Жизненный цикл клетки (клеточный цикл)

С момента появления клетки и до ее смерти в результате апоптоза (программируемой клеточной гибели) непрерывно продолжается жизненный цикл клетки.

Здесь и в дальнейшем мы будем пользоваться генетической формулой клетки, где «n» — число хромосом, а «c» — число ДНК (хроматид). Напомню, что в состав каждой хромосомы может входить как одна молекула ДНК (одна хроматида) (nc), либо две (n2c).

Клеточный цикл включает в себя несколько этапов: деление (митоз), постмитотический (пресинтетический), синтетический, постсинтетический (премитотический) период. Три последних периода составляют интерфазу — подготовку к делению клетки.

Разберем периоды интерфазы более подробно:

  • Постмитотический период G1 — 2n2c
  • Интенсивно образуются рибосомы, синтезируется АТФ и все виды РНК, ферменты, делятся митохондрии, клетка растет.

  • Синтетический период S — 2n4c

  • Длится 6-10 часов. Важнейшее событие этого периода — удвоение ДНК, вследствие которого к концу синтетического периода каждая хромосома состоит из двух хроматид. Активно синтезируются структурные белки ДНК — гистоны.

  • Премитотический период G2 — 2n4c
  • Короткий, длится 2-6 часов. Это время клетка тратит на подготовку к последующему процессу — делению клетки, синтезируются белки и АТФ, удваиваются центриоли.

Митоз (греч. μίτος — нить)

Митоз является непрямым способом деления клетки, наиболее распространенным среди эукариотических организмов. По продолжительности занимает около 1 часа. К митозу клетка готовится в период интерфазы путем синтеза белков, АТФ и удвоения молекулы ДНК в синтетическом периоде.

Митоз состоит из 4 фаз, которые мы далее детально рассмотрим: профаза, метафаза, анафаза, телофаза. Напомню, что клетка вступает в митоз с уже удвоенным (в синтетическом периоде) количеством ДНК. Мы рассмотрим митоз на примере клетки с набором хромосом и ДНК 2n4c.

  • Профаза — 2n4c
    • Бесформенный хроматин в ядре начинает собираться в четкие оформленные структуры — хромосомы — происходит это за счет спирализации ДНК (вспомните мой пример ассоциации хромосомы с мотком ниток)
    • Оболочка ядра распадается, хромосомы оказываются в цитоплазме клетки
    • Центриоли перемещаются к полюсам клетки, образуются центры веретена деления

  • Метафаза — 2n4c
  • ДНК максимально спирализована в хромосомы, которые располагаются на экваторе клетки. Каждая хромосома состоит из двух хроматид, соединенных центромерой (кинетохором). Нити веретена деления прикрепляются к центромерам хромосом (если точнее, прикрепляются к кинетохору центромеры).

  • Анафаза — 4n4c
  • Самая короткая фаза митоза. Хромосомы, состоящие из двух хроматид, распадаются на отдельные хроматиды. Нити веретена деления тянут хроматиды (синоним — дочерние хромосомы) к полюсам клетки.

  • Телофаза — 2n2c
  • В этой фазе хроматиды (дочерние хромосомы) достигают полюсов клетки.

    • Начинается процесс деспирализации ДНК, хромосомы исчезают и становятся хроматином (вспомните ассоциацию про раскрученный моток ниток)
    • Появляется ядерная оболочка, формируется ядро
    • Разрушаются нити веретена деления

    В телофазе происходит деление цитоплазмы — цитокинез (цитотомия), в результате которого образуются две дочерние клетки с набором 2n2c. В клетках животных цитокинез осуществляется стягиванием цитоплазмы, в клетках растений — формированием плотной клеточной стенки (которая растет изнутри кнаружи).


Образовавшиеся в телофазе дочерние клетки 2n2c вступают в постмитотический период. Затем в синтетический период, где происходит удвоение ДНК, после чего каждая хромосома состоит из двух хроматид — 2n4c. Клетка с набором 2n4c и попадает в профазу митоза. Так замыкается клеточный цикл.

Биологическое значение митоза очень существенно:

  • В результате митоза образуются дочерние клетки — генетические копии (клоны) материнской.
  • Митоз является универсальным способом бесполого размножения, регенерации и протекает одинаково у всех эукариот (ядерных организмов).
  • Универсальность митоза служит очередным доказательством единства всего органического мира.

Попробуйте самостоятельно вспомнить фазы митоза и описать события, которые в них происходят. Особенное внимание уделите состоянию хромосом, подчеркните сколько в них содержится молекул ДНК (хроматид).

Мейоз

Мейоз (от греч. μείωσις — уменьшение), или редукционное деление клетки — способ деления клетки, при котором наследственный материал в них (число хромосом) уменьшается вдвое. Мейоз происходит в ходе образования половых клеток (гамет) у животных и спор у растений.

В результате мейоза из диплоидных клеток (2n) получаются гаплоидные (n). Мейоз состоит из двух последовательных делений, между которыми практически отсутствует пауза. Удвоение ДНК перед мейозом происходит в синтетическом периоде интерфазы (как и при митозе).


Как уже было сказано, мейоз состоит из двух делений: мейоза I (редукционного) и мейоза II (эквационного). Первое деление называют редукционным (лат. reductio — уменьшение), так как к его окончанию число хромосом уменьшается вдвое. Второе деление — эквационное (лат. aequatio — уравнивание) очень похоже на митоз.

Приступим к изучению первого деления мейоза. За основу возьмем клетку с двумя хромосомами и удвоенным (в синтетическом периоде интерфазы) количеством ДНК — 2n4c.

  • Профаза мейоза I
  • Помимо типичных для профазы процессов (спирализация ДНК в хромосомы, разрушение ядерной оболочки, движение центриолей к полюсам клетки) в профазе мейоза I происходят два важнейших процесса: конъюгация и кроссинговер.

    Конъюгация (лат. conjugatio — соединение) — сближение гомологичных хромосом друг с другом. Гомологичными хромосомами называются такие, которые соответствуют друг другу по размерам, форме и строению. В результате конъюгации образуются комплексы, состоящие из двух хромосом — биваленты (лат. bi — двойной и valens — сильный).

    После конъюгации становится возможен следующий процесс — кроссинговер (от англ. crossing over — пересечение), в ходе которого происходит обмен участками между гомологичными хромосомами.

    Кроссинговер является важнейшим процессом, в ходе которого возникают рекомбинации генов, что создает уникальный материал для эволюции, последующего естественного отбора. Кроссинговер приводит к генетическому разнообразию потомства.

  • Метафаза мейоза I

  • Биваленты (комплексы из двух хромосом) выстраиваются по экватору клетки. Формируется веретено деления, нити которого крепятся к центромере (кинетохору) каждой хромосомы, составляющей бивалент.

  • Анафаза мейоза I
  • Нити веретена деления сокращаются, вследствие чего биваленты распадаются на отдельные хромосомы, которые и притягиваются к полюсам клетки. В результате у каждого полюса формируется гаплоидный набор будущей клетки — n2c, за счет чего мейоз I и называется редукционным делением.

  • Телофаза мейоза I
  • Происходит цитокинез — деление цитоплазмы. Формируются две клетки с гаплоидным набором хромосом. Очень короткая интерфаза после мейоза I сменяется новым делением — мейозом II.

Мейоз II весьма напоминает митоз по всем фазам, поэтому если вы что-то подзабыли: поищите в теме про митоз. Главное отличие мейоза II от мейоза I в том, что в анафазе мейоза II к полюсам клетки расходятся не хромосомы, а хроматиды (дочерние хромосомы).


В результате мейоза I и мейоза II мы получили из диплоидной клетки 2n4c гаплоидную клетку — nc. В этом и состоит сущность мейоза — образование гаплоидных (половых) клеток. Вспомнить набор хромосом и ДНК в различных фазах мейоза нам еще предстоит, когда будем изучать гаметогенез, в результате которого образуются сперматозоиды и яйцеклетки — половые клетки (гаметы).

Сейчас мы возьмем клетку, в которой 4 хромосомы. Попытайтесь самостоятельно описать фазы и этапы, через которые она пройдет в ходе мейоза. Проговорите и осмыслите набор хромосом в каждой фазе.

Помните, что до мейоза происходит удвоение ДНК в синтетическом периоде. Из-за этого уже в начале мейоза вы видите их увеличенное число — 2n4c (4 хромосомы, 8 молекул ДНК). Я понимаю, что хочется написать 4n8c, однако это неправильная запись!) Ведь наша исходная клетка диплоидна (2n), а не тетраплоидна (4n) 😉

Итак, самое время обсудить биологическое значение мейоза:

  • Поддерживает постоянное число хромосом во всех поколениях, предотвращает удвоение числа хромосом
  • Благодаря кроссинговеру возникают новые комбинации генов, обеспечивается генетическое разнообразие состава гамет
  • Потомство с новыми признаками — материал для эволюции, который проходит естественный отбор
Бинарное деление надвое

Митоз и мейоз возможен только у эукариот, а как же быть прокариотам — бактериям? Они изобрели несколько другой способ и делятся бинарным делением надвое. Оно встречается не только у бактерий, но и у ряда ядерных организмов: амебы, инфузории, эвглены зеленой.


При благоприятных условиях бактерии делятся каждые 20 минут. В случае, если условия не столь благоприятны, то больше времени уходит на рост и развитие, накопление питательных веществ. Интервалы между делениями становятся длиннее.

Амитоз (от греч. ἀ — частица отрицания и μίτος — нить)

Способ прямого деления клетки, при котором не происходит образования веретена деления и равномерного распределения хромосом. Клетки делятся напрямую путем перетяжки, наследственный материал распределяется «как кому повезет» — случайным образом.

Амитоз встречается в раковых (опухолевых) клетках, воспалительно измененных, в старых клетках.

Источник: studarium.ru

Фазы митоза

Профаза

В профазе происходят следующие процессы (в основном параллельно):

  • Хромосомы конденсируются

  • Ядрышки исчезают

  • Ядерная оболочка распадается

  • Формируются два полюса веретена деления

Митоз начинается с укорочения хромосом. Составляющие их пары хроматид спирализуются, в результате чего хромосомы сильно укорачиваются и утолщаются. К концу профазы их можно увидеть в световой микроскоп.


Ядрышки исчезают, т. к. образующие их части хромосом (ядрышковые организаторы) находятся уже в спирализованном виде, следовательно, неактивны и не взаимодействуют между собой. Кроме того распадаются ядрышковые белки.

В клетках животных и низших растений центриоли клеточного центра расходятся по полюсам клетки и выступают центрами организации микротрубочек. Хотя у высших растений центриолей нет, микротрубочки также образуются.

От каждого центра организации начинают расходиться короткие (астральные) микротрубочки. Формируется структура похожая на звезду. У растений она не образуется. Их полюса деления более широкие, микротрубочки выходят не из малой, а из относительно широкой области.

Распад ядерной оболочки на мелкие вакуоли знаменует конец профазы.

Справа на микрофотографии зеленым цветом подсвечены микротрубочки, синим — хромосомы, красным – центромеры хромосом.

Также следует отметить, что в период профазы митоза происходи фрагментация ЭПС, она распадается на мелкие вакуоли; аппарат Гольджи распадается на отдельные диктиосомы.

Прометафаза

Ключевые процессы прометафазы идут большей часть последовательно:

  1. Хаотичное расположение и движение хромосом в цитоплазме.

  2. Соединение их с микротрубочками.

  3. Движение хромосом в экваториальную плоскость клетки.


Хромосомы оказываются в цитоплазме, они беспорядочно двигаются. Оказавшись на полюсах, у них больше шансов скрепиться с плюс-концом микротрубочки. В конце концов нить прикрепляется к кинетохоре.

Такая кинетохорная микротрубочка начинает нарастать, чем отдаляют хромосому от полюса. В какой-то момент к кинетохоре сестринской хроматиды крепится другая микротрубочка, нарастающая с другого полюса деления. Она тоже начинает толкать хромосому, но уже в противоположном направлении. В результате хромосома становится на экваторе.

Кинетохоры представляют собой белковые образования на центромерах хромосом. Каждая сестринская хроматида имеет свой кинетохор, который «созревает» в профазе.


Кроме астральных и кинетохорных микротрубочек есть те, которые идут от одного полюса к другому, как бы распирают клетку в перпендикулярном экватору направлении.

Метафаза

Признаком начала метафазы является расположение хромосом по экватору, образуется так называемая метафазная, или экваториальная, пластинка. В метафазу хорошо видны количество хромосом, их отличия и то, что они состоят из двух сестринских хроматид, соединенных в районе центромеры.

Хромосомы удерживаются за счет сбалансированных сил натяжения микротрубочек разных полюсов.

Анафаза

  • Сестринские хроматиды разделяются, каждая двигается к своему полюсу.

  • Полюса удаляются друг от друга.

Анафаза самая короткая фаза митоза. Она начинается, когда центромеры хромосом разделяются на две части. В результате каждая хроматида становится самостоятельной хромосомой и оказывается прикреплена к микротрубочке одного полюса. Нити «тянут» хроматиды к противоположным полюсам. На самом деле микротрубочки разбираются (деполимеризуются), т. е. укорачиваются.

В анафазе животных клеток двигаются не только дочерние хромосомы, но и сами полюса. За счет других микротрубочек они расталкиваются, астральные микротрубочки прикрепляются к мембранам и тоже «тянут».

Телофаза

  • Движение хромосом останавливается

  • Хромосомы деконденсируются

  • Появляются ядрышки

  • Восстанавливается ядерная оболочка

  • Большая часть микротрубочек исчезает

Телофаза начинается, когда хромосомы перестают двигаться, остановившись у полюсов. Они деспирализуются, становятся длинными и нитевидными.

Микротрубочки веретена деления разрушаются от полюсов к экватору, т. е. со стороны своих минус-концов.

Вокруг хромосом образуется ядерная оболочка путем слияния мембранных пузырьков, на которые в профазе распалось материнское ядро и ЭПС. На каждом полюсе формируется свое дочернее ядро.

Поскольку хромосомы деспирализуются, ядрышковые организаторы становятся активными и появляются ядрышки.

Возобновляется синтез РНК.

Если на полюсах центриоли еще не парные, то около каждой достраивается парная ей. Таким образом на каждом полюсе воссоздается свой клеточный центр, который отойдет в дочернюю клетку.

Обычно телофаза заканчивается разделением цитоплазмы, т. е. цитокинезом.

Цитокинез

Цитокинез может начаться еще в анафазе. К началу цитокинеза клеточные органеллы распределяются относительно равномерно по полюсам.

Разделение цитоплазмы растительных и животных клеток происходит по-разному.

У животных клеток благодаря эластичности цитоплазматическая мембрана в экваториальной части клетки начинает впячиваться во внутрь. Образуется борозда, которая в конце концов смыкается. Другими словами, материнская клетка делится перешнуровкой.

В растительных клетках в телофазе нити веретена не исчезают в области экватора. Они сдвигаются ближе к цитоплазматической мембране, их количество увеличивается, и они образуют фрагмопласт. Он состоит из коротких микротрубочек, микрофиламентов, частей ЭПС. Сюда перемещаются рибосомы, митохондрии, комплекс Гольджи. Пузырьки Гольджи и их содержимое на экваторе образуют срединную клеточную пластинку, клеточные стенки и мембрану дочерних клеток.

Значение и функции митоза

Благодаря митозу обеспечивается генетическая стабильность: точное воспроизводство генетического материала в ряду поколений. Ядра новых клеток содержат столько же хромосом, сколько их содержала родительская клетка, и эти хромосомы являются точными копиями родительских (если, конечно, не возникли мутации). Другими словами, дочерние клетки генетически идентичны материнской.

Однако митоз выполняет и ряд других немаловажных функций:

  • рост многоклеточного организма,

  • бесполое размножение,

  • замещение клеток различных тканей у многоклеточных организмов,

  • у некоторых видов может происходить регенерация частей тела.

Источник: biology.su

Определение митоза

Митоз — это тип деления клеток, при котором одна материнская делится, чтобы произвести две новые генетически идентичные дочерние. В контексте клеточного цикла митоз является частью процесса деления, происходящего последовательно, при котором ДНК ядра разделяется на два равных набора хромосом:

  • Во время митоза одна клетка делится один раз, чтобы сформировать две одинаковые.
  • Главной целью митоза является рост и замена изношенных клеток.
  • Если не исправить ошибки, возникшие во время митоза, это вызовет изменения в ДНК, что приведёт к генетическим нарушениям.

В процессе продолжительного развития и роста митоз наполняет организм клетками, а на протяжении всей жизни он заменяет старые изношенные новыми. Для одноклеточных эукариот, каковыми являются дрожжи, митотические деления фактически являются основой размножения, добавляя в популяцию новых особей.

Митоз у животных впервые смог открыть В.Флемминг в 1882 году, а в 1888 году Э. Страсбургер у растений.

Стадии деления клеток

Митоз состоит из четырёх основных стадий. Они имеют чёткую очерёдность:

  • профаза;
  • метафаза;
  • анафаза;
  • телофаза.

Здесь часто возникают расхождения, поскольку некоторые учебники перечисляют 5, разбивая профазу на раннюю фазу (интерфазу) и позднюю фазу (называемую прометафазой). Они происходят в строгом последовательном порядке, а также цитокинез, который начинается в анафазе или телофазе. Для того чтобы стало понятно, какими характеристиками обладают фазы, следует рассмотреть кратко сущность каждой из них.

Интерфаза

Почти 80% продолжительности жизни клетки тратится в межфазной стадии митоза. На этом этапе деление нет, но происходит период роста и подготовка к делению. ДНК дублируется во время этой фазы, создавая две копии каждой цепи, называемой хромосомой — молекулой ДНК, которая несёт всю или часть наследственной информации организма.

Можно перечислить стадии, характерные для интерфазы. Они разделены на:

  • фазу G1,
  • фазу S,
  • фазу G2.

Фаза G1 — это период до синтеза ДНК, в течение которого клетка увеличивается в размерах. Во время фаз G1 клетки растут и контролируют свою среду, чтобы определить, следует ли им инициировать ещё один раунд деления.

Профаза

После подготовительной стадии интерфазы профазу считают первой истинной стадией митотического процесса. Во время ранней профазы клетка начинает разрушать одни структуры и создавать другие, готовясь к делению хромосом. Дублированные хромосомы из межфазной стадии конденсируются. Это означает, что они уплотняются и плотно наматываются. Ядерная оболочка разрушается, и на краях делящейся клетки формируется аппарат, известный как митотическое веретено.

Шпиндель состоит из сильных белков, называемых микротрубочками, которые являются частью «скелета» клетки и управляют делением посредством удлинения. Шпиндель постепенно удлиняется во время профазы. Его смысл заключается в организации хромосом и их перемещении во время деления.

К концу профазы ядерная оболочка разрушается, и микротрубочки достигают от каждого полюса до экватора. Кинетохоры, специализированные области в центромерах хромосом, — области ДНК, где сестринские хроматиды наиболее тесно связаны — прикрепляются к типу микротрубочек, называемых волокнами кинетохор. Эти волокна взаимодействуют с полярными волокнами веретена, соединяя кинетохоры с полярными волокнами, что стимулирует миграцию хромосом к ядру. Эту часть процесса иногда называют прометафазой, потому что она происходит непосредственно перед метафазой.

Метафаза

В самом начале метафазной стадии пары конденсированных хромосом выстраиваются вдоль экватора вытянутой клетки. Поскольку они уплотнены, они могут двигаться легче, не запутываясь.

Во время метафазы ядерная мембрана полностью исчезает. В клетках животных две пары центриолей располагаются на противоположных полюсах, а полярные волокна продолжают простираться от полюсов к центру. Хромосомы движутся случайным образом до тех пор, пока они не прикрепятся с обеих сторон их центромер к полярным волокнам.

Хромосомы располагаются на метафазной пластинке под прямым углом к ​​полюсам веретена и удерживаются там равными силами полярных волокон, оказывающих давление на центромеры хромосом. Метафазная пластинка не является физической структурой — это просто термин для плоскости, в которой расположены хромосомы.

Прежде чем перейти к следующей стадии анафазы, происходит проверка, все ли хромосомы находятся на метафазной пластинке, а кинетохоры правильно прикреплены к микротрубочкам. Это называется контрольной точкой шпинделя. Она обеспечивает равномерное распределение пар хромосом, также называемых сестринскими хроматидами, между двумя дочерними на стадии анафазы. Если хромосома неправильно выровнена или прикреплена, деление прекратится до тех пор, пока проблема не будет решена.

В редких случаях она не прекращает деление, и при митозе допускаются ошибки. Это может привести к изменениям ДНК, которые потенциально могут привести к генетическим нарушениям.

Анафаза

Во время анафазы сестринские хроматиды тянутся к противоположным полюсам (концам) вытянутой клетки. Белковый «клей», удерживающий их вместе, разрушается, позволяя им развалиться. Это означает, что дубликаты ДНК клетки оказываются по обе стороны от клетки и готовы полностью разделиться. Каждая сестринская хроматида теперь является собственной «полной» хромосомой. Теперь они называются дочерними хромосомами. На этом этапе микротрубочки становятся короче, что позволяет начать процесс разделения клеток.

Дочерние хромосомы проходят через механизм веретена, чтобы достичь противоположных полюсов. Когда хромосомы приближаются к полюсу, они сначала мигрируют центромерами, а волокна кинетохор сокращаются.

Телофаза

На заключительной стадии телофазы деление практически завершено. Оболочка ядра, которая ранее была разрушена, чтобы позволить микротрубочкам получить доступ и рекрутировать хромосомы к экватору делящейся клетки, превращается в две новые ядерные оболочки вокруг разделённых сестринских хроматид. Телофазу ещё называют обратной профазой, потому что во время профазы происходит спирализация и укорочение хромосом, а во время телофазы — деспирализация

Полярные волокна продолжают удлиняться, и ядра начинают формироваться на противоположных полюсах, создавая ядерные оболочки из оставшихся частей ядерной оболочки родительской клетки, плюс части эндомембранной системы. Митотический веретен распадается на свои строительные блоки, и образуются два новых ядра — по одному на каждый набор хромосом. Во время этого процесса вновь появляются ядерные мембраны и ядрышки, и хроматиновые волокна хромосом раскрываются, возвращаясь к своей прежней нитевидной форме.

После телофазы митоз практически завершён — удвоение произошло. Тем не менее, деление не завершено, пока не произойдёт цитокинез.

Цитокинез

Цитокинез — это деление цитоплазмы, начинающееся до окончания анафазы и заканчивающееся вскоре после телофазной стадии митоза.

Во время цитокинеза кольцо белков, называемых актином и миозином (те же белки, что и в мышцах), сжимает вытянутую клетку в две совершенно новые. Группа нитей из белка под названием актин ответственна за защемление, создавая складку, так называемую борозду расщепления.

Процесс отличается в растениях, потому что они имеют клеточную стенку и слишком жёсткие, чтобы делиться таким образом. В растительных клетках структура, называемая клеточной пластинкой, формируется в их середине, разделяя её на две дочерние с новой стенкой между ними.

В этот момент цитоплазма поровну поделена между двумя новыми клетками, каждая из которых генетически идентична, содержит собственное ядро ​​и полную копию ДНК организма. Теперь они начинают свой собственный путь и могут сами повторять процесс митоза в зависимости от того, кем они становятся.

Таблица по фазам

Фаза Процесс
Профаза Хромосомы становятся видимыми в результате спирализации. Каждая хромосома состоит из двух хроматид. Ядерная оболочка и ядрышко разрушаются.
Метафаза Хромосомы располагаются по экватору, образуется двухполюсное митотическое веретено.
Анафаза Центромеры делятся и хроматиды расходятся с помощью нитей митотического веретена к полюсам.
Телофаза Исчезает митотическое веретено. Вокруг разошедшихся хромосом образуются новые ядерные оболочки. Образование двух клеток.

Последовательная схема

Биологическое значение

Митоз является одним из способов репликации в биологии. У одноклеточных организмов митоз является единственной жизнеспособной формой размножения. У сложных организмов роль митоза заключается в восстановлении повреждённых тканей и помощи организму осуществлять рост. Основными целями митоза являются:

  • Бесполое размножение. В одноклеточном организме (амёбе) митоз — это способ размножения.
  • Рост. По мере старения растений и животных, большинство из них увеличивается в размерах. Митоз создаёт клетки, необходимые для увеличения массы тела, а также большее их число, чтобы справиться с ростом, например, новые клетки крови. Особенностью является то, что не все клетки человеческого организма подвергаются митозу или другим формам размножения, например, нервные и мышечные.
  • Регенерация. Некоторые животные могут регенерировать части тела. Когда организм получает травму, возникает процесс деления, чтобы заменить повреждённые клетки. Этот ремонт особенно важен для кожи и кровеносных сосудов, которые защищают и насыщают кислородом мышцы и органы в организме. Митоз также помогает заменить кровь, потерянную через рану. В некоторых организмах, таких как ящерицы, митоз может заменить целые потерянные конечности, такие как хвосты или ноги.
  • Ошибки. Поскольку митоз так важен для восстановления и роста, при появлении ошибок возникают серьёзные проблемы. Одной из основных разновидностей осложнений является рак. Мутации в ДНК могут происходить во время процесса митоза, и если они не пойманы, могут возникнуть раковые клетки. Ошибки также могут возникать во время развития плода, что приводит к хромосомным расстройствам, таким как синдром Дауна и синдром Тёрнера.

Эукариоты и прокариоты

Митоз встречается только в эукариотах. Прокариоты, в которых отсутствует ядро, делятся с помощью другого процесса, называемого бинарным делением. Митоз варьируется между организмами. Например, в организме животных происходит открытый митоз, где ядерная оболочка разрушается до того, как хромосомы отделяются, тогда как грибы подвергаются закрытому митозу, где хромосомы делятся внутри неповреждённого ядра.

Большое количество клеток животных претерпевает изменение формы, известное как округление митотических клеток, чтобы принять почти сферическую морфологию в начале митоза. Большинство клеток человека получаются путём деления митотических клеток. Важные исключения включают гаметы — сперматозоиды и яйцеклетки, которые получаются в процессе мейоза.

Источник: nauka.club

Различают следующие четыре фазы митоза: профаза, метафаза, анафаза и телофаза. В профазе хорошо видны центриоли — образования, находящиеся в клеточном центре и играющие роль в делении дочерних хромосом животных. (Напомним, что у высших растений нет центриолей в клеточном центре, который организует деление хромосом). Мы же рассмотрим митоз на примере животной клетки, поскольку присутствие центриоли делает процесс деления хромосом более наглядным. Центриоли делятся и расходятся к разным полюсам клетки. От центриолей протягиваются микротрубочки, образующие нити веретена деления, которое регулирует расхождение хромосом к полюсам делящейся клетки.
В конце профазы ядерная оболочка распадается, ядрышко постепенно исчезает, хромосомы спирализуются и в результате этого укорачиваются и утолщаются, и их уже можно наблюдать в световой микроскоп. Еще лучше они видны на следующей стадии митоза — метафазе.
В метафазе хромосомы располагаются в экваториальной плоскости клетки. При этом хорошо видно, что каждая хромосома, состоящая из двух хроматид, имеет перетяжку — центромеру. Хромосомы своими центромерами прикрепляются у нити веретена деления. После деления центромеры каждая хроматида становится самостоятельной дочерней хромосомой.
Затем наступает следующая стадия митоза — анафаза, во время которой дочерние хромосомы (хроматиды одной хромосомы) расходятся к разным полюсам клетки.
Следующая стадия деления клетки — телофаза. Она начинается после того, как дочерние хромосомы, состоящие из одной хроматиды, достигли полюсов клетки. На этой стадии хромосомы вновь деспирализуются и приобретают такой же вид, какой они имели до начала деления клетки в интерфазе (длинные тонкие нити). Вокруг них возникает ядерная оболочка, а в ядре формируется ядрышко, в котором синтезируются рибосомы. В процессе деления цитоплазмы все органоиды (митохондрии, комплекс Гольджи, рибосомы и др.) распределяются между дочерними клетками более или менее равномерно.
Таким образом, в результате митоза из одной клетки получаются две, каждая из которых имеет характерное для данного вида организма число и форму хромосом, а следовательно, постоянное количество ДНК.
Весь процесс митоза занимает в среднем 1-2 ч. Продолжительность его несколько различна для разных видов клеток. Зависит он также от условий внешней среды (температуры, светового режима и других показателей).
Биологическое значение митоза заключается в том, что он обеспечивает постоянство числа хромосом во всех клетках организма. Все соматические клетки образуются в результате митотического деления, что обеспечивает рост организма. В процессе митоза происходит распределение веществ хромосом материнской клетки строго поровну между возникающими из нее двумя дочерними клетками. В результате митоза все клетки организма получают одну и ту же генетическую информацию.

Источник: edu.glavsprav.ru

Интерфаза

Прежде чем делящаяся клетка попадает в митоз, она подвергается периоду роста, называемому интерфазой. Около 90% времени клетки при нормальном клеточном цикле могут быть потрачены на интерфазу, которая осуществляется в три основные фазы:

  • Фаза G1: период до синтеза ДНК. В этой фазе клетка увеличивается в массе, подготавливаясь к делению.
  • S-фаза: период, в течение которого происходит синтез ДНК. В большинстве клеток эта стадия происходит за очень короткий промежуток времени.
  • Фаза G2: клетка продолжает синтез дополнительных белков увеличиваться в размерах.

В последней части интерфазы, клетка все еще имеет нуклеолы. Ядро ограничено ядерной оболочкой, а хромосомы дублируются, но находятся в форме хроматина. В клетках животных две пары центриолей, образованных из репликации одной пары, расположены за пределами ядра.

После фазы G2 наступает митоз, который в свою очередь состоит из нескольких стадий и завершается цитокинезом (делением клетки).

Читайте также: Основные сходства и отличия митоза от мейоза.

Фазы митоза:

Препрофаза (в клетках растений)

Назовите фазы митоза

Препрофаза является дополнительной фазой во время митоза в клетках растений, которая не встречается у других эукариот, таких как животные или грибы. Она предшествует профазе и характеризуется двумя различными событиями.

Изменения, которые происходят в препрофазе:

  • Образование полосы препрофазы — плотного микротрубочного кольца под плазматической мембраной.
  • Начало зарождения микротрубочек в ядерной оболочке.

Профаза

Назовите фазы митоза

В профазе хроматин конденсируется в дискретные хромосомы. Ядерная оболочка ломается, а веретено деления образуются на противоположных полюсах клетки. Профаза (по сравнению с интерфазой) является первым истинным шагом митотического процесса.

Изменения, которые происходят в профазе:

  • Хроматиновые волокна превращаются в хромосомы, имеющие по две хроматиды, соединенные в центромер. Волокна деления, состоящие из микротрубочек и белков, образуется в цитоплазме.
  • В клетках животных волокна деления первоначально появляется как структуры, называемые астерами, которые окружают каждую пару центриолей.
  • Две пары центриолей (сформированных из репликации одной пары в интерфазе) отходят друг от друга к противоположным полюсам клетки из-за удлинения микротрубочек, образующихся между ними.

Прометафаза

Назовите фазы митоза

Прометафаза — фаза митоза после профазы и предшествующая метафазе в эукариотических соматических клетках. Некоторые источники относят процессы протекающие в прометафазе к поздней профазе и начальной стадии метафазы.

Изменения, которые происходят в прометафазе:

  • Ядерная оболочка распадается.
  • Полярные волокна, которые представляют собой микротрубочки, составляющие волокна веретена, перемещаются от каждого полюса до экватора клетки.
  • Кинетохоры, которые являются специализированными областями в центромерах хромосом, прикрепляются к типу микротрубочек, называемых кинетохорными нитями.
  • Нити кинетохора «взаимодействуют» с веретеном деления.
  • Хромосомы начинают мигрировать к центру клетки.

Метафаза

Назовите фазы митоза

В метафазе полностью развиваются волокна деления, а хромосомы выравниваются на метафазной (экваториальной) пластине (плоскость, которая одинаково удалена от двух полюсов).

Изменения, которые происходят в метафазе:

  • Ядерная мембрана полностью исчезает.
  • В клетках животных две пары центриолей расходятся в противоположных направлениях к полюсам клетки.
  • Полярные волокна (микротрубочки, составляющие волокна веретена) продолжают распространяться от полюсов к центру. Хромосомы перемещаются случайным образом, пока не присоединяют (при помощи своих кинетохор) к полярным волокнам с обеих сторон центромеров.
  • Хромосомы выравниваются на метафазной пластине под прямым углом к ​​полюсам веретена.
  • Хромосомы удерживаются на метафазной пластине равными силами полярных волокон, которые нажимают на их центромеры.

Анафаза

Назовите фазы митоза

В анафазе парные хромосомы (сестринские хроматиды) отделяются и начинают двигаться к противоположным концам (полюсам) клетки. Волокна веретена, не связанные с хроматидами, вытягиваются и удлиняют клетку. В конце анафазы каждый полюс содержит полную компиляцию хромосом.

Изменения, которые происходят в анафазе:

  • Парные центромеры в каждой отдельной хромосоме начинают раздвигаться.
  • Как только парные сестринские хроматиды отделены друг от друга, каждая из них считается «полной» хромосомой. Они называются дочерними хромосомами.
  • При помощи веретена деления, дочерние хромосомы перемещаются к полюсам на противоположные концы клетки.
  • Дочерние хромосомы сначала мигрируют в центромер, а кинетохорные нити становятся короче, чем хромосомы вблизи полюсов.
  • При подготовке к телофазе два полюса клетки также отдаляются друг от друга во время анафазы. В конце анафазы каждый полюс содержит полную компиляцию хромосом.
  • Начинается процесс цитокинеза (разделение цитоплазмы исходной клетки), который завершается после телофазы.

Телофаза

Назовите фазы митоза

В телофазе хромосомы достигают ядер новых дочерних клеток.

Изменения, которые происходят в телофазе:

  • Полярные волокна продолжают удлиняться.
  • Ядра начинают формироваться на противоположных полюсах.
  • Ядерные оболочки новых ядер образовываются из остатков ядерной оболочки материнской клетки и кусочков эндомембранной системы.
  • Появляются ядрышка.
  • Разматываются хроматиновые волокна хромосом.
  • После этих изменений телофаза и митоз в основном завершены, а генетическое содержание одной клетки поделено на две части.

Цитокинез

Назовите фазы митоза

Цитокинез — это разделение цитоплазмы клетки. Он начинается до конца митоза в анафазе и заканчивается вскоре после телофазы. В конце цитокинеза образуются две генетически идентичные дочерние клетки.

Источник: NatWorld.info