темная и световая фаза фотосинтеза, фазы фотосинтеза таблицаКак понятно из названия, фотосинтез по своей сути являет собой природный синтез органических веществ, превращая СО2 из атмосферы и воду в глюкозу и свободный кислород.

При этом необходимо наличие энергии солнечного света.

Химическое уравнение процесса фотосинтеза в общем можно представить в следующем виде:

темная и световая фаза фотосинтеза, фазы фотосинтеза таблица

Фотосинтез имеет две фазы: темную и световую. Химические реакции темной фазы фотосинтеза существенно отличаются от реакций световой фазы, однако темная и световая фаза фотосинтеза зависят друг от друга.


Световая фаза может происходить в листьях растений исключительно при солнечном свете. Для темной же необходимо наличие углекислого газа, именно поэтому растение все время должно поглощать его из атмосферы. Все сравнительные характеристики темной и световой фаз фотосинтеза будут предоставлены ниже. Для этого была создана сравнительная таблица «Фазы фотосинтеза».

Световая фаза фотосинтеза

Основные процессы в световой фазе фотосинтеза происходят в мембранах тилакоидов. В ней участвуют хлорофилл, белки-переносчики электронов, АТФ-синтетаза (фермент, ускоряющий реацию) и солнечный свет.

Далее механизм реакции можно описать так: когда солнечный свет попадает на зеленые листья растений, в их структуре возбуждаются электроны хлорофилла (заряд отрицательный), которые перейдя в активное состояние, покидают молекулу пигмента и оказываются на внешней стороне тилакоида, мембрана которого заряжена также отрицательно. В то же время молекулы хлорофилла окисляются и уже окисленные они восстанавливаются, отбирая таким образом электроны у воды, которая находится в структуре листа.

Этот процесс приводит к тому, что молекулы воды распадаются, а созданные в результате фотолиза воды ионы, отдают свои электроны и превращаются в такие радикалы ОН, которые способны проводить дальнейшие реакции. Далее эти реакционноспособные радикалы ОН объединяются, создавая полноценные молекулы воды и кислород. При этом свободный кислород выходит во внешнюю среду.


В результате всех этих реакций и превращений, мембрана тилакоида листа с одной стороны заряжается положительно (за счет иона Н+), а с другой — отрицательно (за счет электронов). Когда разность между этими зарядами в двух сторонах мембраны достигает больше 200 мВ, протоны проходят через специальные каналы фермента АТФ-синтетазы и за счет этого происходит превращение АДФ до АТФ (в результате процесса фосфорилизации). А атомный водород, который освобождается из воды, восстанавливает специфический переносчик НАДФ+ до НАДФ·Н2. Как видим, в результате световой фазы фотосинтеза происходит три основных процесса:

  1. синтез АТФ;
  2. создание НАДФ·Н2;
  3. образование свободного кислорода.

Последний освобождается в атмосферу, а НАДФ·Н2 и АТФ берут участие в темной фазе фотосинтеза.

Темная фаза фотосинтеза

Темная и световая фазы фотосинтеза характеризуются большими затратами энергии со стороны растения, однако темная фаза протекает быстрее и требует меньше энергии. Для реакций темной фазы не нужен солнечный свет, поэтому они могут происходить и днем и ночью.


Все основные процессы этой фазы протекают в строме хлоропласта растения и являют собой своеобразную цепочку последовательных превращений углекислого газа из атмосферы. Первая реакция в такой цепи – фиксация углекислого газа. Чтобы она проходила более плавно и быстрее, природой был предусмотрен фермент РиБФ-карбоксилаза, который катализирует фиксацию СО2.

Далее происходит целый цикл реакций, завершением которого является преобразование фосфоглицериновой кислоты в глюкозу (природный сахар). Все эти реакции используют энергию АТФ и НАДФ•Н2, которые были созданы в световой фазе фотосинтеза. Помимо глюкозы в результате фотосинтеза образуются также и другие вещества. Среди них разные аминокислоты, жирные кислоты, глицерин, а также нуклеотиды.

Фазы фотосинтеза: таблица сравнений

iv>
  Критерии сравнения   Световая фаза Темная фаза  
Солнечный свет   Обязателен   Необязателен
Место протекание реакций   Граны хлоропласта   Строма хлоропласта
Зависимость от источника энергии Зависит от солнечного света   Зависит от АТФ и НАДФ•Н2, образованных в световой фазе и от количества СО2 из атмосферы
Исходные вещества Хлорофилл, белки-переносчики электронов, АТФ-синтетаза   Углекислый газ
Суть фазы и что образуется   Выделяется свободный О2, образуется АТФ и НАДФ•Н2   Образование природного сахара (глюкозы) и поглощение СО2 из атмосферы

Источник: life-students.ru

Роль хлоропластов в фотосинтезе

В клетках растений имеются микроскопические образования — хлоропласты. Это органоиды, в которых происходит поглощение энергии и света и превращение ее в энергию АТФ и иных молекул — носителей энергии. В гранах хлоропластов содержится хлорофилл — сложное органическое вещество. Хлорофилл улавливает энергию света для использования ее в процессах биосинтеза глюкозы и других органических веществ. Ферменты, необходимые для синтеза глюкозы, расположены также в хлоропластах.

Световая фаза фотосинтеза

Квант красного света, поглощенный хлорофиллом, переводит электрон в возбужденное состояние. Возбужденный светом электрон приобретает большой запас энергии, вследствие чего перемещается на более высокий энергетический уровень.


збужденный светом электрон можно сравнить с камнем, поднятым на высоту, который также приобретает потенциальную энергию. Он теряет ее, падая с высоты. Возбужденный электрон, как по ступеням, перемещается по цепи сложных органических соединений, встроенных в хлоропласт. Перемещаясь с одной ступени на другую, электрон теряет энергию, которая используется для синтеза АТФ. Растративший энергию электрон возвращается к хлорофиллу. Новая порция световой энергии вновь возбуждает электрон хлорофилла. Он снова проходит по тому же пути, расходуя энергию на образования молекул АТФ.
Ионы водорода и электроны, необходимые для восстановления молекул-носителей энергии, образуются при расщеплении молекул воды. Расщепление молекул воды в хлоропластах осуществляется специальным белком под воздействием света. Называется этот процесс фотолизом воды.
Таким образом, энергия солнечного света непосредственно используется растительной клеткой для:
1. возбуждения электронов хлорофилла, энергия которых далее расходуется на образование АТФ и других молекул-носителей энергии;
2. фотолиза воды, поставляющего ионы водорода и электроны в световую фазу фотосинтеза.
При этом выделяется кислород как побочный продукт реакций фотолиза. Этап, в течение которого за счет энергии света образуются богатые энергией соединения — АТФ и молекулы-носители энергии, называют световой фазой фотосинтеза.

Темновая фаза фотосинтеза

В хлоропластах есть пятиуглеродные сахара, один из которых рибулозодифосфат, является акцептором углекислого газа.

>
обый фермент связывает пятиуглеродный сахар с углекислым газом воздуха. При этом образуется соединения, которые ща счет энергии АТФ и иных молекул-носителей энергии восстанавливаются до шестиуглеродной молекулы глюкозы. Таким образом, энергия света, преобразованная в течение световой фазы в энергию АТФ и иных молекул-носителей энергии, используется для синтеза глюкозы. Эти процессы могут идти в темноте.
Из растительных клеток удалось выделить хлоропласты, которые в пробирке под действием света осуществляли фотосинтез — образовывали новые молекулы глюкозы, при этом поглощали углекислый газ. Если прекращали освещать хлоропласты, то приостанавливался и синтез глюкозы. Однако если к хлоропластам добавляли АТФ и восстановленные молекулы-носители энергии, то синтез глюкозы возобновлялся и мог идти в темноте. Это означает, что свет действительно нужен только для синтеза АТФ и зарядки молекул-носителей энергии. Поглощение углекислого газа и образование глюкозы в растениях называют темновой фазой фотосинтеза, поскольку она может идти в темноте.
Интенсивное освещение, повышенное содержание углекислого газа в воздухе приводят к повышению активности фотосинтеза.

Источник: edu.glavsprav.ru

5. Темновая фаза фотосинтеза

Темновая фаза фотосинтез – это путь восстановления двуокиси углерода до простых сахаров. Этот процесс впервые был изучен американским ученым Кальвином, поэтому в его честь был назван циклом Кальвина.


Цикл Кальвина функционирует у высших растений, водорослей, у большинства фототрофных бактерий.

Первичным акцептором углекислого газа является рибулозо-1,5-бисфосфат. Ключевым ферментом, обеспечивающим фиксацию СО2, является фермент рибулозобисфосфаткарбоксилазаоксигеназа (Рубиско). Его активность строго коррелирует с общей интенсивностью фотосинтеза. Концентрация его в строме очень высока. На долю этого фермента приходится почти 60% растворимого белка стромы.

Цикл Кальвина, весьма напоминающий обращенный пентозофосфатный путь дыхания, состоит из 4-х этапов:

  1. Стадия карбоксилирования: молекулы рибулозо-5-фосфата фосфорилируются с участием АТФ и фермента фосфорибулокиназы, в результате чего образуются молекулы рибулозо-1,5-бисфосфата. К ним, в свою очередь, присоединяется углекислый газ с помощью фермента Рубиско. Полученный продукт расщепляется на 2 триозы – 2 молекулы 3-ФГК.

  2. Стадия восстановления ФГК. Образовавшиеся на предыдущем этапе молекулы 3-ФГК восстанавливаются до альдегида 3-ФГА в 2 этапа. Сначала происходит фосфорилирование 3-ФГК при участии АТФ и фосфоглицераткиназы до 1,3-бисфосфоглицериновой кислоты, а затем ее восстановление до фосфоглицеринового альдегида (при участии НАДФ восстановленного).


3) Стадия регенерации первичного акцептора СО2. Происходит с участием фосфатов трех-, четырех-, пяти-, шести- и семиуглеродных сахаров. В результате процессов взаимопревращений фосфорилированных сахаров из 5 молекул трехуглеродных сахаров образуются 3 молекулы пятиуглеродных сахаров, которые затем превращаются в рибулозобисфосфат.

4) Стадия синтеза углеводных продуктов фотосинтеза. На этом этапе из фосфоглицеринового альдегида и фосфодиоксиацетона под действием фермента альдолазы синтезируется фруктозо-1,6-бисфосфат, который затем может превращаться или в крахмал, или сахарозу.

Для синтеза 1 молекулы глюкозы в цикле Кальвина необходимо 12 молекул НАДФ восстановленного и 18 молекул АТФ.

Процесс фотосинтеза осуществляется только на свету. Однако у растений часто возникает потребность в глюкозе, когда фотосинтез невозможен (в темное время суток, при прорастании семян). В этих случаях потребности в глюкозе удовлетворяются либо за счет распада сложных углеводов, либо путем новообразования глюкозы, которое называется глюконеогенезом.

Глюконеогенез – процесс образования глюкозы из неуглеводных предшественников: пирувата, аминокислот, глицерина, жирных кислот и др.). По своему химизму этот процесс напоминает обращенный гликолиз.

Глюконеогенез происходит и в организмах человека и животных. Однако ферменты, которые катализируют реакции гликолиза, имеются только в клетках печени и надпочечников. Поэтому глюконеогенез может осуществляться только в этих органах, он идет в тех случаях, когда возникает потребность в глюкозе (например, у клеток головного мозга), а запасов гликогена недостаточно и другие возможности обеспечить эти потребности отсутствуют.


Источник: StudFiles.net