Отличительные характеристики

Рибосомы обычно состоят из двух субъединиц: большой субъединицы и малой субъединицы. Рибосомные субъединицы синтезируются в ядрышко и пересекают ядерную мембрану в цитоплазме через ядерные поры. Эти две субъединицы объединяются, когда рибосома присоединяется к матричной РНК (мРНК) во время синтеза белка. Рибосомы вместе с другой молекулой РНК, транспортной РНК (тРНК), помогают преобразовать кодирующие белок гены мРНК в белки. Рибосомы связывают аминокислоты вместе для образования полипептидных цепей, которые модифицируются далее, прежде чем станут функциональными белками.

Расположение в клетке

Есть два места, где рибосомы обычно существуют в эукариотической клетке: суспендированы в цитозоле (свободные рибосомы) и связаны с эндоплазматическим ретикулумом (связанные рибосомы). В обоих случаях рибосомы обычно образуют агрегаты, называемые полисомами или полирибосомами во время синтеза белка. Полирибосомы представляют собой кластеры рибосом, которые присоединяются к молекуле мРНК во время биосинтеза белка.


Это позволяет синтезировать сразу несколько копий белка из одной молекулы мРНК. Свободные рибосомы обычно производят белки,  функционирующие в цитозоле (жидкий компонент цитоплазмы), тогда как связанные рибосомы обычно синтезируют белки, которые экспортируются из клетки или включаются в мембраны клетки.

Интересно, что свободные рибосомы и связанные рибосомы взаимозаменяемы, и клетка может изменять их число в соответствии с потребностями метаболизма.

Органеллы, такие как митохондрии и хлоропласты в эукариотических организмах, имеют свои собственные рибосомы, которые больше похожи на рибосомы, обнаруженные у бактерий. Субъединицы, содержащие рибосомы в митохондриях и хлоропластах, меньше (30S — 50S), чем субъединицы, обнаруженные во всей остальной части клетки (40S — 60S).

Рибосомы и протеин

Синтез белка протекает под воздействием процессов транскрипции и трансляции. В транскрипции генетический код, содержащийся в ДНК, транскрибируется в версию РНК кода, известного как матричная РНК (мРНК). В трансляции вырабатывается растущая аминокислотная цепь, также называемая полипептидной цепью. Рибосомы помогают трансформировать мРНК и связывать аминокислоты вместе для получения полипептидной цепи, которая в конечном итоге становится полностью функционирующим белком. Белки — очень важные биологические полимеры в наших клетках, поскольку они задействованы практически во всех функциях.

Источник: natworld.info

Исторический обзор


Рибосомы было обнаружено в начале 1950-х годов. Первое глубокое исследование и описание рибосом, как клеточных органелл, было совершено Джорджем Паладе (George E. Palade). По имени исследователя, рибосомы были названы «частицами Паладе», но впоследствии, в 1958 году, их было переименовано в «рибосомы», учитывая высокое содержание РНК. Роль рибосом в биосинтезе белков было установлено более десятилетием позже.

Синтетическая рибосома

После отсоединения от мРНК и началом нового раунда трансляции рибосомальные малая и большая субъединицы отделяются друг от друга. Поэтому, создание синтетической рибосомы было технически сложным, поскольку синтетические и имеющиеся в клетке субъединицы смешивались от раунда к раунду трансляции.

Начиная с конца 90-х годов 20 века удалось создать несколько видов мутантных малых субъединиц рибосомы, которые имели специфическую последовательность в 16S рРНК и соединялись с мРНК, в которой последовательность Шайна-Дальгарно была специфически синтезирована для взаимодействия с модифицированной 16S рРНК. Это позволило выполнять отбор мутировавших малых субъединиц РНК от нативных и интрудукуваты несколько мутаций для изучения свойств синтеза белка.

Однако большая рибосомальная субъединица представила проблемы, поскольку при создании синтетического варианта не бело возможности заставить его отделяться от мРНК или от малой субъединицы после завершения одного раунда трансляции. Большая субъединица содержит важные для изучения структуры, такие как канал для выхода синтезируемого белка и сайт PTC (англ. Peptidyl transferase centre), в котором происходит соединение аминокислоты, присоединена к тРНК, которая находятся на А-сайте рибосомы, к пептидильного цепи , который соединен к молекуле тРНК, которая находится на P-сайи рибосомы


В июле 2015 года удалось синтезировать первую полностью синтетическую рибосому. Для того, чтобы большая и малая субъединицы НЕ отсоединялись, их было связано в одну молекулу путем синтеза 16S-23S конструкта (Ribo-T). Такая синтетическая рибосома успешно выполняла синтез белка не только in vitro, но и поддерживала рост E.coli при вынужденной отсутствия нативных рибосом.

Строение рибосомы

Общее строение

Рибосомы прокариот и эукариот очень похожи по строению и функции, но отличаются размером. Они состоят из двух субъединиц: одной большой и одной малой. Для процесса трансляции необходимо слаженное взаимодействие обеих субъединиц, вместе составляют комплекс с молекулярной массой несколько миллионов Дальтон (Da). Субъединицы рибосом обычно обозначаются единицами Сведберга (S), является мерой скорости седиментации при центрифугирования и зависят от массы, размера и формы частицы. Обозначены в этих единицах, большая субъединица является 50S или 60S (прокариотические или эукариотические, соответственно), имела является 30S или 40S, и целая рибосома (комплекс малой вместе с большой) 70S или 80S.


Молекулярный состав

Молекулярный состав рибосом является достаточно сложным. Например, рибосома дрожжей "Saccharomyces cerevisiae" состоит из 79 рибосомных белков и 4 различных молекул рРНК. Биогенез рибосом также чрезвычайно сложным и многоступенчатым процессом, происходящим в ядре и ядрышке эукариотической клетки.

Атомная структура большой субъединицы (50S) организма Haloarcula marismortui была опубликована N. Ban et al. В журнале Science 11 августа 2000. Вскоре после этого, 21шого сентября 2000 года, BT Wimberly, et al., Опубликовали в журнале Nature структуру 30S субъединицы организма Thermus thermophilus. Используя эти координаты, MM Yusupov, et al. Сумели реконструировать целую 70S частичку Thermus thermophilus и опубликовать ее в журнале Science, в Мае 2001 В 2009 году профессор Джордж Чьорч (George Church) и коллеги из Гарварда создали полностью функциональную искусственную рибосому в обычных условиях , которые присутствуют в клеточном среде. Как конструкционные элементы использовались молекулы с расщепленной с помощью энзимов кишечной палочки. Созданная рибосома успешно синтезирует белок, отвечающий за биолюминесценцию.

Центры связывания РНК

Рибосомы содержит четыре сайты связывания для молекул РНК: один для мРНК и три для тРНК. Первый сайт связывания тРНК называется сайтом 'аминоацил-тРНК ", или" А-сайтом ".
этом сайте содержится молекула тРНК "заряженная" "следующей" аминокислотой. Другой сайт, "пептидил-тРНК 'связывающий, или" P-сайт ", содержит молекулу тРНК, связывает растущий конец полипептидной цепи. Третий сайт, это "сайт выхода", или "E-сайт". В этот сайт попадает пустая тРНК которая избавилась растущего конца полипептида, после его взаимодействия с последующей "заряженной" аминокислотой в пептидильному сайте. Сайт связывания мРНК находится в малой субъединицы. Он удерживает рибосому "нанизанной" на мРНК которую рибосома транслирует.

Функция

Рибосомы являются органелл, на которой происходит трансляция генетической информации, закодированной в мРНК. Эта информация воплощается в синтезированный тут же полипептидную цепь. Рибосомы несет двоякую функцию: является структурной платформой для процесса декодирования генетической информации с РНК, и владеет каталитическим центром ответственным за формирование пептидной связи, так называемым "пептидил-трансферазним центром". Считается пептидил-трансферазна активность ассоциируется с рРНК, и поэтому рибосома является рибозимов.

Локализация рибосом

Рибосомы классифицируются как свободные (находятся в гиалоплазме) и несвободные или прикрепленные (связанные с мембранами эндоплазматической сети).

Свободные и прикреплены рибосомы отличаются только локализацией, но они структурно идентичны. Рибосому называют свободной или прикрепленной в зависимости от того белок синтезируемый имеет ЭР-нацеленную сигнальную последовательность, поэтому индивидуальная рибосома может быть прикрепленной создавая один белок, но свободной в цитозоле когда создает другой белок.


Рибосомы иногда называют органеллами, но использование термина органеллы ограничивается субклеточном компонентами которых фосфолипидную мембрану, а рибосома (being entirely particulate) таковой не является. Поэтому рибосомы иногда описывают как "немембранные органеллы".

Общая информация

В эукариотических организмах рибосомы можно найти не только в цитоплазме, но и внутри в некоторых крупных мембранных органеллах, в частности в митохондриях и хлоропластах. Строение и молекулярный состав этих рибосом отличается от состава обще-клеточных рибосом, и является близким в состав рибосом прокариот. Такие рибосомы синтезируют органелл-специфические белки, транслируя органелл-специфическую мРНК.

В эукариотических клетках долгое время считалось, что рибосомы, прикрепленные к эндоплазматического ретикулума выполняют синтез белков, которые будут секретируемого наружу или трансмембранных или других сигнальных белков, присоединенных к плазмалеммы. Рибонуклеопротеин SRP (англ. Signal recognition particle) выполняет распознавание тех белков в процессе синтеза, которые должны быть трансмембранными и присоединяет рибосому к эндоплазматического ретикулума. Однако в последнее время исследования указывают, что 50-75% рибосом могут быть прикреплены к ЭПР за не до конца выяснены механизмы и большинство белков в клетке проходит синтез в рибосомах, прилегающих к ЭПР. Так, в клеточной линии HEK-293 75% мРНК видповидяе цитозольным белкам, однако до 50% рибосом связанные с ЭПР.

Болезни


Считается, что генетические дефекты рибосомных белков и факторов биогенеза рибосом является летальными на ранних эмбриональных стадиях развития высших организмов. Экспериментальный мутагенез рибосомных белков в Drosophila melanogaster (мутации minute) вызывает общий фенотип: заниженная скорость митоза, уменьшен размер тела, заниженная фертильность, короткие реснички. Существует ряд свидетельств связывающих раковую трансформацию клеток млекопитающих с расстройствами трансляционной системы в целом и расстройствами системы биогенеза рибосом в частности.

Источник: info-farm.ru

53 Промежуточные филаменты

(ПФ) — нитевидные структуры из особых белков, один из трех основных компонентов цитоскелета клеток эукариот. Содержатся как в цитоплазме, так и в ядре большинства эукариотических клеток. В отличие от других основных элементов цитоскелета, ПФ в цитоплазме клеток разных тканей состоят из разных, хотя и похожих по своей структуре белков. Цитоплазматические ПФ есть не у всех эукариот, они обнаружены только у некоторых групп животных.
к, ПФ есть у нематод. моллюсков и позвоночных. но не найдены у членистоногих и иглокожих. У позвочноных ПФ отсутствуют в некоторых клетках (например, олигодендроцитах). В растительных клетках ПФ не обнаружены. В большинстве животных клеток ПФ образуют «корзинку» вокруг ядра, откуда направлены к периферии клеток. ПФ особенно много в клетках, подверженных механическим нагрузкам: в эпителиях, где ПФ участвуют в соединении клеток друг с другом через десмосомы, в нервных волокнах, в клетках гладкой и поперечно-полосатой мышечной ткани.

Источник: StudFiles.net

Особенности строения

Рибосомы находятся на гранулярном эндоплазматическом ретикулуме или свободно плавают в цитоплазме. Крепятся они к эндоплазматической сети своей большой субъединицей и синтезируют белок, который выводится за пределы клетки, используется всем организмом. Цитоплазменные рибосомы в основном обеспечивают внутренние потребности клетки.

Так выглядит рибосома

Форма шаровидная или овальная, в диаметре около 20нм.

На этапе трансляции к мРНК может прикрепляться несколько рибосом, образуя новую структуру – полисому. Сами же они образуются в ядрышке, внутри ядра.

Выделяют 2 вида рибосом:

  • Малые – находятся в прокариотических клетках, а также в хлоропластах и митохондриальном матриксе. Они не связаны с мембраной и имеют меньшие размеры (в диаметре до 15нм).
  • Большие – находятся в эукариотических клетках, могут достигать в диаметре до 23нм, связываются с эндоплазматической сетью или крепятся к мембране ядра.

Схема строения рибосом
Схема строения

Строение обоих видов идентичное. В состав рибосомы входят две субъединицы — большая и малая, которые в сочетании напоминают гриб. Объединяются они при помощи ионов магния, сохраняя между соприкасающимися поверхностями небольшую щель. При дефиците магния субъединицы отдаляются, происходит дезагрегация и рибосомы уже не могут выполнять свои функции.

Химический состав

Рибосомы состоят из высокополимерной рибосомальной РНК и белка в соотношении 1:1. В них сосредоточено примерно 90% всей клеточной РНК. Малая и большая субъединицы содержат около четырех молекул рРНК, которая имеет вид нитей собранных в клубок. Окружены молекулы белками и формируют вместе рибонуклеопротеид.

Полирибосомы – это объединение информационной РНК и рибосом, которые нанизываются на нить иРНК. В период отсутствия синтезирующих процессов, рибосомы разъединяются и обмениваются субъединицами. При поступлении иРНК они снова собираются в полирибосомы.

Количество рибосом может изменяться в зависимости от функциональной нагрузки на клетку. Десятки тысяч находятся в клетках с высокой митотической активностью (меристема растений, стволовые клетки).

Образование в клетке


Субъединицы рибосом формируются в ядрышке. Матрицей для синтеза рибосомальной РНК является ДНК. Для полного созревания они проходят несколько этапов:

  • Эосома – первая фаза, при этом в ядрышке на ДНК синтезируется лишь рРНК;
  • неосома – структура включающая не только рРНК, но и белки, после ряда модификаций выходит в цитоплазму;
  • рибисома – зрелая органелла, состоящая из двух субъединиц.
Функции элементов рибосом
Структура
Строение
Функции
Большая субъединица Большая субъединица Треугольная, в диаметре 16нм, состоит из 3 молекул РНК и 33 белковых молекул Трансляция, декодирование генетической информации Трансляция, декодирование генетической информации
Малая субъединица Вогнутая, овальная, в диметре 14нм, состоит из 1 молекулы РНК и 21 белковых молекул Объединение аминокислот, создание пептидных связей, синтез новых молекул белка

Биосинтез белков на рибосомах

Трансляция или синтез белков на рибосомах с матрицы иРНК – конечный этап преобразования генетической информации в клетках. Во время трансляции информация, закодированная в нуклеиновых кислотах, переходит в белковые молекулы со строгой последовательностью аминокислот.

Трансляция – весьма непростой этап (в сравнении с репликацией и транскрипцией). Для проведения трансляции в процесс включаются все виды РНК, аминокислот, множество ферментов, которые могут исправлять погрешности друг друга. Самые важные участники трансляции – это рибосомы.

После транскрипции, новообразованная молекула иРНК, выходит из ядра в цитоплазму. Здесь после нескольких преобразований она соединяется с рибосомой. При этом аминокислоты приводятся в действие после взаимодействия с энергетическим субстратом – молекулой АТФ.

Аминокислоты и иРНК имеют разный химический состав и без постороннего участия не могут взаимодействовать между собой. Для преодоления этой несовместимости существует транспортная РНК. Под действием ферментов аминокислоты соединяются с тРНК. В таком виде они переносятся на рибосому и тРНК, с определенной аминокислотой, прикрепляется на иРНК в предназначенном месте. Далее рибосомальные ферменты формируют пептидную связь между присоединенной аминокислотой и строящимся полипептидом. После рибосома перемещается по цепи информационной РНК, оставляя участок для прикрепления следующей аминокислоты.

Рост полипептида идет до того момента, пока рибосома не встретит «стоп-кодон», который сигнализирует об окончании синтеза. Для освобождения новосинтезированного пептида от рибосомы включаются факторы терминации, окончательно завершающие биосинтез. К последней аминокислоте прикрепляется молекула воды, а рибосома распадается на две субъединицы.

Когда рибосома продвигается дальше по иРНК, она освобождает начальный отрезок цепи. К нему снова может присоединиться рибосома, которая начнет новый синтез. Таким образом, используя одну матрицу для биосинтеза, рибосомы создают одномоментно множество копий белка.

Роль рибосом в организме

  1. Рибосомы синтезируют белок для собственных нужд клетки и за ее пределы. Так в печени образуются плазменные факторы свертывания крови, плазмоциты продуцируют гамма-глобулины.
  2. Считывание закодированной информации с РНК, соединение аминокислот в запрограммированном порядке с образованием новых белковых молекул.
  3. Каталитическая функция – формирование пептидных связей, гидролиз ГТФ.
  4. Свои функции в клетке рибосомы выполняют более активно в виде полирибосом. Эти комплексы способны одновременно синтезировать несколько молекул белка.

Источник: animals-world.ru

Основная роль

В клетке бактерии рибосома выполняет функцию формировщика молекул белка. Ее строение обуславливает сложный процесс биосинтеза.

Суть работы нуклеопротеида заключается в том, что с его помощью на базе матричных РНК, с использованием транспортных РНК, производятся сложные полипептидные соединения, без которых бактериальная клетка не может продолжать свое существование.

Матричная и транспортная РНК не являются частью рибосомы, а содержатся в цитоплазме бактериальной клетки.

Таким образом, в синтезе белка принимает участие три клеточных структуры:

  • матрица;
  • транспортная РНК;
  • рибосома.

Методы изучения

Современные биологические лаборатории имеют широкие возможности для изучения клетки и ее органоидов.

В сравнении с рибосомами эукариот, эти органоиды у прокариотов очень мелкие. Хотя в остальном эти составляющие клеток и бактерий и эукариотов очень похожи. Они также состоят из двух субчастиц, и сам процесс синтеза белка имеет массу схожих механизмов.

Рибосомы прокариот и эукариот

В связи с тем, что рибосомные нуклеопротеиды представляют одну из наиболее интересных человеку структурных единиц клетки, сегодня есть достаточно методов выявления закономерностей устройства и функционирования этого органоида.

Одним из самых широко используемых методов выявления нуклеопротеидов в бактериях является рибосомальный профилинг.

Этот метод выполняют следующим образом:

  1. Разрушение бактериальной клетки путем механического воздействия на нее. Химические реакции в данном случае исказят картину.
  2. Разрушение молекул РНК, которые не входят в состав рибосомы.
  3. Удаление всех полипептидных остатков из тех продуктов, которые были получены в результате разрушения.
  4. Обратное преобразование РНК в ДНК.
  5. Чтение аминокислотных последовательностей.

Само секвенирование может реализовываться с помощью нескольких методов, в частности, двух самых распространенных.

Метод Эдмана

Один из первых разработанных. Суть этого метода состоит в том, что пептид (белок) обрабатывают определенными реагентами, в результате чего происходит отщепление аминокислоты, из которой состоит белок.

Метод Сэнгера

Наиболее современный метод. Основан на использовании синтетического олигонуклеотида (олигонуклеотиды состоят более чем из двух нуклеиновых кислот).

Используемый метод позволяет идентифицировать все, даже наиболее мелкие участки РНК, которая исследуется. Благодаря получению полной информации об аминокислотах исследователи имеют возможность восстанавливать наиболее важные операционные моменты биосинтеза.

Большое значение эта информация имеет при исследовании реакции бактерий на антибиотики.

Строение

На данный момент наука имеет убедительное количество проверенных опытным путем сведений о строении рибосом бактерий и эукариотов.

Строение рибосом эукариот и прокариот

Это макромолекулярный комплекс, который состоит из двух субчастиц разной величины:

  • малая субчастица;
  • большая субчастица.

Малая рибосома состоит из одной рибосомной РНК и трех десятков разных белков. Основная функция малой субчастицы состоит в том, чтобы связывать нуклеопротеид с матричной РНК (мРНК).

В течение всего процесса инициации и элонгации (присоединение мономеров к цепи макромолекулы) малая субчастица удерживает мРНК. Кроме того, она обеспечивает прохождение матрицы через нуклеопротеоид.

Таким образом, малая субчастица выполняет генетическую функцию декодирования информации.

В большой субчастице содержится 3 рибосомных РНК и около 50 белковых соединений. Большая субчастица с матрицей не вступает в контакт, она ответственна за протекание химических процессов в нуклеопротеидах при образовании полипептидных связей в транслируемом полипептиде.

Процесс трансляции

Процесс синтезирования белка (как у бактерий, так и эукариотов) имеет следующий цикл:

  • инициация;
  • элонгация;
  • терминация.

Инициация

Инициация начинается с того, что к малой субчастице рибосомы присоединяется матричная РНК.

Если рибосомная макромолекула узнает тот трехбуквенный кодон, который есть на мРНК, то происходит присоединение антикодона тРНК.

Элонгация

Присоединений аминокислот, которые принесла тРНК и продвижение рибосомы вдоль матрицы с высвобождением молекулы тРНК.

Движение по мРНК осуществляется до тех пор, пока оно не достигает стоп-кодона, который имеется во всех матрицах.

Терминация

Новообразованный белок, который состоит из протранслированных аминокислот, отсоединяется.

В некоторых случаях завершение трансляции новообразованного белка сопровождается распадом (диссоциацией) рибосомы.

Отличия синтеза белка в клетках эукариотов

Несмотря на то, что рибосомы эукариотов состоят из тех же структурных частей, что и в клетках бактерий, синтез полипептидов эукариотов имеет свои особенности:

  1. Отличия в механизме инициации (узнавании кодонов и подборе антикодонов).
  2. Отличия на стадии терминации. У эукариотов в некоторых случаях после завершения синтеза белка и образования новой молекулы эта молекула не отсоединяется, а начинает инициацию заново.

Синтез белка у прокариот и эукариот

Антибиотики

Воздействие на бактерию антибиотиками наиболее губительно сказывается на работе рибосом. Антигены, которые содержатся в антибиотиках, ингибируют все стадии трансляции белка, в результате чего белок не может нормально синтезироваться, в клетке прекращаются все обменные процессы, а также процессы, связанные с ростом и с размножением организма.

Источник: probakterii.ru