
Строение прокариотической клетки рисунок с подписями
Исторические открытия
1609 — изготовлен первый микроскоп (Г. Галилей)
1665 — обнаружена клеточная структура пробковой ткани (Р. Гук)
1674 — открыты бактерии и простейшие (А. Левенгук)
1676 — описаны пластиды и хроматофоры (А. Левенгук)
1831 — открыто клеточное ядро (Р. Броун)
1839 — сформулирована клеточная теория (Т. Шванн, М. Шлейден)
1858- сформулировано положение «Каждая клетка из клетки» (Р. Вирхов)
1873 — открыты хромосомы (Ф. Шнейдер)
1892 — открыты вирусы (Д. И. Ивановский)
1931 — сконструирован электронный микроскоп (Е. Руске, М.Кноль)
1945 — открыта эндоплазматическая сеть (К. Портер)
1955 — открыты рибосомы (Дж. Палладе)
Раздел:Учение о клетке
Тема: Клеточная теория. Прокариоты и эукариоты
Клетка (лат.»цкллюла» и греч. «цитос») — элементарная живая система, основная структурная единица растительных и животных организмов, способная к самовозобнавлению, саморегуляции и самовоспроизведению. Открыта английский ученым Р. Гуком в 1663г., им же предложена этот термин. Клетка эукариотов представлена двумя системами — цитоплазмой и ядром. Цитоплазма состоит из различных органелл, которые можно классифицировать на: двухмембраные — митохондрии и пластиды; и одномембранные — эндоплазматическая сеть (ЭПС), Аппарат Гольджи, плазмалемма, тонопласты, сферосомы, лизосомы; немембранные — рибосомы, центросомы, гиалоплазма. Ядро состоит из ядерной оболочки (двухмембранной) и немембранных структур — хромосом, ядрышка и ядерного сока. Кроме того, в клетках имются различные включения.
КЛЕТОЧНАЯ ТЕОРИЯ: Создатель этой теории — немецкий ученый Т. Шванн, который опираясь на работы М. Шлейдена, Л. Окена, в 1838 -1839 гг. сформулировал следующие положения:
- все организмы растений и животных состоят из клеток
- каждая клетка функционирует независимо от других, но вместе со всеми
- все клетки возникают из безструктурного вещества неживой материи.
Позднее Р. Вирхов ( 1858 ) внес существенное уточнение в последнее положение теории:
4. все клетки возникают только из клеток путем их деления.
СОВРЕМЕННАЯ КЛЕТОЧНАЯ ТЕОРИЯ:
- клеточная организация возникла на заре жизни и прошла длительный путь эволюции от прокариотов до эукариотов, от предклеточных организмов до одно- и многоклеточных.
- новые клетки образуются путем деления от ранее существовавших
- клетка является микроскопической живой системой, состоящей из цитоплазмы и ядра, окруженных мембраной(за исключением прокариотов)
- в клетке осуществляются :
- метаболизм — обмен веществ;
- обратимые физиологические процессы — дыхание, поступление и выделение веществ, раздражимость , движение;
- необратимые процессы — рост и развитие.
5. клетка может быть самостоятельным организмом. Все многоклеточные организм также состоят из клеток и их производных. Рост, развитие и размножение многоклеточного организма — следствие жизнедеятельности одной или нескольких клеток.
Прокариоты (предъядерные, доядерные) составляют надцарство, включающее одно царство — дробянки, объединяющее подцарство архебактерии, бактерии и оксобактерии (отдел цианобактерий и хлороксибактерии)
Эукароты(ядерные) также составляют надцарство. Оно объединяет царства грибы, животные, растения.
Тема: Строение и функции клетки
Растительная клетка : Животная клетка :
Органеллы | Строение | Функции |
Наружная клеточная мембрана |
ультромикроскопическая пленка, состоящая из бимолекулярного слоя липидов. Цельность липидного слоя может прерываться белковыми молекулами — порами. Кроме того, белки лежат мозаично по обе стороны мембраны, образуя ферментные системы. |
изолирует клетку от окружающей среды, обладает избирательной проницаемостью, регулирует процесс поступления веществ в клетку; обеспечивает обмен веществ и энергии с внешней средой, способствует соединению клеток в ткани, участвует в пиноцитозе и фагоцитозе; регулирует водный баланс клетки и выводит из нее конечные продукты жизнедеятельности. |
Эндоплазматичкская сеть ЭПС | Ультрамикроскопическая система мембран, образующих трубочки, канальцы, цистерны пузырьки. Строение мембран универсальное, вся сеть объединена в единое целое с наружной мембраной ядерной оболочки и наружной клеточной мембраной. Гранулярная ЭПС несет рибосомы, гладкая лишена их. |
Обеспечивает транспорт веществ как внутри клетки, так и между соседними клетками. Делит клетку на отдельные секции, в которых одновременно происходят различные физиологические процессы и химические реакции. Гранулярная ЭПС участвует в синтезе белка. В каналах ЭПС молекулы белка приобретают вторичную, третичную и четвертичную структуры, синтезируются жиры, транспортируется АТФ |
Митохондрии | Микроскопические органеллы, имеющие двухмембраное строение. Внешняя мембрана гладкая, внутренняя — образует различной формы выросты — кристы. В матриксе митохондрий (полужидкое вещество) находятся ферменты, рибосомы, ДНК, РНК. Размножаются делением. |
Универсальная органелла, являющаяся дыхательным и энергетическим центром. В процессе кислородного этапа диссимиляции в матриксе с помощью ферментов происходит расщеплении органических веществ с освобождением энергии, которая идет на синтез АТФ (на кристах) |
Рибосомы | Ультрамикроскопические органеллы округлой или грибовидной формы, состоящие из двух частей- субъединиц. Они не имеют мембранного строения и состоят из белка и рРНК. Субъединицы образуются в ядрышке. Объединяются вдоль молекул иРНК в цепочки -полирибосомы — в цитоплазме | Универсальные органеллы всех клеток животных и растений. Находятся в цитоплазме в свободном состоянии или на мембранах ЭПС; кроме того, содержаться в митохондриях и хлоропластах. В рибосомах синтезируются белки по принципу матричного синтеза; образуется полипептидная цепочка — первичная структура молекулы белка. |
Лейкопласты | Микроскопические органеллы, имеющие двухмембранное строение. Внутренняя мембрана образует 2-3 выроста Форма округлая. Бесцветны. Как и все пластиды, способны к делению. | Характерны для растительных клеток. Служат местом отложения запасных питательных веществ, главным образом крахмальных зерен. На свету их строение усложняется и они преобразуют в хлоропласты. Образуются из пропластид. |
Аппарат Гольджи (диктиосома) | микроскопические одномембранные органеллы, состоящие из стопочки плоских цистерн, по кроям которых ответвляются трубочки, отделяющие мелкие пузырьки. Имеет два полюса : строительный и секреторный | наиболее подвижная и изменяющаяся органелла. В цистернах накапливаются продукты синтеза, распада и вещества, поступившие в клетку, а так же вещества, которые выводятся из клетки. Упакованные в пузырьки, они поступают в цитоплазму. в растительной клетке участвуют в построении клеточной стенки. |
Хлоропласты | Микроскопические органеллы, имеющие двухмембранное строение. Наружная мембрана гладкая. Внутренняя мембрана образует систему двухслойных пластин — тилакоидов стромы и тилакоидов гран. В мембранах тилакоидов гран между слоями молекул белков и липидов сосредоточены пигменты — хлорофилл и каротиноиды. В белково — липидном матриксе находятся собственные рибосомы, ДНК, РНК. Форма хлоропластов чечевицеобразная. Окраска зеленая. |
Характерны для растительных клеток. Органеллы фотосинтеза, способные создавать из неорганических веществ (СО2 и Н2О) при наличии световой энергии и пигмента хлорофилла органические вещества — углеводы и свободный кислород. Синетз собственных белков. Могут образовываться из пропластид или лейкопластов, а осенью преобразоваться в хромопласты (красные и оранжевые плоды, красные и желтые листья). Способны к делению. |
Хромопласты | Микр-ие органеллы, имеющие двухмембранное строение. Собственно хромопласты имеют шаровидную форму, а образовавшиеся из хлоропластов принимают форму кристаллов каротиноидов, типичную для данного вида растения. Окраска красная. оранжевая, желтая |
Характерны для растительных клеток. Придают лепесткам цветков окраску, привлекательную для насекомых — опылителей. В осенних листьях и зрелых плодах, отделяющихся от растения, содержатся кристаллические каротиноиды — конечные продукты обмена |
Лизосомы | Микроскопические одномембраные органеллы округлой формы. их число зависит от жизнедеятельности клетки и ее физиологического состояния. в лизосомах находится лизируещее (растворяющее) ферменты, синтезированные на рибосомах. обособляются от диктисом в виде пузырьков | |
Клеточный центр (Центросома) |
Ультромикроскопическая органелла немембраного строения. состоит из двух центриолей. каждая имеет цилиндрическую форму , стенки образованы девятью триплетами трубочек, а в середине находится однородное вещество. центриоли расположены перпендикулярно друг другу. |
Принимает участие в деление клеток животных и низших растений . в начале деления центриоли расходятся к разным полюсам клетки. от центриолей к центромерам хромосом отходят нити веретена деления. в анафазе эти нити притягиваются хроматидами к полюсам. после окончания деления центриоли остаются в дочерних клетках, удваиваются и образуют клеточный центр. |
Органоиды движения |
реснички — многочисленные цитоплазматические выросты на поверхности мембраны
жгутики — еди ничные цитоплазматические выросты на поверхности клеткиложные ножки (псевдоподии)- амебовидные выступы цитоплазмы миофибриллы — тонкие нити длиной 1 см и более цитоплазма осуществляющая струйчатое и круговое движение |
удаление частичек пыли. передвижение
передвижение образуются у одноклеточных животных в разных местах цитоплазмы для захвата пищи, для передвижения. Характерны для лейкоцитов крови, а так же клеток энтодермы кишечнополостных. служат для сокращения мышечных волокон перемещение органелл клетки по отношению к источнику света, тепла, химического раздражителя. |
Источник: www.sites.google.com
Прокариоты образуют царство бактерий, которое делится на 4 отдела — грамотрицательные бактерии, грамположительные бактерии, микоплазмы и архебактерии. Прокариотическая клетка мелкая (< 10 мкр), овальная, округлая, и не разделены на клеточные компартменты. Прокариоты широко различаются по своим физиологическим свойствам и очень быстро делятся.
Строение прокариотической клетки таблица
Любая прокариотическая клетка состоит из трех частей: поверхностного аппарата, цитоплазмы и ядерного аппарата.
Части, органы клетки |
Строение прокариотической клетки |
Фотосинтетические мембраны |
Содержат пигменты, улавливающие свет, в первую очередь бактериохлорофилл. Хлоропласты отсутствуют * (у эукариот присутствуют). В бактериальном фотосинтезе не вырабатывается кислород. |
Капсула |
Образована слизистыми выделениями, которые могут объединять бактериальные клетки в колонии (например, у Bacillus anthracis) или обеспечивают их защиту (например, у D. pheumoniae). |
Плазмиды |
Это короткие кольцевые фрагменты ДНК, реплицирующиеся независимо от клеточного генома. Они широко используются для получения рекомбинантной ДНК. У эукариот плазмиды не встречаются.* |
Пили (фимбрии) |
Это палочковидные белковые структуры, служащие для прикрепления клеток друг к другу. Половые пили участвуют в переносе ДНК между клетками в процессе полового размножения. |
Клеточная стенка |
Прокариотические клетки имеет жесткий каркас из муреина, полисахарида. У грамположительных бактерий клеточная стенка усилена отложениями полисахаридов и белков, у грамотрицательныхона тоньше, но покрыта слоем липидов, обеспечивающим защиту от лизоцима и пенициллина. Клеточная стенка бактерий не содержит целлюлозу.* Жесткость клеточной стенки предотвращает осмотический разрыв клетки (на нарушении структуры клеточной стенки основано действие пенициллина на грамположительные бактерии) и сохраняет форму клетки. Самые распространенные типы бактерий (классификация по форме клетки): — Кокки (сферические); — Бациллы (палочковидные); — Спириллы (спиралевидные) |
Мезосомы |
Это впячивания плазматической мембраны, на которых расположены ферменты, участвующие в процессе дыхания. Бактерии не имеют митохондрий.* |
Жгутик |
Жгутик прокариотической клетки отвечает за движение у многих бактерий. Он намного проще по строению, чем жгутик эукариотической клетки, и представляет собой один цилиндр, субъединицы которого образованы белком флагеллином. Жгутик эукариотической клетки имеет субъединичную структуру 9+2.* Жгутик бактерии не совершает биений, а вращается вокруг основания, заякоренного в клеточной стенке, «ввинчиваясь» в среду и продвигая клетку.* |
Запасные питательные вещества |
Липидные глобулы или гранулы гликогена |
Плазматическая мембрана |
Типичная фосфолипидная двухслойная структура |
Рибосомы |
Имеют меньший размер, чем в эукариотической клетке.* Они рассеяны по всей цитоплазме и не связаны с эндоплазматическим ретикулумом. |
Генетический материал (ДНК) |
Представлен кольцевидной двухнитевой молекулой ДНК, которая не окружена ядерной мембраной* В ДНК бактерии обычно около 2000 генов, из которых примерно 0.2% обнаружены и в эукариотических клетках. |
* отмечены важные отличия прокариотичексих клеток от эукариотических.
Особенности прокариотических клеток организмов
Особенности |
Прокариотические клетки |
|
Бактерии |
Сине-зеленые водоросли |
|
Строение |
1. Нет ядра, митохондрий, ЭПС, аппарата Гольджи |
|
2. Хромосома находится в цитоплазме |
||
3. Размеры микроскопические |
||
4. Форма различна |
4. Хлорофилл, заключенный в мембраны, находится в цитоплазме (нет хлоропластов) |
|
5. Оболочка (из углеводов) может быть окружена слизью, внутренняя оболочка — мембрана |
5. Оболочка прочная, состоит из углеводов |
|
Размножение |
Деление на две части (через 20 минут) |
Деление клетки пополам |
Значение |
1. В промышленности: а) химическая — этиловые, бутиловые спирты, уксусная кислота, ацетон; б) пищевая — масло, сыры, кислое молоко, квашеная капуста; в) микробиологическая (ферменты, кормовые белки, лекарственные препараты) 2. Возбудители заразных болезней |
Индикаторы степени загрязненности воды |
_______________
Источник информации:
1. Биология человека в диаграммах / В.Р. Пикеринг — 2003.
2. Биология в таблицах и схемах / Спб. — 2004.
Источник: infotables.ru
Эукариотическая клетка
Эукариоты — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты — митохондрии, а у водорослей и растений — также и пластиды.
Строение эукариотической клетки
Схематическое изображение животной клетки. (При нажатии на какое-либо из названий составных частей клетки, будет осуществлён переход на соответствующую статью.)
Поверхностный комплекс животной клетки
Состоит из гликокаликса, плазмалеммы и расположенного под ней кортикального слоя цитоплазмы. Плазматическая мембрана называется также плазмалеммой, наружной клеточной мембраной. Это биологическая мембрана, толщиной около 10 нанометров. Обеспечивает в первую очередь разграничительную функцию по отношению к внешней для клетки среде. Кроме этого она выполняет транспортную функцию. На сохранение целостности своей мембраны клетка не тратит энергии: молекулы удерживаются по тому же принципу, по которому удерживаются вместе молекулы жира — гидрофобным частям молекул термодинамически выгоднее располагаться в непосредственной близости друг к другу. Гликокаликс представляет собой «заякоренные» в плазмалемме молекулы олигосахаридов, полисахаридов, гликопротеинов и гликолипидов. Гликокаликс выполняет рецепторную и маркерную функции. Плазматическая мембрана животных клеток в основном состоит из фосфолипидов и липопротеидов со вкрапленными в неё молекулами белков, в частности, поверхностных антигенов ирецепторов. В кортикальном (прилегающем к плазматической мембране) слое цитоплазмы находятся специфические элементы цитоскелета — упорядоченные определённым образомактиновые микрофиламенты. Основной и самой важной функцией кортикального слоя (кортекса) являются псевдоподиальные реакции: выбрасывание, прикрепление и сокращениепсевдоподий. При этом микрофиламенты перестраиваются, удлиняются или укорачиваются. От структуры цитоскелета кортикального слоя зависит также форма клетки (например, наличиемикроворсинок).
Источник: StudFiles.net