Клетки животных являются типичными эукариотическими клетками, заключенными в плазматическую мембрану и содержат окруженное мембраной ядро ​​и органеллы. В отличие от эукариотических клеток растений и грибов, клетки животных не имеют клеточной стенки. Эта особенность была утеряна в далеком прошлом одноклеточными организмами, которые породили царство животные. Большинство клеток, как животных, так и растений, имеют размер от 1 до 100 мкм (микрометров) и поэтому видны только с помощью микроскопа.

Читайте также: Основные отличия строения клеток растений и животных.

Клетки были обнаружены в 1665 году британским ученым Робертом Гуком, который впервые наблюдал их в своем грубом (по сегодняшним меркам) оптическом микроскопе XVII века. Фактически, Гук придумал термин «клетка» в биологическом контексте. Микроскоп является фундаментальным инструментом в области клеточной биологии и часто используется для наблюдения или изучения клеток различных организмов.

Особенности животных и их клеток


Отсутствие жесткой клеточной стенки позволило животным развить широкое разнообразие типов клеток, тканей и органов. Специализированные клетки, образовавшие нервы и ткани мышц, которые невозможно развить растениям, способствовали мобильности этих организмов. Способность двигаться с помощью специализированных мышечных тканей является отличительной чертой животного мира, хотя некоторые животные, в первую очередь губки, не обладают дифференцированными тканями. Примечательно, что простейшие могут передвигаться, но только через немышечные движение, а при помощи псевдоподий, ресничек и жгутиков.

Животное царство уникально среди эукариотических организмов, потому что большинство тканей животных связаны во внеклеточном матриксе тройной спиралью белка, известной как коллаген. Растительные и грибковые клетки связаны в тканях или агрегатах другими молекулами, такими как пектин. Тот факт, что никакие другие организмы не используют коллаген таким образом, является одним из признаков того, что все животные возникли от одного одноклеточного предка. Кости, раковины, спикулы и другие упрочненные структуры образуются, когда коллагенсодержащий внеклеточный матрикс между животными клетками становится кальцифицированным.

Животные — большая и невероятно разнообразная группа организмов. Будучи мобильным, они способны воспринимать и реагировать на окружающую среду, обладают гибкостью при поиске пищи, защите и размножении. Однако, в отличие от растений, животные не могут производить свою пищу, и поэтому всегда прямо или косвенно зависят от растительной жизни.


Большинство клеток животных диплоидны, что означает, что их хромосомы существуют в гомологичных парах. Известно, что иногда встречаются различные хромосомные плоиды. Распространение животных клеток происходит разными путями. В случаях полового размножения сначала необходим клеточный процесс мейоза, так что могут быть получены гаплоидные дочерние клетки или гаметы. Затем две гаплоидные клетки сливаются с образованием диплоидной зиготы, которая развивается в новый организм, путем деление клеток в процессе митоза.

Самые ранние ископаемые свидетельства животных датируются Вендским периодом (650-454 миллионов лет назад). Первое массовое вымирание закончилось этим периодом, но в течение последующего кембрийского периода, взрыв новых форм жизни привел к появлению многих основных групп фауны, известных сегодня. Есть свидетельства, что позвоночные животные появились до раннего ордовикского периода (505-438 миллионов лет назад).

Строение животных клеток

Используйте приведенные ниже ссылки, чтобы получить более подробную информацию о различных органеллах, которые содержатся в клетках животных.

  • Центриоли — самовоспроизводящиеся органеллы, состоящие из девяти пучков микротрубочек и встречающиеся только в клетках животных. Они помогают в организации деления клеток, но не являются существенными для этого процесса.

  • Реснички и Жгутики — необходимы для передвижения клеток. В многоклеточных организмах реснички функционируют для перемещения жидкости или веществ вокруг неподвижной клетки, а также для передвижения клетки или группы клеток.
  • Эндоплазматический ретикулум — сеть мешочков, которая производит, обрабатывает и переносит химические соединения внутри и снаружи клетки. Он связан с двуслойной ядерной оболочкой, обеспечивающей трубопровод между ядром и цитоплазмой.
  • Эндосомы — мембранно-связанные везикулы, образованные совокупностью сложных процессов, известных как эндоцитоз, и обнаружены в цитоплазме практически любой клетки животных. Основным механизмом эндоцитоза является обратное тому, что происходит во время экзоцитоза или клеточной секреции.
  • Комплекс (аппарат) Гольджи — отдел распределения и доставки химических веществ клетки. Он модифицирует белки и жиры, встроенные в эндоплазматический ретикулум, а также подготавливает их к экспорту за пределы клетки.
  • Промежуточные филаменты — широкий класс волокнистых белков, которые играют важную роль как структурных, так и функциональных элементов цитоскелета. Они функционируют как элементы, которые помогают поддерживать форму и жесткость клетки.
  • Лизосомы — осуществляют пищеварительные функции, перерабатывая клеточные отходы.
  • Микрофиламенты — нити из глобулярных белков, называемые актином. Эти филаменты являются преимущественно структурными по своей функции и важным компонентом цитоскелета.

  • Микротрубочки — прямые, полые цилиндры, присутствующие в цитоплазме всех эукариотических клеток (у прокариот их нет) и выполняющие различные функции, от транспортировки до структурной поддержки.
  • Митохондрии — продолговатые органеллы, которые находятся в цитоплазме каждой эукариотической клетки. В клетке животных они являются основными генераторами энергии, превращая кислород и питательные вещества в энергию.
  • Ядро — высокоспециализированная органелла, которая служит в качестве информационно-административного центра клетки. Эта органелла имеет две основные функции: 1) хранение наследственного материала клетки или ДНК; 2) координиция деятельность клетки, которая включает в себя рост, посредственный метаболизм, синтез белка и размножение (деление клеток).
  • Пероксисомы — группа связанных одной мембраной сферических органелл, встречающиеся в цитоплазме.
  • Плазматическая мембрана — защитный слой клетки, который также регулируют прохождение молекул внутрь и из клеток.
  • Рибосомы — крошечные органеллы, состоящие из приблизительно 60% РНК и 40% белка. У эукариот рибосомы состоят из четырех нитей РНК. В прокариотах они включают три нити РНК.

Понравилась статья? Поделись с друзьями:

Источник: NatWorld.info

Общая характеристика клеток


Клетка является наименьшей и основной структурной единицей живых организмов, способной к самообновлению, саморегуляции и самовоспроизведению.

Характерные размеры клеток: клетки бактерий — от 0,1 до 15 мкм, клетки других организмов — от 1 до 100 мкм, иногда достигают 1-10 мм; яйцеклетки крупных птиц — до 10-20 см, отростки нервных клеток — до 1 м.

Форма клеток весьма разнообразна: существуют шаровидные клетки (кокки), цепочечные (стрептококки), вытянутые (палочки, или бациллы), изогнутые (вибрионы), извитые (спириллы), многогранные, с двигательными жгутиками и др.

Виды клеток: прокариотические (безъядерные) и эукариотические (имеющие оформленное ядро).

Эукариотические клетки, в свою очередь, подразделяются на клетки животных, растений и грибов.

Структурная организация эукариотической клетки

Протопласт — это все живое содержимое клетки. Протопласт всех эукариотических клеток состоит из цитоплазмы (со всеми органоидами) и ядра.


Цитоплазма — это внутреннее содержимое клетки за исключением ядра, состоящее из гиалоплазмы, погруженных в нее орга-иелл и (в некоторых типах клеток) внутриклеточных включений (запасных питательных веществ и/или конечных продуктов обмена).

Гиалоплазма — основная плазма, матрикс цитоплазмы, основное вещество, являющееся внутренней средой клетки и представляющее собой вязкий бесцветный коллоидный раствор (содержание воды до 85%) различных веществ: белков (10%), сахаров, органических и неорганических кислот, аминокислот, полисахаридов, РНК, липидов, минеральных солей и т.п.

■ Гиалоплазма является средой для внутриклеточных реакций обмена и связующим звеном между органеллами клетки; она способна к обратимым переходам из золя в гель, ее состав определяет буферные и осмотические свойства клетки. В цитоплазме находится цитоскелет, состоящий из микротрубочек и способных сокращаться белковых нитей.

■ Цитоскелет определяет форму клетки и участвует во внутриклеточном перемещении органоидов и отдельных веществ. Ядро — самый крупный органоид эукариотической клетки, содержащий хромосомы, в которых хранится вся наследственная информация (подробнее см. ниже).

Структурные компоненты эукариотической клетки:


■ плазмалемма (плазматическая мембрана),
■ клеточная стенка (только у клеток растений и грибов),
■ биологические (элементарные) мембраны,
■ ядро,
■ эндоплазматическая сеть (эндоплазматический ретикулум),
■ митохондрии,
■ комплекс Гольджи,
■ хлоропласты (только у клеток растений),
■ лизосомы, s
■ рибосомы,
■ клеточный центр,
■ вакуоли (только у клеток растений и грибов),
■ микротрубочки,
■ реснички, жгутики.

Схемы строения животной и растительной клеток приведены ниже:

shemyi-stroeniya-zhivotnoy-i-rastitelnoy-kletok

Биологические (элементарные) мембраны

Биологические (элементарные) мембраны — это активные молекулярные комплексы, разделяющие внутриклеточные органоиды и клетки. Все мембраны имеют сходное строение.

Структура и состав мембран: толщина 6-10 нм; состоят в основном из молекул белков и фосфолипидов.

Фосфолипиды образуют двойной (бимолекулярный) слой, в котором их молекулы обращены своими гидрофильными (водорастворимыми) концами наружу, а гидрофобными (водонерастворимыми) концами — внутрь мембраны.


Белковые молекулы располагаются на обеих поверхностях двойного липидного слоя (периферические белки), пронизывают оба слоя молекул липидов (интегральные белки, большая часть которых — ферменты) или только один их слой (полуинтегральные белки).

Свойства мембран: пластичность, асимметрия (состав наружного и внутреннего слоев и липидов, и белков различен), полярность (внешний слой заряжен положительно, внутренний — отрицательно), способность самозамыкаться, избирательная проницаемость (при этом гидрофобные вещества проходят через двойной липидный слой, а гидрофильные — через поры в интегральных белках).

Функции мембран: барьерная (отделяет содержимое органоида или клетки от окружающей среды), структурная (обеспсчнило определенную форму, размеры и устойчивость органоида или клетки), транспортная (обеспечивает транспорт веществ в органоид или клетку и из нее), каталитическая (обеспечивает примембранные биохимические процессы), регулятивная (участвует в регуляции обмена веществ и энергии между органоидом или клеткой и внешней средой), участвует в преобразовании энергии и поддержании трансмембранного электрического потенциала.

Плазматическая мембрана (плазмалемма)


Плазматическая мембрана, или плазмалемма, — это биологическая мембрана или комплекс плотно прилегающих друг к другу биологических мембран, покрывающих клетку с внешней стороны.

Строение, свойства и функции плазмалеммы в основном такие же, как и у элементарных биологических мембран.

❖ Особенности строения:

plazmennaya-membrana

■ наружная поверхность плазмалеммы содержит гликокаликс — полисахаридный слой молекул гликолипоидов и гликопротеидов, служащих рецепторами для «узнавания» определенных химических веществ; у животных клеток она может быть покрыта слизью или хитином, а у растительных клеток — целлюлозой или пектиновыми веществами;

■ обычно плазмалемма образует выросты, впячивания, складки, микроворсинки и др., увеличивающие поверхность клетки.

Дополнительные функции: рецепторная (участвует в «узнавании» веществ и в восприятии сигналов из окружающей среды и передаче их в клетку), обеспечение связи между клетками в тканях многоклеточного организма, участие в построении специальных структур клетки (жгутиков, ресничек и др.).

Клеточная стенка (оболочка)


Клеточная стенка — это жесткая структура, расположенная снаружи плазмалеммы и представляющая собой внешний покров клетки. Присутствует у прокариотических клеток и клеток грибов и растений.

Состав клеточной стенки: целлюлоза у клеток растений и хитин у клеток грибов (структурные компоненты), белки, пектины (которые участвуют в образовании пластинок, скрепляющих стенки двух соседних клеток), лигнин (скрепляющий целлюлозные волокна в очень прочный каркас), суберин (откладывается на оболочку изнутри и делает ее практически непроницаемой для воды и растворов) и др. Наружная поверхность клеточной стенки эпидермальных клеток растений содержит большое количество карбоната кальция и кремнезема (минерализация) и покрыта гидрофобными веществами восками и кутикулой (слоем вещества кутина, пронизанным целлюлозой и пектинами).

Функции клеточной стенки: служит внешним каркасом, поддерживает тургор клеток, выполняет защитную и транспортную функции.

Органеллы клетки

Органеллы (или органоиды) — это постоянные высокоспециализированные внутриклеточные структуры, имеющие определенное строение и выполняющие соответствующие функции.

По назначению органеллы подразделяются на:
■ органеллы общего назначения (митохондрии, комплекс Гольджи, эндоплазматическая сеть, рибосомы, центриоли, лизосомы, пластиды) и
■ органеллы специального назначения (миофибриллы, жгутики, реснички, вакуоли).
По наличию мембраны органеллы подразделяются на:
■ двумембранные (митохондрии, пластиды, клеточное ядро),
■ одномембранные (эндоплазматическая сеть, комплекс Гольджи, лизосомы, вакуоли) и
■ немембранные (рибосомы, клеточный центр).
Внутреннее содержимое мембранных органелл всегда отличается р.т окружающей их гиалоплазмы.

Митохондрии — двумембранные органеллы эукариотических клеток, осуществляющие окисление органических веществ до конечных продуктов с освобождением энергии, запасаемой в молекулах АТФ.

stroenie-mitohondrii

Строение: палочковидная, шаровидная и нитевидная формы, толщина 0,5-1 мкм, длина 2-7 мкм; двумембранные, наружная мембрана гладкая и имеет высокую проницаемость, внутренняя мембрана образует складки — кристы, на которых находятся тельца сферической формы — АТФ-сомы. В пространстве между мембранами скапливаются ионы водорода 11 , участвующие в кислородном дыхании.

Внутреннее содержимое (матрикс): рибосомы, кольцевые ДНК, РНК, аминокислоты, белки, ферменты цикла Кребса, ферменты тканевого дыхания (находятся на кристах).

Функции: окисление веществ до СO2 и Н2O; синтез АТФ и специфических белков; образование новых митохондрий в результате деления надвое.

Пластиды (имеются только у клеток растений и автотрофных протистов).

stroenie-hloroplasta

Виды пластид: хлоропласты (зеленые), лейкопласты (бесцветные округлой формы), хромопласты (желтые или оранжевые); пластиды могут превращаться из одного вида в другой.

Строение хлоропластов: они двумембранные, имеют округлую или овальную форму, длина 4—12 мкм, толщина 1-4 мкм. Наружная мембрана гладкая, на внутренней имеются тилакоиды — складки, образующие замкнутые дисковидные впячивания, между которыми находится строма (см. ниже). У высших растений тилакоиды собраны в стопки (наподобие столбика монет) граны, которые соединены друг с другом ламеллами (одиночными мембранами).

Состав хлоропластов: в мембранах тилакоидов и гран — зерна хлорофилла и других пигментов; внутреннее содержимое (строма): белки, липиды, рибосомы, кольцевые ДНК, РНК, ферменты, участвующие в фиксации СO2, запасные вещества.

Функции пластид: фотосинтез (хлоропласты, содержащиеся в зеленых органах растений), синтез специфических белков и накопление запасных питательных веществ: крахмала, белков, жиров (лейкопласты), придание окраски тканям растений с целью привлечения насекомых-опылителей и распространителей плодов и семян (хромопласты).

Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум, имеется во всех эукариотических клетках.

Строение: представляет собой систему соединенных между собой канальцев, трубочек, цистерн и полостей различной формы и размеров, стенки которых образованы элементарными (одинарными) биологическими мембранами. Различают два типа ЭПС: гранулярную (или шероховатую), содержащую рибосомы на поверхности каналов и полостей, и агранулярную (или гладкую), не содержащую рибосом.

Функции: разделение цитоплазмы клетки на отсеки, препятствующие смешению происходящих в них химических процессов; шероховатая ЭПС накапливает, изолирует для созревания и транспортирует,белки, синтезированные рибосомами на ее поверхности, синтезирует мембраны клетки; гладкая ЭПС синтезирует и транспортирует липиды, сложные углеводы и стероидные гормоны, выводит из клетки ядовитые вещества.

Комплекс (или аппарат) Гольджи — мембранная органелла эукариотической клетки, расположенная вблизи клеточного ядра, представляющая собой систему цистерн и пузырьков и участвующая в накоплении, хранении и транспортировке веществ, построении клеточной оболочки и образовании лизосом.

stroenie-kompleksa-goldzhi

Строение: комплекс представляет собой диктиосому — стопку ограниченных мембраной плоских дисковидных мешочков {цистерн), от которых отпочковываются пузырьки, и систему мембранных трубочек, связывающих комплекс с каналами и полостями гладкой ЭПС.

Функции: образование лизосом, вакуолей, плазмалеммы и клеточной стенки растительной клетки (после ее деления), секреция ряда комплексных органических веществ (пектиновых веществ, целлюлозы и др. у растений; гликопротеинов, гликолипидов, коллагена, белков молока, желчи, ряда гормонов и др. у животных); накопление и обезвоживание транспортированных по ЭПС липидов (из гладкой ЭПС), доработка и накопление белков (из гранулярной ЭПС и свободных рибосом цитоплазмы) и углеводов, выведение веществ из клетки.

Зрелые цистерны диктиосомы отшнуровывают пузырьки (вакуоли Гольджи), заполненные секретом, который затем либо используется самой клеткой, либо выводится за ее пределы.

Лизосомы — клеточные органеллы, обеспечивающие расщепление сложных молекул органических веществ; образуются из пузырьков, отделяющихся от комплекса Гольджи или гладкой ЭПС, и присутствуют во всех эукариотических клетках.

Строение и состав: лизосомы — это небольшие одномембранные пузырьки округлой формы диаметром 0,2-2 мкм; заполнены гидролитическими (пищеварительными) ферментами (~40), способными расщеплять белки (до аминокислот), липиды (до глицерина и высших карбоновых кислот), полисахариды (до моносахаридов) и нуклеиновые кислоты (до нуклеотидов).

Сливаясь с эндоцитозными пузырьками, лизосомы образуют пищеварительную вакуоль (или вторичную лизосому), где и происходит расщепление сложных органических веществ; полученные мономеры через мембрану вторичной лизосомы поступают в цитоплазму клетки, а непереваренные (негидролизуемые) вещества остаются во вторичной лизосоме и затем, как правило, выводятся за пределы клетки.

■ Функции: гетерофагия — расщепление чужеродных веществ, поступивших в клетку путем эндоцитоза, аутофагия — уничтожение ненужных клетке структур; автолиз — саморазрушение клетки, происходящее в результате освобождения содержимого лизосом при гибели или перерождении клетки.

❖ Вакуоли — крупные пузырьки или полости в цитоплазме, образующиеся в клетках растений, грибов и многих протистов и ограниченные элементарной мембраной -тонопластом.

vakuoli-rastitelnyih-kletok

■ Вакуоли протистов подразделяют на пищеварительные и сократительные (имеющие в мембранах пучки эластичных волокон и служащие для осмотической регуляции водного баланса клетки).

■Вакуоли растительных клеток заполнены клеточным соком — водным раствором различных органических и неорганических веществ. В них также могут находиться ядовитые и дубильные вещества и конечные продукты жизнедеятельности клеток.

■Вакуоли растительных клеток могут сливаться в центральную вакуоль, которая занимает до 70-90% объема клетки и может быть пронизана тяжами цитоплазмы.

Функции: накопление и изоляция запасных веществ и веществ, предназначенных для экскреции; поддержание тургор-ного давления; обеспечение роста клетки за счет растяжения; регуляция водного баланса клетки.

♦Рибосомы — органеллы клетки, присутствующие во всех клетках (в количестве нескольких десятков тысяч), расположенные на мембранах гранулярной ЭПС, в митохондриях, хлоропластах, цитоплазме и наружной ядерной мембране и осуществляющие биосинтез белков; субъединицы рибосом образуются в ядрышках.

stroenie-ribosomyi

■ Строение и состав: рибосомы -мельчайшие (15-35 нм) немембранные гранулы округлой и грибовидной формы; имеют два активных центра (аминоацильный и пептидильный); состоят из двух неравных субъединиц — большой (в виде полусферы с тремя выступами и каналом), которая содержит три молекулы РНК и белок, и малой (содержащей одну молекулу РНК и белок); субъединицы соединяются с помощью иона Mg+.

■ Функция: синтез белков из аминокислот.

Клеточный центр — органелла большинства клеток животных, некоторых грибов, водорослей, мхов и папоротников, расположенная (в интерфазе) в центре клетки вблизи ядра и служащая центром инициации сборки микротрубочек.

Строение: клеточный центр состоит из двух центриолей и центросферы. Каждая центриоль (рис. 1.12) имеет вид цилиндра длиной 0,3-0,5 мкм и диаметром 0,15 мкм, стенки которого образованы девятью триплетами микротрубочек, а середина заполнена однородным веществом. Центриоли расположены перпендикулярно друг другу и окружены плотным слоем цитоплазмы с радиально расходящимися микротрубочками, образующими лучистую центросферу. При делении клетки центриоли расходятся к полюсам.

stroenie-tsentrioley

■ Основные функции: образование полюсов деления клеток и ахроматиновых нитей веретена деления (или митотического веретена), обеспечивающего равноценное распределение генетического материала между дочерними клетками; в интерфазе направляет передвижение органелл в цитоплазме.

Цитоскслст клетки — это система микрофиламентов и микротрубочек, пронизывающих цитоплазму клетки, связанных с наружной цитоплазматической мембраной и ядерной оболочкой и поддерживающих форму клетки.

tsitoskelet

Микрофнламенты — тонкие, способные сокращаться нити толщиной 5-10 нм и состоящие из белков (актина, миозина и др.). Находятся в цитоплазме всех клеток и ложноножках подвижных клеток.

Функции: микрофнламенты обеспечивают двигательную активность гиалоплазмы, непосредственно участвуют в изменении формы клетки при распластывании и амебоидном движении клеток протистов, участвуют в образовании перетяжки при делении клеток животных; одни из основных элементов цитоскелета клетки.

Микротрубочки — тонкие полые цилиндры (диаметром 25 нм), состоящие из молекул белка тубулина, расположенные спиральными или прямолинейными рядами в цитоплазме эукариотических клеток.

Функции: микротрубочки образуют нити веретена деления, входят в состав центриолей, ресничек, жгутиков, участвуют во внутриклеточном транспорте; одни из основных элементов цитоскелета клетки.

Органеллы движенияжгутики и реснички, присутствуют во многих клетках, но чаще встречаются у одноклеточных организмов.

Реснички — многочисленные цитоплазматические короткие (длиной 5-20 мкм) выросты на поверхности плазмалеммы. Имеются на поверхности различных видов клеток животных и некоторых растений.

Жгутики — единичные цитоплазматические выросты на поверхности клеток многих протистов, зооспор и сперматозоидов; в ~10 раз длиннее ресничек; служат для передвижения.

Строение: реснички и жгутики (рис. 1.14) состоят их микротрубочек, расположенных по системе 9×2+2 (девять двойных микротрубочек — дублетов образуют стенку, в середине расположены две одиночные микротрубочки). Дублеты способны скользить друг относительно друга, что приводит к изгибанию реснички или жгутика. В основании жгутиков и ресничек имеются базальные тельца, идентичные,, по структуре центриолям.

stroenie-zhgutika

■ Функции: реснички и жгутики обеспечивают передвижение самих клеток или окружающей их жидкости и взвешенных в ней частиц.

Включения

Включения — непостоянные (существующие временно) компоненты цитоплазмы клетки, содержание которых меняется в зависимости от функционального состояния клетки. Различают трофические, секреторные и экскреторные включения.

Трофические включения — это запасы питательных веществ (жир, крахмальные и белковые зерна, гликоген).

Секреторные включения — это продукты жизнедеятельности желез внутренней и внешней секреции (гормоны, ферменты).

Экскреторные включения — это продукты обмена веществ в клетке, подлежащие выведению из клетки.

Ядро и хромосомы

Ядро — самый крупная органелла; является обязательным компонентов всех эукариотических клеток (за исключением клеток ситовидных трубок флоэмы высших растений и зрелых эритроцитов млекопитающих). В большинстве клеток присутствует одно ядро, но существуют двух- и многоядерные клетки. Выделяют два состояния ядра: интерфазное и делящееся

Интерфазное ядро состоит из ядерной оболочки (отделяющей внутреннее содержимое ядра от цитоплазмы), ядерного матрикса (кариоплазмы), хроматина и ядрышек. Форма и размеры ядра зависят от вида организма, типа, возраста и функционального состояния клетки. Отличается высоким содержанием ДНК (15-30%) и РНК (12%).

Функции ядра: хранение и передача наследственной информации в виде неизменной структуры ДНК; регуляция (через систему белкового синтеза) всех процессов жизнедеятельности клетки.

elektronogramma-kletkai

❖ Ядерная оболочка (или кариолемма) состоит из наружной и внутренней биологических мембран, между которыми находится перинуклеарное пространство. На внутренней мембране имеется белковая пластинка, придающая форму ядру. Наружная мембрана соединена с ЭПС и несет на себе рибосомы. Оболочка пронизана ядерными порами, через которые происходит обмен веществ между ядром и цитоплазмой. Число пор непостоянно и зависит от размеров ядра и его функциональной активности.

Функции ядерной оболочки: она отделяет ядро от цитоплазмы клетки, регулирует транспорт веществ из ядра в цитоплазму (РНК, субъединиц рибосом) и из цитоплазмы в ядро (белков, жиров, углеводов, АТФ, воды, ионов).

Хромосома — важнейшая органелла ядра, содержащая одну молекулу ДНК в комплексе со специфическими белками гистонами и некоторыми другими веществами, большая часть которых находится на поверхности хромосомы.

В зависимости от фазы жизненного цикла клетки хромосомы могут быть в двух состоянияхдеспирализованном и спирализованном.

» В деспирализованном состоянии хромосомы находятся в период интерфазы клеточного цикла, образуя невидимые в оптический микроскоп нити, составляющие основу хроматина.

■ Спирализация, сопровожающаяся укорачиванием и уплотнением (в 100-500 раз) нитей ДНК, происходят в процессе деления клетки; при этом хромосомы приобретают компактную форму и становятся видимыми в оптический микроскоп.

Хроматин — один из компонентов ядерного вещества в период интерфазы, основу которого составляют деспирализованные хромосомы в виде сети длинных тонких нитей молекул ДНК в комплексе с гистонами и другими веществами (РНК, ДНК полимеразой, липидами, минеральными веществами и др.); хорошо окрашивается красителями, применяемыми в гистологической практике.

■ В хроматине участки молекулы ДНК навиваются на гистоны, образуя нуклеосомы (по виду напоминают бусы).

Хроматида — это структурный элемент хромосомы, представляющий собой нить молекулы ДНК в комплексе с белками гистонами и другими веществами, многократно сложенную как суперспираль и упакованную в виде палочковидного тельца.

■ При спирализации и упаковке отдельные участки ДНК укладываются закономерным образом так, что на хроматидах образуются чередующиеся поперечные полосы.

❖ Строение хромосомы (рис. 1.16). В спирализованном состоянии хромосома представляет собой палочковидную структуру размерами около 0,2-20 мкм, состоящую из двух хроматид и разделенную на два плеча первичной перетяжкой, называемой центромерой. Хромосомы могут иметь вторичную перетяжку, отделяющую участок, называемый спутником. У некоторых хромосом имеется участок (ядрышковый организатор), на котором закодирована структура рибосомных РНК (р-РНК).

stroenie-hromosomyi

Типы хромосом в зависимости от их формы: равноплечие, неравноплечие (центромера смещена от середины хромосомы), палочковидные (центромера находится близко к концу хромосомы).

После анафазы митоза и анафазы мейоза II хромосомы состоят из одной хромитиды, а после репликации (удвоения) ДНК на синтетической (S) стадии интерфазы — из двух сестринских хромитид, соединенных друг с другом в области центромеры. Во время деления клетки к центромере прикрепляются микротрубочки веретена деления.

❖ Функции хромосом:
■ содержат генетический материал — молекулы ДНК;
■ осуществляют синтез ДНК (при удвоении хромосом в S-иериод клеточного цикла) и и-РНК;
■ регулируют синтез белков;
■ контролируют жизнедеятельность клетки.

Гомологичные хромосомы — хромосомы, относящиеся к одной паре, одинаковые по форме, размерам, расположению центромер, несущие одинаковые гены и определяющие развитие одних и тех же признаков. Гомологичные хромосомы могут различаться аллелями содержащихся в них генов и обмениваться участками в ходе мейоза (кроссинговер).

Аутосомы хромосомы в клетках раздельнополых организмов, одинаковые у самцов и самок одного вида (это все хромосомы клетки за исключением половых).

Половые хромосомы (или гетерохромосомы) — это хромосомы, несущие гены, определяющие пол живого организма.

Диплоидный набор (обозначается 2п) — хромосомный набор соматической клетки, в котором каждая хромосома имеет парную ей гомологичную хромосому. Одну из хромосом диплоидного набора организм получает от отца, другую — от матери.

■ Диплоидный набор человека составляет 46 хромосом (из них 22 пары гомологичных хромосом и две половые хромосомы: у женщин две Х- хромосомы, у мужчин — по одной X- и Y- хромосоме).

Гаплоидный набор (обозначается 1л) — одинарный хромосомный набор половой клетки (гаметы), в котором хромосомы не имеют парных гомологичных хромосом. Гаплоидный набор образуется при формировании гамет в результате мейоза, когда из каждой нары гомологичных хромосом в гамету попадает только одна.

Кариотип — это совокупность постоянных количественных и качественных морфологических признаков, характерных для хромосом соматических клеток организмов данного вида (их количество, размер и форма), по которым можно однозначно идентифицировать диплоидный набор хромосом.

Ядрышко — округлое, сильно уплотненное, не ограниченное

мембраной тельце размером 1-2 мкм. В ядре имеется одно или несколько ядрышек. Ядрышко образуется вокруг притягивающихся друг к другу ядрышковых организаторов нескольких хромосом. Во время деления ядра ядрышки разрушаются и вновь формируются в конце деления.

■ Состав: белок 70-80%, РНК 10-15%, ДНК 2-10%.
■ Функции: синтез р-РНК и т-РНК; сборка субъединиц рибосом.

Кариоплазма (или нуклеоплазма, кариолимфа, ядерный сок) — это бесструктурная масса, заполняющая пространство между структурами ядра, в которую погружены хроматин, ядрышки, а также различные внутриядерные гранулы. Содержит воду, нуклеотиды, аминокислоты, АТФ, РНК и белки-ферменты.

Функции: обеспечивает взаимосвязи ядерных структур; участвует в транспорте веществ из ядра в цитоплазму и из цитоплазмы в ядро; регулирует синтез ДНК при репликации, синтез и-РНК при транскрипции.

Сравнительная характеристика клеток эукариот

sravneniya-harakteristik-kletok-eukariot

Особенности строения прокариотической и эукариотической клеток

osobenosti-stroeniya-prokarioticheskoy

Источник: esculappro.ru

Строение животной клетки

Сложноорганизованный животный организм состоит из большого количества тканей. Форма и назначение клетки зависит от вида ткани, в состав которой она входит. Несмотря на их разнообразие, можно обозначить общие свойства в клеточном строении:

  • мембрана состоит из двух слоёв, которые отделяют содержимое от внешней среды. По своей структуре она эластична, поэтому клетки могут иметь разнообразную форму;
  • цитоплазма находится внутри клеточной мембраны. Это вязкая жидкость, которая постоянно двигается;
  • ядро – имеет большие размеры, по сравнению с растениями. Располагается в центре, внутри него находится ядерный сок, ядрышко и хромосомы;
  • митохондрии состоят из множества складок – крист;
  • эндоплазматическая сеть имеет множество каналов, по ним питательные вещества поступают в аппарат Гольджи;
  • комплекс трубочек, именуемый аппаратом Гольджи, накапливает питательные вещества;
  • лизосомы регулируют количество углеродов и других питательных веществ;
  • рибосомы расположены вокруг эндоплазматической сети. Их наличие делает сеть шероховатой, гладкая поверхность ЭПС свидетельствует об отсутствии рибосом;
  • центриоли – особые микротрубочки, которые отсутствуют у растений.

Рис. 1. Строение животной клетки.

Функции органоидов клетки

Каждый органоид выполняет определённые функции, совместная их работа составляет единый сплочённый организм. Так, например:

  • клеточная мембрана обеспечивает транспортирование веществ внутрь клетки и из неё;
  • внутри ядра находится генетический код, который передаётся из поколения в поколение. Именно ядро регулирует работу других органелл клетки;
  • энергетическими станциями организма являются митохондрии. Именно здесь образуется вещество АТФ, при расщеплении которого выделяется большое количество энергии.

Рис. 2. Строение митохондрий

  • на стенках аппарата Гольджи синтезируются жиры и углеводы, которые необходимы для построения мембран других органоидов;
  • лизосомы расщепляют ненужные жиры и углеводы, а также вредные вещества;
  • рибосомы синтезируют белок;
  • клеточный центр (центриоли) играют важную роль в образовании веретена деления во время митоза клетки.

Рис. 3. Центриоли.

Источник: obrazovaka.ru

Бактериальная клетка

2

Отличается от всех остальных как самая просто устроенная.

Клеточная оболочка — основные функции — защита и обмен веществ. Запасное питательное вещество уникально, в других живых клетках его нет — это углевод муреин.

Мембрана — как и у остальных живых клеток, основная функция — защита и обмен веществ.

Цитоплазма — внутренняя полужидкая среда, содержит питательные вещества.

Рибосомы — синтезируют белок.
Мезосомы — осуществление окислительно-восстановительных процессов.
Ядра нет, есть нуклеоид — кольцевая ДНК и РНК.
Жгутитки — обеспечивают движение.

Клетка растений

3

Клеточная стенка — функции те же, запасное питательное вещество — углевод — крахмал, целлюлоза и т.п.
Мембрана — защита и обмен веществ, небольшое отличие — есть плазмодесмы — что-то вроде мостиков между соседними клетками в многоклеточных растениях.
Цитоплазма — внутренняя полужидкая среда, содержит питательные вещества.
Рибосомы — есть, но немного, синтезируют белок.
Ядро — центр генетической информации клетки.
ЭПС (эндоплазматический ретикулум), гладкий (без рибосом) — обеспечивает транспорт веществ, поддерживает форму клетки, шероховатый — рибосомы на нем обеспечивают синтез белка.
Цитоплазма — внутренняя полужидкая среда, содержит питательные вещества.
Хлоропласт — обязательный органойд исключительно растительной клетки. Функция — фотосинтез.
Вакуоль — тоже именно растительный органойд — запас клеточного сока.
Митохондрия — синтез АТФ — обеспечение клетки энергией.
Лизосомы — пищеварительные органеллы.
Аппарат Гольджи — производит лизосомы и хранит питательные вещества.
Микрофиламенты — белковые нити — “рельсы” для передвижения некоторых органелл, участвуют в делении клетки.
Микротрубочки — примерно то же самое, что микрофиламенты, только толще.

Клетка животных

4

Клеточной стенки нет, нет хлоропластов, нет вакуолей.

Остальные органеллы те же, что и у растительной клетки, есть одно “добавление” — компонент ТОЛЬКО животной клетки — центриоли — участвуют в делении клетки, отвечая за правильное расхождение хромосом.

Клетка грибов

Рисунки животной клетки никогда не встречаются в ЕГЭ, да и строение клетки рассматривается только в сравнении с животной и растительной.

По строению она очень похожа на животную, только нет центриолей и есть клеточная стенка, запасное питательное вещество которой — гликоген.

Источник: ege-study.ru