Гомеостаз – это саморегулирующийся процесс, в котором все биологические системы стремятся сохранить стабильность в период адаптации к определенным условиям, оптимальным для выживания. Любая система, находясь в динамическом равновесии, стремится к достижению устойчивого состояния, которое сопротивляется внешним факторам и раздражителям.

Понятие о гомеостазе

Все системы организма должны работать вместе для поддержания правильного гомеостаза внутри тела. Гомеостаз — это регуляция в организме таких показателей, как температура, содержание воды и уровень углекислого газа. Например, сахарный диабет — это состояние, при котором организм не может регулировать уровень глюкозы в крови.

Гомеостаз — это термин, который используется как для описания существования организмов в экосистеме, так и для описания успешного функционирования клеток внутри организма. Организмы и популяции могут поддерживать гомеостаз в условиях поддержания стабильного уровня рождаемости и смертности.

Обратная связь


Обратная связь — это процесс, который происходит, когда системы организма необходимо замедлить или полностью остановить. Когда человек ест, пища поступает в желудок, и начинается пищеварение. В перерывах между приемами пищи желудок работать не должен. Пищеварительная система работает с серией гормонов и нервных импульсов, чтобы остановить и начать выработку секреции кислоты в желудке.

Другой пример отрицательной обратной связи можно наблюдать в случае повышения температуры тела. Регуляция гомеостаза проявляется потоотделением, защитной реакцией организма на перегрев. Таким образом, рост температуры прекращается, и проблема перегрева нейтрализуется. В случае переохлаждения организмом также предусмотрен ряд мер, принимаемых для того, чтобы согреться.

Поддержание внутреннего баланса

Гомеостаз можно определить как свойство организма или системы, которое помогает ему поддерживать заданные параметры в пределах нормального диапазона значений. Это ключ к жизни, и неправильный баланс в поддержании гомеостаза может привести к таким болезням, как гипертония и диабет.

Гомеостаз – это ключевой элемент в понимании того, как устроено человеческое тело. Такое формальное определение характеризует систему, которая регулирует свою внутреннюю среду и стремится поддерживать стабильность и регулярность всех процессов, происходящих в организме.

Гомеостатическое регулирование: температура тела


Контроль температуры тела у человека является хорошим примером гомеостаза в биологической системе. Когда человек здоров, его температура тела колеблется около значения + 37°C, но различные факторы могут повлиять на это значение, в том числе гормоны, скорость обмена веществ и различные заболевания, вызывающие повышение температуры.

В организме регуляция температуры контролируется в части мозга, которая называется гипоталамус. Через кровоток к мозгу осуществляется поступление сигналов о температурных показателях, а также анализ результатов данных по частоте дыхания, уровня сахара в крови и метаболизма. Потеря тепла в организме человека также способствует снижению активности.

Водно-солевой баланс

Независимо от того, сколько воды выпивает человек, организм не раздувается, как воздушный шар, также тело человека не сморщивается, как изюм, если пить очень мало. Наверное, кто-то когда-то об этом хоть раз задумывался. Так или иначе, организм знает, какое количество жидкости нужно сохранить для поддержания нужного уровня.

Концентрация соли и глюкозы (сахара) в организме поддерживается на постоянном уровне (при отсутствии негативных факторов), количество крови в организме составляет около 5 литров.

Регулирование уровня сахара в крови

Глюкоза — это вид сахара, который содержится в крови. В теле человека должен поддерживаться надлежащий уровень глюкозы для того, чтобы человек оставался здоровым. Когда уровень глюкозы становится слишком высоким, поджелудочная железа вырабатывает гормон инсулин.

Если уровень глюкозы в крови опускается слишком низко, печень преобразует гликоген в крови, тем самым повышая уровень сахара. Когда болезнетворные бактерии или вирусы попадают в организм, он начинает бороться с инфекцией прежде, чем патогенные элементы смогут привести к каким-либо проблемам со здоровьем.

Давление под контролем


Поддержание здорового кровяного давления также является примером гомеостаза. Сердце может ощущать изменения в кровяном давлении и посылать сигналы в мозг для обработки. Далее мозг отправляет обратно сигнал к сердцу с инструкцией, как правильно реагировать. Если кровяное давление слишком высокое, его нужно снизить.

Как достигается гомеостаз?

Каким образом человеческий организм регулирует все системы и органы и компенсирует происходящие изменения в окружающей среде? Это происходит благодаря наличию множества естественных датчиков, контролирующих температуру, солевой состав крови, артериальное давление и многие другие параметры. Эти детекторы посылают сигналы в мозг, в главный центр управления, в случае, если некоторые значения отклонились от нормы. После этого запускаются компенсаторные мероприятия для восстановления нормального состояния.

Поддержание гомеостаза невероятно важно для организма. Человеческое тело содержит определенное количество химических веществ, известных как кислоты и щелочи, их правильный баланс необходим для оптимального функционирования всех органов и систем тела. Уровень кальция в крови должен поддерживаться на должном уровне. Поскольку дыхание является непроизвольным, нервная система обеспечивает организму получение столь необходимого кислорода. Когда токсины попадают в вашу кровь, они нарушают гомеостаз организма. Человеческое тело реагирует на это нарушение с помощью мочевыделительной системы.


Важно подчеркнуть, что гомеостаз организма работает автоматически, если система функционирует нормально. Например, реакция на нагревание — кожа краснеет, потому что ее мелкие кровеносные сосуды автоматически расширяются. Дрожь — это ответная реакция на охлаждение. Таким образом, гомеостаз — это не набор органов, а синтез и баланс телесных функций. В совокупности это позволяет поддерживать весь организм в стабильном состоянии.

Источник: www.syl.ru

Гомеостаз — относительное, генетически закрепленное постоянство состава и свойств внутренней среды и устойчивости основных функций живого организма. Следует напомнить, что понятие «гомеостаз» не предполагает пассивное равновесие (равенство параметров) организма и внешней среды.

Поддержание гомеостаза — это огромная работа физиологических механизмов по поддержанию неравновесного состояния организма с внешней средой (создание и поддержание градиентов), препятствующая уравновешивающему влиянию физических процессов: диффузии, осмоса и энтропии (тепловой и электрической). Поэтому под понятием «гомеостатический нуль» подразумевается не нулевое значение, а отсутствие изменения биологической константы исследуемой функциональной системы.


Все биологические константы в той или иной степени колеблющиеся и варьируемые величины. Их крайние, генетически детерминированные значения определены видовой статистической выборкой, так называемым физиологическим интервалом. Физиологический интервал, в котором может изменяться любой биологический параметр, обозначается понятием «гомеостатические границы». Видовые гомеостатические границы колебания биологического параметра определяются в медицинской практике как границы нормы.

При взаимодействии векторов могут возникнуть следующие ситуации:

1. Вектор воздействия и вектор ответа равны (вариант 1: ВВ = ВО). Ответ организма на возмущающее воздействие среды комплементарен (взаимное соответствие), иначе говоря, специфичен фактору воздействия (усиление теплопродукции и уменьшение теплоотдачи), равен ему по силе (количественный прирост теплосодержания организма) и времени противодействия (скорость и длительность развития ответной реакции). При сложении ВВ и ВО величина вектора результирующего будет равна нулю. Равенство векторов ввиду инерционности систем реагирования может установиться не сразу, поэтому какое-то время может наблюдаться определенная флуктуация величины вектора результирующего. Но в перспективе установится определенное устойчивое соотношение процессов. При равенстве ВВ и ВО в нашем примере тепловые параметры (константы) — «количество теплоты тела» (Харди) или интегральная температура внутренней среды организма (температура крови — 37 °С) останутся неизменными, т. е. тепловой гомеостаз будет сохранен.


2. Вектор воздействия и вектор ответа не равны (по силе и времени). В этом случае ответная реакция на возмущающее воздействие среды некомплементарна. При сложении векторов ВВ и ВО величина результирующего вектора станет отличной от «гомеостатического нуля», что в численном выражении будет выражаться изменением биологической константы, в нашем примере — изменением интегральной температуры внутренней среды организма. Подобная ситуация может сложиться: а) при мощном факторе воздействия (вариант 2); б) при действии обычного или даже слабого фактора, но при чрезвычайно большом векторе ответа (вариант 3); в) при слабом ответе на действие обычного по мощности стимула (вариант 4).

Мерой комплементарности (адекватности) ответной реакции может служить величина результирующего вектора: чем менее он отличен от нуля, тем более адекватна ответная реакция организма на фактор воздействия. Именно эта адекватность, закрепленная эволюционным отбором, обеспечивает сохранение гомеостаза и необходимую для выживания организма приспособляемость и поведенческую эффективность как индивида, так и вида в целом. Организм остается здоровым, если вовремя реализует в ответ на то или иное воздействие оптимально соответствующую специфике фактора программу реагирования без ошибок, до конца и в минимально необходимом масштабе.
ким образом, можно заключить, что в основе состояния здоровья лежит физиологический процесс формирования той или иной функциональной системой активной ответной реакции организма на воздействие с удержанием результирующего вектора в гомеостатических пределах. Исходя из изложенного выше, состоянию здоровья следует дать следующее определение: состояние организма, при котором возможна адекватная факторам воздействия реализация его функциональных систем в рамках генетически обусловленных гомеостатических границ в соответствии с биологическими возможностями организма (возраст, пол) и условиями окружающей среды.

Жизнедеятельность организма в пределах генетически обусловленных гомеостатических границ есть условие сохранения его целостности. Надо отметить, что видовые гомеостатические границы достаточно пластичны. Они могут существенно отличаться от индивида к индивиду, а кроме того, в процессе жизни индивида могут как сужаться, уменьшая гомеостатическое поле (возраст, последствия болезней), так и расширяться (результаты тренинга). Видовые гомеостатические границы колебания биологического параметра определяются в медицинской практике как границы нормы.

В медико-биологической литературе нередко отождествляют термины «норма» и «здоровье». Но на самом деле эти понятия не идентичны. С одной стороны, можно быть здоровым с точки зрения показателей всех функций организма, но иметь отклонения от нормы по отдельным параметрам, например по структурным признакам (росту, весу и т. д.). С другой стороны, при наличии заболевания некоторые биологические константы могут оставаться в пределах нормы. Все это свидетельствует об относительности терминов «норма» и «здоровье» и их нетождественности.


Вид и характер реагирования у той или иной биологической популяции могут быть различными. Следует заметить, что адекватность ответной реакции определяется индивидуальной реактивностью и может зависеть от множества внешних и внутренних условий: пола и возраста, конкретных условий реализации данной ответной реакции. Например, воспалительная реакция наиболее выражена у мужчин и молодых людей, чем у женщин и у пожилых лиц, а в условиях наркоза она вообще может отсутствовать. Индивидуальная реактивность организма моделируется совокупностью его видовых, половых, возрастных и конституциональных особенностей, которые и определяют конкретный характер реакции организма на раздражитель.

По Н. Н. Сиротину (1945), реактивность организма тесно связана с его резистентностью. Резистентность — это количественное понятие, отражающее степень устойчивости организма к тому или иному конкретному фактору воздействия. В практической медицине под ней понимается устойчивость организма к конкретному патогенному фактору. Резистентность включает в себя механизмы пассивной переносимости (барьерная роль покровов тела, упругость скелета) и активной устойчивости (иммунный ответ).
Селье (1960) говорил, что приспособляемость достигается при более или менее оптимальном соотношении двух типов ответов: активной ответной реакции, направленной на нейтрализацию и демпфирование влияния фактора воздействия (кататоксической), и пассивной реакции — «состояния пассивного терпения» сосуществования, отграничения или бегства от фактора воздействия (синтоксической). Оба типа входят в структуру любого адаптивного ответа. Так, при стрессе выделяются гормоны борьбы и бегства (катехоламины и глюкокортикоиды), а при воспалении имеются активный фагоцитоз и осумковывание. Отсюда понятия резистентности и реактивности не тождественны, так как высокая резистентность может сопровождаться пониженной реактивностью.

Формирование ответной реакции организма — процесс сложный и многоступенчатый, в котором может быть задействовано множество физиологических механизмов, порой разнонаправленных. Наиболее полно консолидирует всю совокупность этих механизмов функциональная система, смысл которой был раскрыт в предыдущей главе. Именно с позиций теории функциональных систем следует рассматривать механизмы адаптации, а также закономерности компенсации нарушенных функций и основные звенья патогенеза ряда заболеваний. Реактивность организма существует в форме циклического образования и распада различных функциональных систем, деятельность которых проявляется в компенсаторно-приспособительных реакциях ответа на любое воздействие как внешней, так и внутренней среды с максимальной адекватностью и экономичностью.


А.С. Медведев

Источник: medbe.ru

Организм как открытая саморегулирующаяся система.

Живой организм – открытая система, имеющая связь с окружающей средой посредством нервной, пищеварительной, дыхательной, выделительной систем и др.

В процессе обмена веществ с пищей, водой, при газообмене в организм поступают разнообразные химические соединения, которые в организме подвергаются изменениям, входят в структуру организма, но не остаются постоянно. Усвоенные вещества распадаются, выделяют энергию, продукты распада удаляются во внешнюю среду. Разрушенная молекула заменяется новой и т.д.

Организм – открытая, динамичная система. В условиях непрерывно меняющейся среды организм поддерживает устойчивое состояние в течение определенного времени.

Понятие о гомеостазе. Общие закономерности гомеостаза живых систем.

Гомеостаз – свойство живого организма сохранять относительное динамическое постоянство внутренней среды. Гомеостаз выражается в относительном постоянстве химического состава, осмотического давления, устойчивости основных физиологических функций. Гомеостаз специфичен и обусловлен генотипом.

Сохранение целостности индивидуальных свойств организма один из наиболее общих биологических законов. Этот закон обеспечивается в вертикальном ряду поколений механизмами воспроизведения, а на протяжении жизни индивидуума – механизмами гомеостаза.

Явление гомеостаза представляет собой эволюционно выработанное, наследственно-закрепленное адаптационное свойство организма к обычным условиям окружающей среды. Однако эти условия могут кратковременно или длительно выходить за пределы нормы. В таких случаях явления адаптации характеризуются не только восстановлением обычных свойств внутренней среды, но и кратковременными изменениями функции (например, учащение ритма сердечной деятельности и увеличение частоты дыхательных движений при усиленной мышечной работе). Реакции гомеостаза могут быть направлены на:

  1. поддержание известных уровней стационарного состояния;

  2. устранение или ограничение действия вредностных факторов;

  3. выработку или сохранение оптимальных форм взаимодействия организма и среды в изменившихся условиях его существования. Все эти процессы и определяют адаптацию.

Поэтому понятие гомеостаза означает не только известное постоянство различных физиологических констант организма, но и включает процессы адаптации и координации физиологических процессов, обеспечивающих единство организма не только в норме, но и при изменяющихся условиях его существования.

Основные компоненты гомеостаза были определены К. Бернаром, и их можно разделить на три группы:

А. Вещества, обеспечивающие клеточные потребности:

  • Вещества, необходимые для образования энергии, для роста и восстановления – глюкоза, белки, жиры.

  • Вода.

  • NaCl, Ca и другие неорганические вещества.

  • Кислород.

  • Внутренняя секреция.

Б. Окружающие факторы, влияющие на клеточную активность:

  • Осмотическое давление.

  • Температура.

  • Концентрация водородных ионов (рН).

В. Механизмы, обеспечивающие структурное и функциональное единство:

  • Наследственность.

  • Регенерация.

  • Иммунобиологическая реактивность.

Принцип биологического регулирования обеспечивает внутреннее состояние организма (его содержание), а также взаимосвязь этапов онтогенеза и филогенеза. Этот принцип оказался широко распространненым. При его изучении возникла кибернетика – наука о целенаправленном и оптимальном управлении сложными процессами в живой природе, в человеческом обществе, промышленности (Берг И.А., 1962).

Живой организм представляет сложную управляемую систему, где происходит взаимодействие многих переменных внешней и внутренней среды. Общим для всех систем является наличие входных переменных, которые в зависимости от свойств и законов поведения системы преобразуются в выходные переменные (Рис. 10).

Что подразумевается под понятием гомеостаз

Рис. 10 — Общая схема гомеостаза живых систем

Выходные переменные зависят от входных и законов поведения системы.

Влияние выходного сигнала на управляющую часть системы называется обратной связью, которая имеет большое значение в саморегуляции (гомеостатической реакции). Различают отрицательную и положительную обратную связь.

Отрицательная обратная связь уменьшает влияние входного сигнала на величину выходного по принципу: «чем больше (на выходе), тем меньше (на входе)». Она способствует восстановлению гомеостаза системы.

При положительной обратной связи величина входного сигнала увеличивается по принципу: «чем больше (на выходе), тем больше (на входе)». Она усиливает возникшее отклонение от исходного состояния, что приводит к нарушению гомеостаза.

Однако все виды саморегуляции действуют по одному принципу: самоотклонение от исходного состояния, что служит стимулом для включения механизмов коррекции. Так, в норме рН крови составляет 7,32 – 7,45. Сдвиг рН на 0,1 приводит к нарушению сердечной деятельности. Этот принцип был описан Анохиным П.К. в 1935 году и назван принципом обратной связи, который служит для осуществления приспособительных реакций.

Общий принцип гомеостатической реакции (Анохин: «Теория функциональных систем»):

отклонение от исходного уровня → сигнал → включение регуляторных механизмов по принципу обратной связи → коррекция изменения (нормализация).

Так, при физической работе концентрация СО2 в крови увеличивается → рН сдвигается в кислую сторону → сигнал поступает в дыхательный центр продолговатого мозга → центробежные нервы проводят импульс к межреберным мышцам и дыхание углубляется → снижение СО2 в крови, рН восстанавливается.

Механизмы регуляции гомеостаза на молекулярно-генетическом, клеточном, организменном, популяционно-видовом и биосферном уровнях.

Регуляторные гомеостатические механизмы функционируют на генном, клеточном и системном (организменном, популяционно-видовом и биосферном) уровнях.

Генные механизмы гомеостаза. Все явления гомеостаза организма генетически детерминированы. Уже на уровне первичных генных продуктов существует прямая связь – «один структурный ген – одна полипептидная цепь». Причем между нуклеотидной последовательностью ДНК и последовательностью аминокислот полипептидной цепи существует коллинеарное соответствие. В наследственной программе индивидуального развития организма предусмотрено формирование видоспецифических характеристик не в постоянных, а в меняющихся условиях среды, в пределах наследственно обусловленной нормы реакции. Двуспиральность ДНК имеет существенное значение в процессах ее репликации и репарации. И то и другое имеет непосредственное отношение к обеспечению стабильности функционирования генетического материала.

С генетической точки зрения можно различать элементарные и системные проявления гомеостаза. Примерами элементарных проявлений гомеостаза могут служить: генный контроль тринадцати факторов свертывания крови, генный контроль гистосовместимости тканей и органов, позволяющий осуществить трансплантацию.

Пересаженный участок называется трансплантатом. Организм, у которого берут ткань для пересадки, является донором, а которому пересаживают – реципиентом. Успех трансплантации зависит от иммунологических реакций организма. Различают аутотрансплантацию, сингенную трансплантацию, аллотрасплантацию и ксенотрансплантацию.

Аутотрансплантация пересадка тканей у одного и того же организма. При этом белки (антигены) трансплантата не отличаются от белков реципиента. Иммунологическая реакция не возникает.

Сингенная трансплантация проводится у однояйцовых близнецов, имеющих одинаковый генотип.

Аллотрансплантацияпересадка тканей от одной особи к другой, относящихся к одному виду. Донор и реципиент отличаются по антигенам, поэтому у высших животных наблюдается длительное приживление тканей и органов.

Ксенотрансплантация донор и реципиент относятся к разным видам организмов. Этот вид трансплантации удается у некоторых беспозвоночных, но у высших животных такие трансплантанты не приживаются.

При трансплантации большое значение имеет явление иммунологической толерантности (тканевой совместимости). Подавление иммунитета в случае пересадки тканей (иммунодепрессия) достигается: подавлением активности иммунной системы, облучением, введением антилимфотической сыворотки, гормонов коры надпочечников, химических препаратов – антидепрессантов (имуран). Основная задача подавить не просто иммунитет, а трансплантационный иммунитет.

Трансплантационный иммунитет определяется генетической конституцией донора и реципиента. Гены, ответственные за синтез антигенов, вызывающих реакцию на пересаженную ткань, называются генами тканевой несовместимости.

У человека главной генетической системой гистосовместимости является система HLA (Human Leukocyte Antigen). Антигены достаточно полно представлены на поверхности лейкоцитов и определяются с помощью антисывороток. План строения системы у человека и животных одинаков. Принята единая терминология для описания генетических локусов и аллелей системы HLA. Антигены обозначаются: HLA-A1; HLA-A2 и т.д. Новые антигены, окончательно не идентифицированные обозначают – W (Work). Антигены системы HLA делят на 2 группы: SD и LD (Рис. 11).

Антигены группы SD определяются серологическими методами и детерминируются генами 3-х сублокусов системы HLA: HLA-A; HLA-B; HLA-C.

Что подразумевается под понятием гомеостаз

Рис. 11 — HLA главная генетическая система гистосовместимости человека

LD – антигены контролируются сублокусом HLA-D шестой хромосомы, и определяются методом смешанных культур лейкоцитов.

Каждый из генов, контролирующих HLA – антигены человека, имеет большое число аллелей. Так сублокус HLA-A – контролирует 19 антигенов; HLA-B – 20; HLA-C – 5 «рабочих» антигенов; HLA-D – 6. Таким образом, у человека уже обнаружено около 50 антигенов.

Антигенный полиморфизм системы HLA является результатом происхождения одних от других и тесной генетической связи между ними. Идентичность донора и реципиента по антигенам системы HLA необходима при трансплантации. Пересадка почки, идентичной по 4 антигенам системы, обеспечивает приживаемость на 70%; по 3 – 60%; по 2 – 45%; по 1 – 25%.

Имеются специальные центры, ведущие подбор донора и реципиента при трансплантации, например в Голландии – «Евротрансплантат». Типирование по антигенам системы HLA проводится и в Республике Беларусь.

Клеточные механизмы гомеостаза направлены на восстановление клеток тканей, органов в случае нарушения их целостности. Совокупность процессов, направленных на восстановление разрушаемых биологических структур называется регенерацией. Такой процесс характерен для всех уровней: обновление белков, составных частей органелл клетки, целых органелл и самих клеток. Восстановление функций органов после травмы или разрыва нерва, заживление ран имеет значение для медицины с точки зрения овладения этими процессами.

Ткани, по их регенерационной способности, делят на 3 группы:

  1. Ткани и органы, для которых характерны клеточная регенерация (кости, рыхлая соединительная ткань, кроветворная система, эндотелий, мезотелий, слизистые оболочки кишечного тракта, дыхательных путей и мочеполовой системы.

  2. Ткани и органы, для которых характерна клеточная и внутриклеточная регенерация (печень, почки, легкие, гладкие и скелетные мышцы, вегетативная нервная система, эндокринная, поджелудочная железа).

  3. Ткани, для которых характерна преимущественно внутриклеточная регенерация (миокард) или исключительно внутриклеточная регенерация (клетки ганглиев центральной нервной системы). Она охватывает процессы восстановления макромолекул и клеточных органелл путем сборки элементарных структур или путем их деления (митохондрии).

В процессе эволюции сформировалось 2 типа регенерации физиологическая и репаративная.

Физиологическая регенерация – это естественный процесс восстановления элементов организма в течении жизни. Например, восстановление эритроцитов и лейкоцитов, смена эпителия кожи, волос, замена молочных зубов на постоянные. На эти процессы влияют внешние и внутренние факторы.

Репаративная регенерация – это восстановление органов и тканей, утраченных при повреждении или ранении. Процесс происходит после механических травм, ожогов, химических или лучевых поражений, а также в результате болезней и хирургических операций.

Репаративная регенерация подразделяется на типичную (гомоморфоз) и атипичную (гетероморфоз). В первом случае регенерирует орган, который был удален или разрушен, во втором – на месте удаленного органа развивается другой.

Атипичная регенерация чаще встречается у беспозвоночных.

Регенерацию стимулируют гормоны гипофиза и щитовидной железы. Различают несколько способов регенерации:

    1. Эпиморфоз или полная регенерация – восстановление раневой поверхности, достраивание части до целого (например, отрастание хвоста у ящерицы, конечности у тритона).

    2. Морфоллаксис – перестройка оставшейся части органа до целого, только меньших размеров. Для этого способа характерна перестройка нового из остатков старого (например, восстановление конечности у таракана).

    3. Эндоморфоз – восстановление за счет внутриклеточной перестройки ткани и органа. Благодаря увеличению числа клеток и их размеров масса органа приближается к исходному.

У позвоночных репаративная регенерация осуществляется в следующей форме:

    1. Полная регенерация – восстановление исходной ткани после ее повреждения.

    2. Регенерационная гипертрофия, характерная для внутренних органов. При этом раневая поверхность заживает рубцом, удаленный участок не отрастает и форма органа не восстанавливается. Масса оставшейся части органа увеличивается за счет увеличения числа клеток и их размеров и приближается до исходной величины. Так у млекопитающих регенерирует печень, легкие, почки, надпочечники, поджелудочная, слюнные, щитовидная железа.

    3. Внутриклеточная компенсаторная гиперплазия ультраструктур клетки. При этом на месте повреждения образуется рубец, а восстановление исходной массы происходит за счет увеличения объема клеток, а не их числа на основе разрастания (гиперплазии) внутриклеточных структур (нервная ткань).

Системные механизмы обеспечиваются взаимодействием регуляторных систем: нервной, эндокринной и иммунной.

Нервная регуляция осуществляется и координируется центральной нервной системой. Нервные импульсы, поступая в клетки и ткани, вызывают не только возбуждение, но и регулируют химические процессы, обмен биологически активных веществ. В настоящее время известно более 50 нейрогормонов. Так, в гипоталамусе вырабатывается вазопрессин, окситоцин, либерины и статины, регулирующие функцию гипофиза. Примерами системных проявлений гомеостаза являются сохранение постоянства температуры, артериального давления.

С позиций гомеостаза и адаптации, нервная система является главным организатором всех процессов организма. В основе приспособления, уравновешивания организмов с окружающими условиями, по Н.П. Павлову, лежат рефлекторные процессы. Между разными уровнями гомеостатического регулирования существует частная иерархическая соподчиненность в системе регуляции внутренних процессов организма (Рис. 12).

кора полушарий и отделы головного мозга

Что подразумевается под понятием гомеостазЧто подразумевается под понятием гомеостаз

саморегуляция по принципу обратной связи

Что подразумевается под понятием гомеостазЧто подразумевается под понятием гомеостаз

периферические нервно-регуляторные процессы, местные рефлексы

Что подразумевается под понятием гомеостазЧто подразумевается под понятием гомеостаз

Клеточный и тканевой уровени гомеостаза

Рис. 12. — Иерархическая соподчиненность в системе регуляции внутренних процессов организма.

Самый первичный уровень составляют гомеостатические системы клеточного и тканевого уровня. Над ними представлены периферические нервные регуляторные процессы типа местных рефлексов. Далее в этой иерархии располагаются системы саморегуляции определенных физиологических функций с разнообразными каналами «обратной связи». Вершину этой пирамиды занимает кора больших полушарий и головной мозг.

В сложном многоклеточном организме как прямые, так и обратные связи осуществляются не только нервными, но и гормональными (эндокринными) механизмами. Каждая из желез, входящая в эндокринную систему, оказывает влияние на прочие органы этой системы и, в свою очередь, испытывает влияние со стороны последних.

Эндокринные механизмы гомеостаза по Б.М. Завадскому, это – механизм плюс-минус взаимодействия, т.е. уравновешивание функциональной активности железы с концентрацией гормона. При высокой концентрации гормона (выше нормы) деятельность железы ослабляется и наоборот. Такое влияние осуществляется путем действия гормона на продуцирующую его железу. У ряда желез регуляция устанавливается через гипоталамус и переднюю долю гипофиза, особенно при стресс-реакции.

Эндокринные железы можно разделить на две группы по отношению их к передней доле гипофиза. Последняя считается центральной, а прочие эндокринные железы – периферическими. Это разделение основано на том, что передняя доля гипофиза продуцирует так называемые тропные гормоны, которые активируют некоторые периферические эндокринные железы. В свою очередь, гормоны периферических эндокринных желез действуют на переднюю долю гипофиза, угнетая секрецию тропных гормонов.

Реакции, обеспечивающие гомеостаз, не могут ограничиваться какой-либо одной эндокринной железой, а захватывает в той или иной степени все железы. Возникающая реакция приобретает цепное течение и распространяется на другие эффекторы. Физиологическое значение гормонов заключается в регуляции других функций организма, а потому цепной характер должен быть выражен максимально.

Постоянные нарушения среды организма способствуют сохранению его гомеостаза в течение длительной жизни. Если создать такие условия жизни, при которых ничто не вызывает существенных сдвигов внутренней среды, то организм окажется полностью безоружен при встрече с окружающей средой и вскоре погибает.

Объединение в гипоталамусе нервных и эндокринных механизмов регуляции позволяет осуществлять сложные гомеостатические реакции, связанные с регуляцией висцеральной функции организма. Нервная и эндокринная системы являются объединяющим механизмом гомеостаза.

Примером общей ответной реакции нервных и гуморальных механизмов является состояние стресса, которое развивается при неблагоприятных жизненных условиях и возникает угроза нарушения гомеостаза. При стрессе наблюдается изменение состояния большинства систем: мышечной, дыхательной, сердечно-сосудистой, пищеварительной, органов чувств, кровяного давления, состава крови. Все эти изменения являются проявлением отдельных гомеостатических реакций, направленных на повышение сопротивляемости организма к неблагоприятным факторам. Быстрая мобилизация сил организма выступает как защитная реакция на состояние стресса.

При «соматическом стрессе» решается задача повышения общей сопротивляемости организма по схеме, приведенной на рисунке 13.

Что подразумевается под понятием гомеостаз

Что подразумевается под понятием гомеостаз

Рис. 13 — Схема повышения общей сопротивляемости организма при

Источник: StudFiles.net

Биофизические механизмы гомеостаза

С точки зрения хим. биофизики гомеостаз — это состояние, при к-ром все процессы, ответственные за энергетические превращения в организме, находятся в динамическом равновесии. Это состояние обладает наибольшей устойчивостью и соответствует физиол, оптимуму. В соответствии с представлениями термодинамики (см.) организм и клетка могут существовать и приспосабливаться к таким условиям среды, при которых в биол, системе возможно установление стационарного течения физ.-хим. процессов, т. е. гомеостаза. Основная роль в установлении Г. принадлежит в первую очередь клеточным мембранным системам, которые ответственны за биоэнергетические процессы и регулируют скорость поступления и выделения веществ клетками (см. Мембраны биологические).

С этих позиций основными причинами нарушения являются необычные для нормальной жизнедеятельности неферментативные реакции, протекающие в мембранах; в большинстве случаев это цепные реакции окисления с участием свободных радикалов, возникающие в фосфолипидах клеток. Эти реакции ведут к повреждению структурных элементов клеток и нарушению функции регулирования (см. Радикалы, Цепные реакции). К факторам, являющимся причиной нарушения Г., относятся также агенты, вызывающие радикалообразование,— ионизирующие излучения, инфекционные токсины, некоторые продукты питания, никотин, а также недостаток витаминов и т. д.

Одним из основных факторов, стабилизирующих гомеостатическое состояние и функции мембран, являются биоантиокислители, которые сдерживают развитие окислительных радикальных реакций (см. Антиокислители).

Возрастные особенности гомеостаза у детей

Постоянство внутренней среды организма и относительная устойчивость физ.-хим. показателей в детском возрасте обеспечиваются при выраженном преобладании анаболических процессов обмена над катаболическими. Это является непременным условием роста (см.) и отличает детский организм от организма взрослых, у которых интенсивность метаболических процессов находится в состоянии динамического равновесия. В связи с этим нейроэндокринная регуляция Г. детского организма оказывается более напряженной, чем у взрослых. Каждый возрастной период характеризуется специфическими особенностями механизмов Г. и их регуляции. Поэтому у детей значительно чаще, чем у взрослых встречаются тяжелые нарушения Г., нередко угрожающие жизни. Эти нарушения чаще всего связаны с незрелостью гомеостатических функций почек, с расстройствами функций жел.-киш. тракта или дыхательной функции легких (см. Дыхание).

Рост ребенка, выражающийся в увеличении массы его клеток, сопровождается отчетливыми изменениями распределения жидкости в организме (см. Водно-солевой обмен). Абсолютное увеличение объема внеклеточной жидкости отстает от темпов общего нарастания веса, поэтому относительный объем внутренней среды, выраженный в процентах от веса тела, с возрастом уменьшается. Эта зависимость особенно ярко выражена на первом году после рождения. У детей более старших возрастов темпы изменений относительного объема внеклеточной жидкости уменьшаются. Система регуляции постоянства объема жидкости (волюморегуляция) обеспечивает компенсацию отклонений в водном балансе в достаточно узких пределах. Высокая степень гидратации тканей у новорожденных и детей раннего возраста определяет значительно более высокую, чем у взрослых, потребность ребенка в воде (в расчете на единицу массы тела). Потери воды или ее ограничение быстро ведут к развитию дегидратации за счет внеклеточного сектора, т. е. внутренней среды. При этом почки — главные исполнительные органы в системе волюморегуляции — не обеспечивают экономии воды. Лимитирующим фактором регуляции является незрелость канальцевой системы почек. Важнейшая особенность нейроэндокринного контроля Г. у новорожденных и детей раннего возраста заключается в относительно высокой секреции и почечной экскреции альдостерона (см.), что оказывает прямое влияние на состояние гидратации тканей и функцию почечных канальцев.

Регуляция осмотического давления плазмы крови и внеклеточной жидкости у детей также ограничена. Осмомолярность внутренней среды колеблется в более широком диапазоне (+ 50 мосм/л), чем у взрослых ( + 6 мосм/л). Это связано с большей величиной поверхности тела на 1 кг веса и, следовательно, с более существенными потерями воды при дыхании, а также с незрелостью почечных механизмов концентрации мочи у детей. Нарушения Г., проявляющиеся гиперосмосом, особенно часто встречаются у детей периода новорожденности и первых месяцев жизни; в более старших возрастах начинает преобладать гипоосмос, связанный гл. обр. с жел.-киш. заболеванием или болезнями почек. Менее изучена ионная регуляция Г., тесно связанная с деятельностью почек и характером питания.

Ранее считалось, что основным фактором, определяющим величину осмотического давления внеклеточной жидкости, является концентрация натрия, однако более поздние исследования показали, что тесной корреляции между содержанием натрия в плазме крови и величиной общего осмотического давления при патологии не существует. Исключение составляет плазматическая гипертония. Следовательно, проведение гомеостатической терапии путем введения глюкозосолевых р-ров требует контроля не только за содержанием натрия в сыворотке или плазме крови, но и за изменениями общей осмомолярности внеклеточной жидкости. Большое значение в поддержании общего осмотического давления во внутренней среде имеет концентрация сахара и мочевины. Содержание этих осмотически активных веществ и их влияние на водно-солевой обмен при многих патол, состояниях могут резко возрастать. Поэтому при любых нарушениях Г. необходимо определять концентрацию сахара и мочевины. В силу вышесказанного у детей раннего возраста при нарушении водно-солевого и белкового режимов может развиваться состояние скрытого гипер- или гипоосмоса, гиперазотемии (Э. Керпель-Фрониуш, 1964).

Важным показателем, характеризующим Г. у детей, является концентрация водородных ионов в крови и внеклеточной жидкости. В антенатальном и раннем постнатальном периодах регуляция кислотно-щелочного равновесия тесно связана со степенью насыщения крови кислородом, что объясняется относительным преобладанием анаэробного гликолиза в биоэнергетических процессах. При этом даже умеренная гипоксия у плода сопровождается накоплением в его тканях молочной к-ты. Кроме того, незрелость ацидогенетической функции почек создает предпосылки для развития «физиологического» ацидоза (см.). В связи с особенностями Г. у новорожденных нередко возникают расстройства, стоящие на грани между физиологическими и патологическими.

Перестройка нейроэндокринной системы в пубертатном периоде также сопряжена с изменениями Г. Однако функции исполнительных органов (почки, легкие) достигают в этом возрасте максимальной степени зрелости, поэтому тяжелые синдромы или болезни Г. встречаются редко, чаще же речь идет

о компенсированных сдвигах в обмене веществ, которые можно выявить лишь при биохим, исследовании крови. В клинике для характеристики Г. у детей необходимо исследовать следующие показатели: гематокрит, общее осмотическое давление, содержание натрия, калия, сахара, бикарбонатов и мочевины в крови, а также pH крови, pO2 и pCO2.

Особенности гомеостаза в пожилом и старческом возрасте

Один и тот же уровень гомеостатических величин в различные возрастные периоды поддерживается за счет различных сдвигов в системах их регулирования. Напр., постоянство уровня АД в молодом возрасте поддерживается за счет более высокого минутного сердечного выброса и низкого общего периферического сопротивления сосудов, а в пожилом и старческом — за счет более высокого общего периферического сопротивления и уменьшения величины минутного сердечного выброса. При старении организма постоянство важнейших физиол, функций поддерживается в условиях уменьшения надежности и сокращения возможного диапазона физиол, изменений Г. Сохранение относительного Г. при существенных структурных, обменных и функциональных изменениях достигается тем, что одновременно происходит не только угасание, нарушение и деградация, но и развитие специфических приспособительных механизмов. За счет этого поддерживается неизменный уровень содержания сахара в крови, pH крови, осмотического давления, мембранного потенциала клеток и т. д.

Существенное значение в сохранении Г. в процессе старения организма имеют изменения механизмов нейрогуморальной регуляции (см.), увеличение чувствительности тканей к действию гормонов и медиаторов на фоне ослабления нервных влияний.

При старении организма существенно изменяется работа сердца, легочная вентиляция, газообмен, почечные функции, секреция пищеварительных желез, функция желез внутренней секреции, обмен веществ и др. Изменения эти могут быть охарактеризованы как гомеорезис — закономерная траектория (динамика) изменения интенсивности обмена и физиол. функций с возрастом во времени. Значение хода возрастных изменений очень важно для характеристики процесса старения человека, определения его биол, возраста.

В пожилом и старческом возрасте снижаются общие потенциальные возможности приспособительных механизмов. Поэтому в старости при повышенных нагрузках, стрессах и других ситуациях вероятность срыва адаптационных механизмов и нарушения Г. увеличиваются. Такое уменьшение надежности механизмов Г. является одной из важнейших предпосылок развития патол, нарушений в старости.

См. также Внутренняя среда организма.

Библиография: Адольф Э. Развитие физиологических регуляций, пер. с англ., М., 1971, библиогр.; Анохин П. К. Очерки по физиологии функциональных систем, М., 1975, библиогр.; В e л ь т и-щ e в Ю. Е., СамсыгинаГ, А. и Ермакова И. А. К характеристике осморегулирующей функции почек у детей периода новорожденности, Педиатрия, № 5, с. 46, 1975; Гелльгорн Э. Регуляторные функции автономной нервной системы, пер. с англ., М., 1948, библиогр.; ГленсдорфП. и ПригожинИ. Термодинамическая теория структуры» устойчивости и флуктуаций, пер. с англ., М., 1973, библиогр.; Гомеостаз, под ред. П. Д. Горизонтова, М., 1976; Дыхательная функция крови плода в акушерской клинике, под ред. Л. С. Персианинова и др., М., 1971; Кассиль Г. Н. Проблема гомеостаза в физиологии и клинике, Вестн. АМН СССР, № 7, с. 64, 1966, библиогр.; Розанова В. Д. Очерки по экспериментальной возрастной фармакологии, Л., 1968, библиогр.; Ф р о л ь-к и с В. В. Регулирование, приспособление и старение, JI., 1970, библиогр.; Штерн Л. С. Непосредственная питательная среда органов и тканей, М., 1960; CannonW. В. Organization for physiological homeostasis, Physiol. Rev., v. 9, p. 399, 1929; Homeostatic regulators, ed. by G, E. W. Wolstenholme a. J. Knight, L., 1969; Langley L. L. Homeostasis, Stroudsburg, 1973.

Источник: xn--90aw5c.xn--c1avg