена плотным каркасом – клеточной стенкой. Это водоустойчивый полисахарид – клетчатка. Данная поверхность, защищает клетку от внешних воздействий и контролирует баланс веществ, поступающих внутрь клетки, способствует обмену энергией, участвует в питании, соединении клеток и фагоцитозе, следит за нормой жидкости и выведением остаточных продуктов жизнедеятельности.
Плазмалемма
Плазмалемма
  • Эндоплазматическая сеть – мелкие каналы, которые устланы мембраной и пронизывают непрерывно весь покров. Эта особенность, помогает передавать питательные элементы, от одной клетки к другой. Данный способ передачи задействован в распространении информации и химических реакций между клетками.
Строение и функции
Строение и функции
  • Поры – проходы, располагающиеся во втором ярусе прослойки. В этой части, присутствует только первичная пленка и срединная диафрагма, которых принято называть поровой мембраной и замыкающей пленкой поры. В последней зоне присутствуют плазмодесменные каналы. Функцией пор является упрощение транспортировки влаги и питательных элементов между клетками. Произрастают поры в межклеточной перегородке.
  • Оболочка клетки – четко сформированная поверхность, полисахаридного вида, являющаяся результатом работы цитоплазмы. За ее формирование отвечают – эндоплазматическая сеть и аппарат Гольджи. В состав цитоплазмы входит бесцветная коллоидная система – гиалоплазма, создающая трансформацию золя в вещество геля. Ее основная задача состоит в группировании всех клеточных соединений в один механизм и  предоставление благоприятных условий, для процессов метаболизма в них.
  • Матрикс или гиалоплазма цитоплазмы – внутриклеточная природа. Содержит в составе воду и биополимеры: полисахариды, белки разностороннего характера. По химическому и действующему свойству, липиды, нуклеиновую кислоту, нуклеотиды, аминокислоты, моносахариды. Коллоидная среда, основанная на соединении воды и биополимеров, может иметь консистенцию в виде геля или золя – разжиженной субстанции. Ее водянистая или гелеобразная структура, заполняет полностью полость клетки, а так же может наблюдаться в отдельных участках. Также в гиалоплазме обитают органеллы и другие введения, сообщающиеся между собой.  Как правило, их месторасположение обусловлено видом клетки. Будучи статичной сферой, гиалоплазма, при помощи оболочки способна взаимодействовать с внешней межклеточной атмосферой и отвечает за  деятельность органелл и клеток.
Цитоплазма
Цитоплазма
  • Органоиды – составные части цитоплазмы. Являются неизбежными элементами в формировании цитоплазмы. Их микроскопический размер и форма обусловлены, а отсутствие или нарушение приводит клетку к гибели. Рассмотреть органоиды, можно только при наличии электронного микроскопа. Некоторые виды органоидов, склонны к репродукции и делению.

Как выглядит живая растительная клетка под микроскопом: что находится в цитоплазме растительной клетки?

Органоиды клетки

Строение ядра

  1. Ядро – наиболее выраженная часть и большая клеточная органелла. Впервые обследовано и изучено в 1831 году, биологом Брауном. Имеет различную конфигурацию, от овальной формы до линзовидной формы. Клетка, в которой нет ядра прекращает выработку веществ и свой рост. Наличие ядра является жизненно важным составляющим клетки. Отсутствие ядра — инициирует избыток продуктов разложения, и запускает процесс омертвения клетки. Нельзя получить новое ядро, без наличия старого, просто так из цитоплазмы ядро не восстанавливается, его получают только методом деления уже существующего ядра. Внутреннее пространство ядра заполнено ядерным соком, в котором плавают составные части: одно или более ядрышек, гистоны, молекулы ДНК.
  2. Ядрышко – состоит из специальных белков и РНК. Занимается вырабатыванием рибосом, отвечающих за синтезирующие свойства белка в клетке.
Разделение
Разделение

Комплекс Гольджи

  • Данный органоид, одинаково содержится во всех  эукариотических видах растительных клеток. Выступает в виде плоских мембранных мешочков, сложенных в несколько ярусов. Мешочки утолщаются от центра к концу плоскости и создают губчатые ответвления, отъединяющие небольшие пузырьки.
  • Располагаются преимущественно возле ядра. Пузырьки осуществляют транзит специальных гранул между клетками, предназначены для выработки лизосом.
  • Заключать вещества в пузырьки и отправлять в цитоплазму, где они распределяются на две категории: одни — для внутреннего использования, другие – для вывода наружу. Помогает растительной клетке обустраивать стенки ее границ.
Комплекс
Комплекс

Лизосомы

  • Это небольшие пузырьки – органеллы овальной формы, окруженные мембраной, численность, которых зависит от жизнеспособности клетки.
  • Их задача – регулировать пищеварительную систему внутри клетки. Функциональную деятельность лизосом, можно наблюдать в процессе проращивания семян.
Пузырьки
Пузырьки

Вакуоль

  • Одна из основных частей в клеточном строении. По форме напоминает некий плоский контейнер в структуре цитоплазмы, который наполнен жидким содержимым: водный раствор минеральных солей, пигменты, органические и аминокислоты,  углеводы.
  • Между цитоплазмой и вакуолью образуется специфическая пластина – тонопласт. В клетках молодых растений цитоплазма занимает все внутреннее пространство. Затем в период взросления, в полости цитоплазмы образуются вакуоли, наполненный соком. Цитоплазма приобретает, губчатый вид.
  • В следующем этапе, между некоторыми вакуолями происходит слияние, слои цитоплазмы отходят от центра к оболочке, а в середине формируется одна крупная вакуоль. Минеральный и органический водный состав вакуоли, определяет осмотические качества, позволяя контролировать попадание и выведение из клетки жидкости, молекул обмена веществ и ионов.
  • Совокупность с цитоплазмой и ее пластинками – вакуоль формирует хорошую осмотическую организацию. Это ярко выражено в определенных способностях растений: давление тургора, высасывающая функция, осмотическая возможность.
Растительная
Растительная

Пластиды

  • Органоиды, которые занимают второе место по величине, после ядра. Образуются только у растительных организмов, исключением являются грибы. Пластиды целостны в своем генезисе и изолированы двойной пластинкой от цитоплазмы.
  • Отдельные виды, обладают внутренней системой пластин, которая достаточно сформирована. Пластиды участвуют в функциях метаболизма и занимают весомую позицию в этом процессе.

Бесцветные пластиды – лейкопласты

  • Элементы цитоплазмы с четкими очертаниями своей формы. Имеют маленький размер и более округлое строение тельца, две мембраны, где внутренняя часть создает до трех выростов. Попадаются в клетках корней и клубней.
  • Выполняют функцию накопителя питательных субстанций – крахмальных зерен. Некоторые особи, способны накапливать жиры.
  • Особенность лейкопластов — создавать запасы, иногда формирует отложения кристаллических форм белка или бесформенных включений. При попадании света на лейкопласты меняется внутреннее строение, превращая их в хлоропласты.
Рисунок животной клетки с обозначениями
Вид

Хлоропласты

  • Это органеллы микроскопического размера с наличием двух мембран: внешняя мембрана – гладкой текстуры, а внутренняя – состоит из  двухслойных оболочек. Хлоропласты представляют собой элемент овальной формы, зеленого цвета.
  • Хлоропласты – свойственные пластиды, для растительных клеток. Являются органеллами, способными производить свободный кислород и углеводы, из неорганических веществ, методом фотосинтеза. Разные типы растений, обладают своим размером хлоропластов, их средняя величина достигает 6 мкм.
  • Чем выше сорт растения, тем сложнее составляющая конструкция хлоропластов. Данные органеллы, могут передвигаться по течению цитоплазмы, а также движением, активно реагируют на освещение, сгущаются со стороны источника света. Создают собственные белковые соединения.
  • В осенний период трансформируются в хромопласты, благодаря чему, можно наблюдать покраснение или желтизну листвы и плодов. Вещество, наполняющее хлоропласты – хлорофилл, способствует восприятию солнечной энергии и окрашиванию растений в зеленый цвет.
Расположение
Расположение

Хромопласты

  • Образуются из хлоропластов или лейкопластов. Чаще, имеют сферическую форму, а те, что сформировались от хлоропластов – кристаллическую, каратеноиды. Их наличие, разбивает зеленый хлорофилл.
  • При помощи характерных пигментов придают желтый, красный и оранжевый окрас.
Разнообразие
Разнообразие

Митохондрии

  • Еще один вид органелл, свойственный растительной клетке.
  • Строение митохондрий не постоянное, их вид может приобретать форму жгутиков, зерна или палочек. Первые упоминания об этой органелле, датируются 1894 годом, элементы обнаружил немецкий анатом Альтман. А позднее, немецкий гистолог дал им название – митохондрии. И только в середине 20 века найденные органеллы, были изучены детально, при содействии электрического микроскопа.
  • Известно, что митохондрии относятся к строению из двух мембран. Наружная пластинка – гладкая, а внутренняя – формирует выросты разной структуры, подобие трубчатой ткани. В матриксе полужидком веществе, заполняющем митохондрию, находятся рибосомы, липиды и ферменты, РНК и ДНК. Размножаются они методом деления.
  • Продолжительность жизни – до 10 дней. Митохондрия – это энергетическое и дыхательное средоточие процессов. В ходе работы полужидкого вещества, окислительного и кислородного видоизменения, при содействии ферментов совершается переработка органических материй и получение энергии. Эта энергия обеспечивает составление АТФ.
  • Скопление энергетического потенциала уходит на поддержание развития и роста.
Описание
Описание

Рибосомы

  • Органоиды, грибовидной или закругленной формы, составленные из двух непохожих  компонентов. Не обладают наличием мембранного строения. Каждая частица рибосомы, способна разделяться на две единицы и порождать белок, после воссоединения в целостную рибосому.
  • Образуются органоиды в ядре, после чего выходят в цитоплазму и крепятся к внешней стенке пластины эндоплазматической сети, иногда устраиваются в произвольном порядке.
  • Рибосомы могут работать индивидуально или группироваться – это зависит от вида производимого белка. Объединенные группы рибосом, называются полирибосомы.
Важный органоид
Важный органоид

Эндоплазматическая сеть

  • Система пластин, составляющих сеть трубочек, пузырьков, канальцев, цистерн, находящихся в цитоплазме. Образует мембраны, универсальной конфигурации, соединенные в одну целостную систему с внешней пластиной, при помощи ядерного покрова и внешней клеточной оболочкой.
  • Распознаются ЭС по структуре: гладкая система – лишена рибосом, а шершавая – обладает ими. Осуществляет доставку полезных веществ внутрь и в смежные клетки. Разделяет на несколько секторов клетку. В каждом из секторов, синхронно совершаются всевозможные реакции и процессы жизнедеятельности.
  • Шершавый тип ЭС – принимает участие в образовании белка. Сложные молекулы белка, сформированные в каналах эндоплазматической сети, решают задачи доставки АТФ и синтеза жиров. Эндоплазматическая сеть была выявлена английским ученым Портером, в 1945 году.

Источник: heaclub.ru