Наличие пластид — главная особенность растительной клетки.

Функции клеточной оболочки — определяет форму клетки, защищает от факторов внешней среды.

Плазматическая мембрана — тонкая пленка, состоит из взаимодействующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органических веществ путем осмоса и активного переноса, а также удаляет продукты жизнедеятельности.

Цитоплазма — внутренняя полужидкая среда клетки, в которой расположено ядро и органоиды, обеспечивает связи между ними, участвует в основных процессах жизнедеятельности.

Эндоплазматическая сеть — сеть ветвящихся каналов в цитоплазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ. Рибосомы — тельца, расположенные на ЭПС или в цитоплазме, состоят из РНК и белка, участвуют в синтезе белка. ЭПС и рибосомы — единый аппарат синтеза и транспорта белков.


Митохондрии — органоиды, отграниченные от цитоплазмы двумя мембранами. В них окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. Увеличение поверхности внутренней мембраны, на которой расположены ферменты за счет крист. АТФ — богатое энергией органическое вещество.

Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в клетке — главная особенность растительного организма. Хлоропласты — пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию света и использует ее на синтез органических веществ из углекислого газа и воды. Отграничение хлоропластов от цитоплазмы двумя мембранами, многочисленные выросты — граны на внутренней мембране, в которых расположены молекулы хлорофилла и ферменты .

Комплекс Гольджи — система полостей, отграниченных от цитоплазмы мембраной. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов.

Лизосомы — тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки.

Вакуоли — полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке.

Ядро — главная часть клетки, покрытая снаружи двух мембранной, пронизанной порами ядерной оболочкой. Вещества поступают в ядро и удаляются из него через поры. Хромосомы — носители наследственной информации о признаках организма, основные структуры ядра, каждая из которых состоит из одной молекулы ДНК в соединении с белками. Ядро — место синтеза ДНК, и-РНК, р-РНК.

Строение животной клетки


Наличие наружной мембраны, цитоплазмы с органоидами, ядра с хромосомами.

Наружная, или плазматическая, мембрана — отграничивает содержимое клетки от окружающей среды (других клеток, межклеточного вещества), состоит из молекул липидов и белка, обеспечивает связь между клетками, транспорт веществ в клетку (пиноцитоз, фагоцитоз) и из клетки.

Цитоплазма — внутренняя полужидкая среда клетки, которая обеспечивает связь между расположенными в ней ядром и органоидами. В цитоплазме протекают основные процессы жизнедеятельности.

Органоиды клетки :

1) эндоплазматическая сеть (ЭПС) — система ветвящихся канальцев, участвует в синтезе белков, липидов и углеводов, в транспорте веществ в клетке;

2) рибосомы — тельца, содержащие рРНК, расположены на ЭПС и в цитоплазме, участвуют в синтезе белка. ЭПС и рибосомы — единый аппарат синтеза и транспорта белка;

3) митохондрии — «силовые станции» клетки, отграничены от цитоплазмы двумя мембранами. Внутренняя образует кристы (складки), увеличивающие ее поверхность. Ферменты на кристах ускоряют реакции окисления органических веществ и синтеза молекул АТФ, богатых энергией;


4) комплекс Гольджи — группа полостей, отграниченных мембраной от цитоплазмы, заполненных белками, жирами и углеводами, которые либо используются в процессах жизнедеятельности, либо удаляются из клетки. На мембранах комплекса осуществляется синтез жиров и углеводов;

5) лизосомы — тельца, заполненные ферментами, ускоряют реакции расщепления белков до аминокислот, липидов до глицерина и жирных -.кислот, полисахаридов до моносахаридов. В лизосомах разрушаются отмершие части клетки, целые и клетки.

Клеточные включения — скопления запасных питательных веществ: белков, жиров и углеводов.

Ядро — наиболее важная часть клетки. Оно покрыто двухмембранной оболочкой с порами, через которые одни вещества проникают в ядро, а Другие поступают в цитоплазму. Хромосомы — основные структуры ядра, носители наследственной информации о признаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с половыми клетками — дочерним организмам. Ядро — место синтеза ДНК, иРНК, рРНК.

Задание:

Поясните, почему органоиды называют специализированными структурами клетки?

Ответ: органоиды называют специализированными структурами клетки, так как они выполняют строго определенные функции, в ядре хранится наследственная информация, в митохондриях синтезируется АТФ, в хлоропластах протекает фотосинтез и т.д.

Если у Вас есть вопросы по цитологии, то Вы можете обратиться за помощью к репетитору по биологии, он проконсультирует Вас в режиме онлайн.

Источник: dist-tutor.info

Что такое органоид?

iv>

Органоиды (их еще называют органеллами) — постоянные составляющие элементы любой клетки, которые делают ее целостной и выполняют определенные функции. Это структуры, которые являются жизненно необходимыми для поддержания ее деятельности.

К органоидам относятся ядро, лизосомы, эндоплазматическая сеть и комплекс Гольджи, вакуоли и везикулы, митохондрии, рибосомы, а также клеточный центр (центросома). Сюда также относят структуры, которые образуют цитоскелет клетки (микротрубочки и микрофиламенты), меланосомы. Отдельно следует выделить органоиды движения. Это реснички, жгутики, миофибриллы и псевдоножки.

Все эти структуры взаимосвязаны и обеспечивают скоординированную деятельность клеток. Именно поэтому на вопрос: «Что такое органоид?» — можно ответить, что это компонент, который можно приравнять к органу многоклеточного организма.

Классификация органоидов

Клетки отличаются размерами и формой, а также своими функциями, но при этом они имеют сходное химическое строение и единый принцип организации. При этом вопрос о том, что такое органоид и какие это структуры, достаточно дискуссионный. Так, например, лизосомы или вакуоли иногда не относят к клеточным органеллам.

Если говорить о классификации данных компонентов клеток, то выделяют немембранные и мембранные органоиды. Немембранные — это клеточный центр и рибосомы. Органоиды движения (микротрубочки и микрофиламенты) также лишены мембран.


В основе строения мембранных органелл лежит наличие биологической мембраны. Одномебранные и двумембранные органоиды имеют оболочку с единой структурой, которая состоит из двойного слоя фосфолипидов и белковых молекул. Она отделяет цитоплазму от внешней среды, помогает клетке сохранять форму. Стоит вспомнить, что в клетках растений помимо мембраны еще есть и внешняя целлюлозная оболочка, которую называют клеточной стенкой. Она выполняет опорную функцию.

К мембранным органеллам относится ЭПС, лизосомы и митохондрии, а также лизосомы и пластиды. Их мембраны могут отличаться только по набору протеинов.

Если говорить о функциональной способности органелл, то некоторые из них способны синтезировать определенные вещества. Так, важные органоиды синтеза — митохондрии, в которых образуется АТФ. Рибосомы, пластиды (хлоропласты) и шероховатая эндоплазматическая сеть отвечают за синтез белков, гладкая ЭПС – за синтез липидов и углеводов.

Рассмотрим строение и функции органоидов более подробно.

Ядро

Данная органелла чрезвычайно важна, поскольку при ее удалении клетки перестают функционировать и погибают.

Ядро имеет двойную мембрану, в которой есть множество пор. При помощи них оно тесно связывается с эндоплазматической сетью и цитоплазмой. Данный органоид содержит хроматин — хромосомы, которые являются комплексом протеинов и ДНК. Учитывая это, можно сказать, что именно ядро является органеллой, которая отвечает за сохранение основного количества генома.

>

Жидкая часть ядра называется кариоплазмой. В ней содержатся продукты жизнедеятельности структур ядра. Наиболее плотная зона — ядрышко, в котором размещаются рибосомы, сложные белки и РНК, а также фосфаты калия, магния, цинка, железа и кальция. Ядрышко исчезает перед делением клеток и формируется снова на последних этапах данного процесса.

Эндоплазматическая сеть (ретикулум)

ЭПС — одномембранный органоид. Он занимает половину объема клетки и состоит из канальцев и цистерн, которые связаны между собой, а также с цитоплазматической мембраной и внешней оболочкой ядра. Мембрана данного органоида имеет такую же структуру, что и плазмалема. Данная структура целостная и не открывается в цитоплазму.

Эндоплазматический ретикулум бывает гладким и гранулярным (шероховатым). На внутренней оболочке гранулярной ЭПС размещаются рибосомы, в которых проходит синтез протеинов. На поверхности гладкой эндоплазматической сети рибосомы отсутствуют, но здесь проходит синтез углеводов и жиров.

Все вещества, которые образуются в эндоплазматической сети, переносятся по системе канальцев и трубочек к местам назначения, где накапливаются и впоследствии используются в различных биохимических процессах.

Учитывая синтезирующую способность ЭПС, шероховатый ретикулум размещается в клетках, основная функция которых — образование протеинов, а гладкий — в клетках, синтезирующих углеводы и жиры. Кроме этого, в гладком ретикулуме накапливаются ионы кальция, которые нужны для нормального функционирования клеток или организма в целом.

Надо также отметить, что ЭПС является местом образования аппарата Гольджи.

Лизосомы, их функции


Лизосомы — это клеточные органоиды, которые представлены одномембранными мешочками округлой формы с гидролитическими и пищеварительными ферментами (протеазы, липазы и нуклеазы). Для содержимого лизосом характерна кислая среда. Мембраны данных образований изолируют их от цитоплазмы, предупреждая разрушение других структурных компонентов клеток. При высвобождении ферментов лизосомы в цитоплазму происходит саморазрушение клетки — автолиз.

Следует отметить, что ферменты первично синтезируются на шероховатой эндоплазматической сетке, после чего перемещаются в аппарат Гольджи. Здесь они проходят модификацию, упаковываются в мембранные пузырьки и начинают отделяться, становясь самостоятельными компонентами клетки — лизосомами, которые бывают первичными и вторичными.

Первичные лизосомы — структуры, которые отделяются от аппарата Гольджи, а вторичные (пищеварительные вакуоли) — это те, которые образуются вследствие слияния первичных лизосом и эндоцитозных вакуолей.

Учитывая такую структуру и организацию, можно выделить основные функции лизосом:

  • переваривание разных веществ внутри клетки;
  • уничтожение клеточных структур, которые не нужны;
  • участие в процессах реорганизации клеток.

Вакуоли

Вакуоли — это одномембранные органеллы сферической формы, которые являются резервуарами воды и растворенных в ней органических и неорганических соединений. В образовании данных структур участвует аппарат Гольджи и ЭПС.

В животной клетке вакуолей немного. Они мелкие и занимают не более 5% объема. Их основная роль — обеспечение транспорта веществ по всей клетке.

Вакуоли растительной клетки большие и занимают до 90% объема. В зрелой клетке есть только одна вакуоль, которая занимает центральное положение. Ее мембрану называют тонопластом, а содержимое — клеточным соком. Основные функции растительных вакуолей — обеспечение напряжения клеточной оболочки, накопление различных соединений и отходов жизнедеятельности клетки. Кроме того, эти органоиды растительной клетки поставляют воду, необходимую для процесса фотосинтеза.

Если говорить о составе клеточного сока, то в него входят следующие вещества:

  • запасные — органические кислоты, углеводы и протеины, отдельные аминокислоты;
  • соединения, которые образуются в процессе жизнедеятельности клеток и накапливаются в них (алкалоиды, дубильные вещества и фенолы);
  • фитонциды и фитогормоны;
  • пигменты, за счет которых плоды, корнеплоды и лепестки цветов окрашиваются в соответствующий цвет.

Комплекс Гольджи

Строение органоидов под названием «аппарат Гольджи» довольно простое. В клетках растений они выглядят как отдельные тельца с мембраной, в клетках животных они представлены цистернами, канальцами и пузырями. Структурная единица комплекса Гольджи — это диктиосома, которая представлена стопкой из 4-6 «цистерн» и мелких пузырьков, что отделяются от них и являются внутриклеточной транспортной системой, а также могут служить источником лизосом. Число диктиосом может колебаться от одной до нескольких сотен.

Комплекс Гольджи, как правило, размещается около ядра. В животных клетках – возле клеточного центра. Основными функциями этих органелл является следующее:

  • секреция и накопление протеинов, липидов и сахаридов;
  • модификация органических соединений, поступающих в комплекс Гольджи;
  • данный органоид является местом образования лизосом.

Следует отметить, что ЭПС, лизосомы, вакуоли, а также аппарат Гольджи вместе образуют канальцево-вакуолярную систему, которая разделяет клетку на отдельные участки с соответствующими функциями. Кроме того, данная система обеспечивает постоянное обновление мембран.

Митохондрии — энергетические станции клетки

Митохондрии — двумембранные органоиды палочковидной, шаровидной или нитевидной формы, которые синтезируют АТФ.


и имеют внешнюю гладкую поверхность и внутреннюю мембрану с многочисленными складками, которые называются кристами. Следует отметить, что число крист в митохондриях может меняться в зависимости от потребности клетки в энергии. Именно на внутренней мембране сосредоточены многочисленные ферментные комплексы, синтезирующие аденозинтрифосфат. Здесь энергия химических связей превращается в макроэргические связи АТФ. Кроме того, в митохондриях проходит расщепление жирных кислот и углеводов с высвобождением энергии, которая накапливается и используется на процессы роста и синтеза.

Внутренняя среда данных органелл называется матриксом. Она содержит кольцевые ДНК и РНК, мелкие рибосомы. Интересно, что митохондрии — полуавтономные органоиды, поскольку зависят от функционирования клетки, но в то же время могут сохранять определенную самостоятельность. Так, они способны синтезировать собственные белки и ферменты, а также размножаться самостоятельно.

Считается, что митохондрии возникли при попадании в клетку-хозяина аэробных прокариотических организмов, что привело к образованию специфического симбиотического комплекса. Так, митохондриальная ДНК имеет такое же строение, как и ДНК современных бактерий, а синтез белков и в митохондриях, и в бактериях ингибируется одинаковыми антибиотиками.

Пластиды — органоиды растительной клетки

Пластиды являются достаточно крупными органеллами. Они присутствуют только в клетках растений и образуются из предшественников – пропластид, содержат ДНК. Эти органоиды играют важную роль в метаболизме и отделены от цитоплазмы двойной мембраной. Кроме этого, в них может образовываться упорядоченная система внутренних мембран.

Пластиды бывают трех типов:

  1. Хлоропласты — наиболее многочисленные пластиды, отвечающие за фотосинтез, при котором образуются органические соединения и свободный кислород. Данные структуры имеют сложное строение и способны перемещаться в цитоплазме в сторону источника света. Основное вещество, которое содержится в хлоропластах, — хлорофилл, при помощи которого растения могут использовать энергию солнца. Следует отметить, что хлоропласты подобно митохондриям являются полуавтономными структурами, так как способны к самостоятельному делению и синтезу собственных белков.
  2. Лейкопласты — бесцветные пластиды, которые под действием света превращаются в хлоропласты. Данные клеточные компоненты содержат ферменты. При помощи них глюкоза превращается и накапливается в форме крахмальных зерен. У некоторых растений эти пластиды способны накапливать липиды или протеины в виде кристаллов и аморфных телец. Наибольше количество лейкопластов сосредоточено в клетках подземных органов растений.
  3. Хромопласты — производные других двух видов пластид. В них образуются каротиноиды (при разрушении хлорофилла), которые имеют красный, желтый или оранжевый цвет. Хромопласты — конечная стадия превращения пластид. Больше всего их в плодах, лепестках и осенних листьях.

Рибосомы

Что такое органоид под названием рибосома? Рибосомами называют немембранные органеллы, состоящие из двух фрагментов (малой и большой субъединицы). Их диаметр составляет около 20 нм. Они встречаются в клетках всех типов. Это органоиды животных и растительных клеток, бактерий. Образуются эти структуры в ядре, после чего переходят в цитоплазму, где размещаются свободно или прикрепляются к ЭПС. В зависимости от синтезирующих свойств рибосомы функционируют в одиночку или объединяются в комплексы, образуя полирибосомы. В данном случае эти немембранные органеллы связываются молекулой информационной РНК.

Рибосома содержит 4 молекулы р-РНК, которые составляют ее каркас, а также различные белки. Основная задача данного органоида — сбор полипептидной цепи, что является первой стадией синтеза протеинов. Те белки, которые образуются рибосомами эндоплазматического ретикулума, могут использоваться всем организмом. Протеины для потребностей отдельной клетки синтезируются рибосомами, которые размещаются в цитоплазме. Следует отметить, что рибосомы также встречаются в митохондриях и пластидах.

Цитоскелет клетки

Клеточный цитоскелет образуется микротрубочками и микрофиламентами. Микротрубочки представляют собой цилиндрические образования диаметром 24 нм. Их длина составляет 100 мкм-1 мм. Основной компонент — белок под названием тубулин. Он неспособен к сокращению и может разрушаться под действием колхицина. Микротрубочки располагаются в гиалоплазме и выполняют следующие функции:

  • создают эластичный, но в то же время прочный каркас клетки, который позволяет ей сохранять форму;
  • принимают участие в процессе распределения хромосом клетки;
  • обеспечивают перемещение органелл;
  • содержатся в клеточном центре, а также в жгутиках и ресничках.

Микрофиламенты — нити, которые размещаются под плазматической мембраной и состоят из белка актина или миозина. Они могут сокращаться, в результате чего идет перемещение цитоплазмы или выпячивание клеточной мембраны. Кроме того, данные компоненты принимают участие в образовании перетяжки при делении клетки.

Клеточный центр (центросома)

Данная органелла состоит из 2 центриолей и центросферы. Центриоль цилиндрической формы. Ее стенки образуются тремя микротрубочками, которые сливаются между собой посредством поперечных сшивок. Центриоли располагаются парами под прямым углом друг к другу. Следует отметить, что клетки высших растений лишены данных органоидов.

Основная роль клеточного центра — обеспечение равномерного распределения хромосом в ходе клеточного деления. Также он является центром организации цитоскелета.

Органеллы движения

К органоидам движения относят реснички, а также жгутики. Это миниатюрные выросты в виде волосков. Жгутик содержит 20 микротрубочек. Его основа размещается в цитоплазме и называется базальным тельцем. Длина жгутика составляет 100 мкм или более. Жгутики, которые имеют всего 10-20 мкм, называются ресничками. При скольжении микротрубочек реснички и жгутики способны колебаться, вызывая движение самой клетки. В цитоплазме могут содержаться сократительные фибриллы, которые называются миофибриллами — это органоиды животной клетки. Миофибриллы, как правило, размещаются в миоцитах — клетках мышечной ткани, а также в клетках сердца. Они состоят из более мелких волокон (протофибрилл).

Следует отметить, что пучки миофибрилл состоят из темных волокон — это анизотропные диски, а также светлых участков — это изотропные диски. Структурная единица миофибриллы — саркомер. Это участок между анизотропным и изотропным диском, который имеет актиновые и миозиновые нити. При их скольжении происходит сокращение саркомера, что приводит к движению всего мышечного волокна. При этом используется энергия АТФ и ионы кальция.

При помощи жгутиков движутся простейшие и сперматозоиды животных. Реснички являются органом движения инфузории-туфельки. У животных и человека они покрывают воздухоносные дыхательные пути и помогают избавляться от мелких твердых частиц, например, от пыли. Кроме этого, существуют еще псевдоножки, которые обеспечивают амебоидное движение и являются элементами многих одноклеточных и клеток животных (к примеру, лейкоцитов).

Большинство растений не могут перемещаться в пространстве. Их движения заключаются в росте, перемещениях листьев и изменениях потока цитоплазмы клеток.

Заключение

Несмотря на все разнообразие клеток, все они имеют сходную структуру и организацию. Строение и функции органоидов характеризуются идентичными свойствами, обеспечивая нормальное функционирование как отдельной клетки, так и всего организма.

Эту закономерность можно выразить следующим образом.

Таблица «Органоиды клетки эукариот»

Органоид

Растительная клетка

Животная клетка

Основные функции

ядро

есть

есть

хранение ДНК, транскрипция РНК и синтез протеинов

эндоплазматическая сетка

есть

есть

синтез протеинов, липидов и углеводов, накопление ионов кальция, образование комплекса Гольджи

митохондрии

есть

есть

синтез АТФ, собственных ферментов и белков

пластиды

есть

нет

участие в фотосинтезе, накопление крахмала, липидов, протеинов, каротиноидов

рибосомы

есть

есть

сбор полипептидной цепи (синтез белков)

микротрубочки и микрофиламенты

есть

есть

позволяют клетке сохранять определенную форму, являются составной частью клеточного центра, ресничек и жгутиков, обеспечивают перемещение органелл

лизосомы

есть

есть

переваривание веществ внутри клетки, уничтожение ее ненужных структур, участие в реорганизации клеток, обусловливают автолиз

большая центральная вакуоль

есть

нет

обеспечивает напряжение клеточной оболочки, накапливает питательные вещества и продукты жизнедеятельности клетки, фитонциды и фитогормоны, а также пигменты, является резервуаром воды

комплекс Гольджи

есть

есть

секретирует и накапливает протеины, липиды и углеводы, модифицирует питательные вещества, которые поступают в клетку, отвечает за образование лизосом

клеточный центр

есть, кроме высших растений

есть

является центром организации цитоскелета, обеспечивает равномерное расхождение хромосом при делении клеток

миофибриллы

нет

есть

обеспечивают сокращение мышечной ткани

Если сделать выводы, то можно сказать, что существуют незначительные различия между животной и растительной клеткой. При этом функциональные особенности и строение органоидов (таблица, указанная выше, подтверждает это) имеет общий принцип организации. Клетка функционирует как слаженная и целостная система. При этом функции органоидов взаимосвязаны и направлены на оптимальную работу и поддержание жизнедеятельности клетки.

Источник: fb.ru

Органоиды и их функции

Перечислите органоиды клетки и укажите их функции.

Органоиды — постоянно присутствующие в цитоплазме, специализированные для выполнения определенных функций структуры. По принципу организации выделяют мембранные и немембранные органоиды клетки.

Мембранные органоиды клетки

1. Эндоплазматическая сеть (ЭПС) — система внутренних мембран цитоплазмы, образующих крупные полости — цистерны и многочисленные канальцы; занимает центральное положение в клетке, вокруг ядра. ЭПС составляет до 50% объема цитоплазмы. Каналы ЭПС связывают все органоиды цитоплазмы и открываются в перинуклеарное пространство ядерной оболочки. Таким образом, ЭПС представляет собой внутриклеточную циркуляционную систему. Различают два вида мембран эндоплазматической сети — гладкую и шероховатую (гранулярную). Однако необходимо понимать, что они являются частью одной непрерывной эндоплазматической сети. На гранулярных мембранах расположены рибосомы, здесь идет синтез белка. На гладких мембранах упорядоченно расположены ферментные системы, участвующие в синтезе жиров и углеводов.

2. Аппарат Гольджи представляет собой систему цистерн, канальцев и пузырьков, образованных гладкими мембранами. Эта структура расположена на периферии клетки по отношению к ЭПС. На мембранах аппарата Гольджи упорядоченно расположены ферментные системы, участвующие в образовании более сложных органических соединений из белков, жиров и углеводов, синтезированных в ЭПС. Здесь происходит сборка мембран, образование лизосом. Мембраны аппарата Гольджи обеспечивают накопление, концентрацию и упаковку секрета, выделяемого из клетки.

3. Лизосомы — мембранные органоиды, содержащие до 40 протеолитических ферментов, способных расщеплять органические молекулы. Лизосомы участвуют в процессах внутриклеточного пищеварения и апоптоза (запрограммированной гибели клетки).

4. Митохондрии — энергетические станции клетки. Двухмембранные органоиды, имеющие гладкую наружную и внутреннюю мембрану, образующую кристы — гребни. На внутренней поверхности внутренней мембраны упорядоченно расположены ферментные системы, участвующие в синтезе АТФ. В митохондриях находится кольцевая молекула ДНК, сходная по строению с хромосомой прокариот. Имеется много мелких рибосом, на которых идет частично независимый от ядра синтез белков. Однако генов, заключенных в кольцевидной молекуле ДНК, недостаточно для обеспечения всех аспектов жизнедеятельности митохондрий, и они являются полуавтономными структурами цитоплазмы. Увеличение их числа происходит за счет деления, чему предшествует удвоение кольцевой молекулы ДНК.

5. Пластиды, — органоиды, характерные для растительных клеток. Существуют лейкопласты — бесцветные пластиды, хромопласты, имеющие красно-оранжевую окраску, и хлоропласты. — зеленые пластиды. Все они обладают единым планом строения и образованы двумя мембранами: наружной (гладкой) и внутренней, образующей перегородки — тилакоиды стромы. На тилакоидах стромы расположены граны, состоящие из уплощенных мембранных пузырьков — тилакоидов граны, уложенных один на другой по типу монетных столбиков. Внутри тилакоидов граны находится хлорофилл. Световая фаза фотосинтеза проходит именно здесь — в гранах, а реакции темновой фазы — в строме. В пластидах имеется кольцевидная молекула ДНК, сходная по строению с хромосомой прокариот, и много мелких рибосом, на которых идет частично независимый от ядра синтез белков. Пластиды могут переходить из одного вида в другой (хлоропласты в хромопласты и лейкопласты), они являются полуавтономными органоидами клетки. Увеличение числа пластид идет за счет их деления надвое и почкования, которым предшествует редупликация кольцевой молекулы ДНК.

Немембранные органоиды клетки

1. Рибосомы — округлые образования из двух субъединиц, состоящие на 50% из РНК и 50% из белков. Субъединицы образуются в ядре, в ядрышке, а в цитоплазме в присутствии ионов Са2+ объединяются в целостные структуры. В цитоплазме рибосомы расположены на мембранах эндоплазматической сети (гранулярная ЭПС) или свободно. В активном центре рибосом происходит процесс трансляции (подбор антикодонов тРНК к кодонам иРНК). Рибосомы, перемещаясь по молекуле иРНК с одного конца на другой, последовательно делают доступными кодоны иРНК для контакта с антикодонами тРНК.

2. Центриоли (клеточный центр) представляют собой цилиндрические тельца, стенкой которых являются 9 триад белковых микротрубочек. В клеточном центре центриоли расположены под прямым углом друг к другу. Они способны к самовоспроизведению по принципу самосборки. Самосборка — образование при помощи ферментов структур, подобных существующим. Центриоли принимают участие в образовании нитей веретена деления. Обеспечивают процесс расхождения хромосом во время деления клеток.

3. Жгутики и реснички — органоиды движения; они имеют единый план строения — наружная часть жгутика обращена в окружающую среду и покрыта участком цитоплазматической мембраны. Они представляют собой цилиндр: его стенкой являются 9 пар белковых микротрубочек, а в центре расположены две осевые микротрубочки. В основании жгутика, расположенного в эктоплазме — цитоплазме, лежащей непосредственно под клеточной мембраной, к каждой паре микротрубочек добавляется еще одна короткая микротрубочка. В результате образуется базальное тельце, состоящее из девяти триад микротрубочек.

4. Цитоскелет представлен системой белковых волокон и микротрубочек. Обеспечивает поддержание и изменение формы тела клетки, образование псевдоподий. Отвечает за амебоидное движение, образует внутренний каркас клетки, обеспечивает передвижение клеточных структур по цитоплазме.

Источник: biootvet.ru

Все органоиды клеток делятся на две группы: мембранные и немембранные.

Большинство внутриклеточных структур принадлежит к мембранным органоидам, у которых содержимое отделено от цитоплазмы биологическими мембранами. К ним относятся эндоплазматическая сеть, комплекс Гольджи, митохондрии, лизосомы, пластиды. Митохондрии и пластиды являются двухмембранными органоидами. Немембранными органоидами, которые образованы без участия мембран, являются рибосомы, микротрубочки, клеточный центр. Все названные органоиды имеются в клетках эукариот. В клетках прокариот содержатся лишь рибосомы.

Каждый органоид осуществляет определённые функции, жизненно необходимые для клетки.

Одномембранные органоиды

Название органоидов и их функцииЭндоплазматическая сеть, или ЭПС (греч. эндон — внутри и плазма — образование) — одномембранный органоид – это сложная система в виде трубочек, мешочков, плоских цистерн разных размеров. Они объединены в единую замкнутую полость и отграничены от содержимого цитоплазмы биологической мембраной, образующей многочисленные складки и изгибы. Из плоских цистерн в клетках растений образуются вакуоли.

Эндоплазматическая сеть разделяет цитоплазму на отдельные отсеки, в которых одновременно могут проходить различные химические процессы, не мешая друг другу. Различают шероховатую и гладкую эндоплазматическую сеть. "Шероховатость" вызвана многочисленными рибосомами, усеивающими поверхность мембран, где происходит процесс синтеза белков в клетке. Гладкая эндоплазматическая сеть синтезирует различные липиды и углеводы. Эндоплазматическая сеть не только синтезирует и накапливает в своих цистернах различные вещества, но и участвует в их внутриклеточной транспортировке.

Название органоидов и их функции  Название органоидов и их функции

Источник: biolicey2vrn.ru

 Определение понятия

Органоиды – это постоянные, обязательно присутствующие структуры клетки, выполняющие специфические функции и имеющие определенное строение.

Органоиды (синоним: органеллы) — это органы клетки, маленькие органы. По строению органоиды можно разделить на две группы: мембранные, в состав которых обязательно входят мембраны, и немембранные. В свою очередь, мембранные органоиды могут быть одномембранными – если образованы одной мембраной и двумембранными – если оболочка органоидов двойная и состоит из двух мембран.

Включения — это непостоянные структуры клетки, которые появляются в ней и исчезают в процессе метаболизма. Различают трофические, секреторные, экскреторные и пигментные включения.

Следует различать органоиды и включения.

Видео: Обзор клеточных структур


  

Видеообзор: https://youtu.be/URUJD5NEXC8

Органоиды (органеллы)

 Мембрана (плазмолемма).

Ядро с ядрышком.

Эндоплазматическая сеть: шероховатая (гранулярная) и гладкая (агранулярная).

Видео: Синтез белков на гранулярном эндоплазматическом ретикулуме

 

Комплекс (аппарат) Гольджи

Видео: Комплекс Гольджи за работой

Митохондрии.

Рибосомы.

Лизосомы. Лизосомы (от гр. lysis — «разложение, растворение, распад» и soma — «тело») — это пузырьки диаметром 200—400 мкм. Имеют одномембранную оболочку, которая снаружи бывает покрыта волокнистым белковым слоем. Содержат набор ферментов (кислых гидролаз), которые при низких значениях рН в кислой среде проводят гидролитическое (в присутствии воды) расщепление веществ: нуклеиновых кислот, белков, жиров, углеводов. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Основная функция лизосом — внутриклеточное переваривание различных химических соединений и клеточных структур. Автолиз – саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом. В норме автолиз имеет место при метаморфозах (исчезновение хвоста у головастика лягушек), инволюции матки после родов, в очагах омертвления тканей.

Пероксисомы. Пероксисомы — это микротельца (пузырьки-везикулы) 0,1-1,5 мкм в диаметре, окружённые мембраной. Внутреннее содержимое пероксисомы (матрикс) представлен мелкогранулярным содержимым с нуклеоидом (сердцевиной) в центре. В нуклеоиде часто видны кристаллоподобные структуры, которые состоят из упорядоченно упакованных фибрилл и трубочек. Пероксисомы обычно локализуются вблизи мембран гранулярной эндоплазматической сети. Последние являются местом их образования, хотя часть ферментов пероксисом синтезируется в гиалоплазме. В пероксисомах обнаружено множество видов ферментов, связанных с метаболизмом перекиси водорода, окислением различных веществ, биосинтезом желчных кислот. Это ферменты, ведущие окислительное дезаминирование аминокислот (оксидазы, уратоксидазы) с образованием вредной для клетки перекиси водорода. В пероксисомах окисляются некоторые фенолы, Д-аминокислоты, а также жирные кислоты с очень длинными (более 22 углеродных атомов) цепями, которые не могут быть до укорачивания окислены в митохондриях. Такие жирные кислоты содержатся, например, в рапсовом масле. Для расщепления перекиси водорода Н2О2 на воду и кислород пероксисомы иеют фермент каталазу. Таким образом, эти органеллы разрушают органические соединения с образованием «клеточного яда» в виде перекиси водорода, но одновременно способны нейтрализовать её с помощью каталазы. Источники: http://meduniver.com/Medical/gistologia/24.html, http://mscience.ru/edu…
Функции пероксисом: окисление жирных кислот, фотодыхание, разрушение токсичных соединений, синтез желчных кислот, холестерина, а также эфиросодержащих липидов, построение миелиновой оболочки нервных волокон, метаболизме фитановой кислоты и т. д.  Пероксисомы печени и почек обезвреживают множество ядовитых веществ, попадающих в кровоток. В частности, почти половина поступающего в организм человека этанола окисляется до ацетальдегида каталазой пероксисом. Наряду с митохондриями пероксисомы являются главными потребителями O2 в клетке.

Протеасомы

 Протеасомы – специальные органоиды для разрушения белков. Название «протеасома» – (protos — главный, первичный и soma — тело) показывает, что это органоид, способный к протеолизу – лизису белков. В клетке имеется протеасомы двух видов, различающиеся молекулярной массой: с коэффициентом седиментации (осаждения) 20S и 26S (S – единица Сведберга). 20S – протеасома имеет форму полого цилиндра 15-17 нм и диаметром 11-12 нм. Она состоит из 4 лежащих друг на друге колец двух типов. Каждое кольцо содержит 7 белковых субъединиц и включает 12-15 полипептидов. На внутренней стороне цилиндра находятся 3 протеолитические камеры. Протеолиз происходит в центральной камере. В этой камере расщепляются токсичные или ставшие неполноценными и ненужными клетке белки.
Маркировкой ненужных белков занимается специфическая система ферментов – система убиквитирования. Система присоединяет белок убиквитин (ubique — вездесущий) к молекуле белка, который должен быть уничтожен. Сигналами для убиквитирования и последующей деградации могут служить нарушения в структуре белковых молекул. Имеются данные о связи некоторых наследственных заболеваний человека (фиброкистоз, синдром Ангельмана) с нарушениями в ферментах реакции убиквитирования. Предполагается, что нарушения в работе протеасомной системы деградации белка являются причиной некоторых нейродегенеративных болезней. Источники: http://mscience.ru/edu_articles/biology_articles/161-peroksisomy-i-prote…

Видео: Протеасомы.

Фагосомы

Микрофиламенты. Каждый микрофиламент — это двойная спираль из глобулярных молекул белка актина. Поэтому содержание актина даже в немышечных клетках достигает 10 % от всех белков.
В узлах сети микрофиламентов и в местах их прикрепления к клеточным структурам находятся белок a-актинин, а также, белки миозин и тропомиозин.
Микрофиламенты образуют в клетках более или менее густую сеть. Так, например, в микрофаге насчитывается около 100.000 микрофиламентов. Функции микрофиламентов:
— миграция клеток в эмбриогенезе,
— передвижение макрофагов,
— фаго- и пиноцитоз,
— рост аксонов (у нейронов),
— образование каркаса для микроворсинок и обеспечение всасывания в кишечнике и реабсорбции в почечных канальцах.

Промежуточные филаменты. Являются компонентом цитоскелета. Они толще микрофиламентов и имеют тканеспецифическую природу:
— в эпителии они образованы белком кератином,
— в клетках соединительной ткани — виментином,
— в гладких мышечных клетках — десмином,
— в нервных клетках они называются нейрофиламентами и тоже образованы особым белком.
Промежуточные филаменты часто располагаются параллельно поверхности клеточного ядра.

Микротрубочки. Микротрубочки образуют в клетке густую сеть. Она начинается от перинуклеарной области (от центриоли) и радиально распространяется к плазмолемме, следуя за изменениями её формы. Также микротрубочки идут вдоль длинной оси отростков клеток. В клетках с ресничками микротрубочки образуют аксонему (осевую нить) ресничек.
Стенка микротрубочки состоит из одного слоя глобулярных субъединиц белка тубулина.
На поперечном срезе видно 13 таких субъединиц, образующих кольцо.
Его параметры таковы:
— внешний диаметр — dex = 24 нм,
— внутренний диаметр — din = 14 нм,
— толщина стенки — l стенки = 5 нм.
Как и микрофиламенты, микротрубочки образуются путём самосборки. Это происходит при сдвиге равновесия между свободной и связанной формами тубулина в сторону связанной формы.
В неделящейся интерфазной клетке создаваемая микротрубочками сеть играет роль цитоскелета, поддерживающего форму клетки.
Транспорт веществ по длинным отросткам нервных клеток идёт не внутри микротрубочек, а вдоль них по перитубулярному пространству. Но микротрубочки выступают при этом в роли направительных структур: Белки-транслокаторы (динеины и кинезины), перемещаясь по внешней поверхности микротрубочек, «тащат» за собой и мелкие пузырьки с транспортируемыми веществами.
В делящихся клетках сеть микротрубочек перестраивается и формирует веретено деления. Они связывают хроматиды хромосом с центриолями и способствуют правильному расхождению хроматид к полюсам делящейся клетки.Название органоидов и их функции

Клеточный центр.

Пластиды.

Вакуоли. Вакуоли – одномембранные органоиды. Они представляют собой мембранные «ёмкости», пузыри, заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Вакуоли характерны для растительных клеток. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы). Из органических веществ чаще запасаются сахара и белки. Сахара – чаще в виде растворов, белки поступают в виде пузырьков ЭПР и аппарата Гольджи, после чего вакуоли обезвоживаются, превращаясь в алейроновые зерна. В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.
Функции вакуолей. Растительные вакуоли отвечают за накопление воды и поддержание тургорного давления, накопление водорастворимых метаболитов – запасных питательных веществ и минеральных солей, окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян. Пищеварительные и автофагические вакуоли – разрушают органические макромолекулы; сократительные вакуоли регулируют осмотическое давление клетки и выводят ненужные вещества из клетки.
Эндоплазматическая сеть, аппарат Гольджи, лизосомы, пероксисомы и вакуоли образуют единую вакуолярную сеть клетки, отдельные элементы которой могут переходить друг в друга. 

Включения

Включения. Включения — это непостоянные структуры клетки, которые появляются в ней и исчезают в процессе метаболизма. Различают трофические, секреторные, экскреторные и пигментные включения.
Группа трофических включений объединяет углеводные, липидные и белковые включения. Наиболее распространенным представителем углеводных включений является гликоген — полимер глюкозы. На светооптическом уровне наблюдать включения гликогена можно при использовании гистохимической ШИК-реакции. В электронном микроскопе гликоген выявляется как осмиофильные гранулы, которые в клетках, где гликогена много (гепатоцитах), сливаются в крупные конгломераты — глыбки.
Липидными включениями наиболее богаты клетки жировой ткани — липоциты, резервирующие запасы жира для нужд всего организма, а также стероидпродуцирующие эндокринные клетки, использующие липид холестерин для синтеза своих гормонов. На ультрамикроскопическом уровне липидные включения имеют правильную округлую форму и в зависимости от химического состава характеризуются высокой, средней или низкой электронной плотностью.
Белковые включения, например, вителлин в яйцеклетках, накапливается в цитоплазме в виде гранул. Секреторные включения представляют собой разнообразную группу.
Секреторные включения синтезируются в клетках и выделяются (секретируются) в просветы протоков (клетки экзокринных желез), в межклеточную среду (гормоны, нейромедиаторы, факторы роста и др.), кровь, лимфу, межклеточные пространства (гормоны). На ультрамикроскопическом уровне секреторные включения имеют вид мембранных пузырьков, содержащих вещества разной плотности и интенсивности окраски, что зависит от их химического состава.
Экскреторные включения — это, как правило, продукты метаболизма клетки, от которых она должна освободиться. К экскреторным включениям относятся также инородные включения — случайно, либо преднамеренно (при фагоцитозе бактерий, например,) попавшие в клетку субстраты. Такие включения клетка лизирует с помощью своей лизосомальной системы, а оставшиеся частицы выводит (экскретирует ) во внешнюю среду. В более редких случаях попавшие в клетку агенты остаются неизменными и могут не подвергнуться экскреции — такие включения более правильно именовать чужеродными (хотя чужеродными для клетки являются и включения, которые она лизирует).
Пигментные включения хорошо выявляются как на светооптическом, так и на ультрамикроскопическом уровнях. Очень характерный вид они имеют на электронных микрофотографиях — в виде осмиофильных структур разных размеров и формы. Данная группа включений характерна для пигментоцитов. Пигментоциты, присутствуя в дерме кожи, защищают организм от глубокого проникновения опасного для него ультрафиолетового излучения, в радужке, сосудистой оболочке и сетчатке глаза пигментоциты регулируют поток света на фоторецепторные элементы глаза и предохраняют их от перераздражения светом. В процессе старения очень многие соматические клетки накапливают пигмент липофусцин, по присутствию которого можно судить о возрасте клетки. В эритроцитах и симпластах скелетных мышечных волокон присутствуют соответственно гемоглобин или миоглобин — пигменты-переносчики кислорода и углекислоты.
Источник: http://meduniver.com/Medical/gistologia/24.html MedUniver

 Видео: .Внутренняя жизнь клетки. Упаковка белков

 

Источник: kineziolog.su