Во всех живых организмах, от простейших бактерий до человека, белки синтезируются специальными клеточными устройствами рибосомами. На этих уникальных фабриках происходит образование белковой цепи из отдельных аминокислот.

В клетках, ведущих интенсивный белковый синтез, рибосом очень много: так, в одной бактериальной клетке содержится около 10 тыс. этих минифабрик, составляющих до 30% общей сухой массы клетки! В клетках высших организмов рибосом содержится меньше — их число зависит от типа ткани и уровня метаболизма клетки.

Белковый «конвейер». Информация о строении белков записана в отдельных участках ДНК – генах. Синтез белка начинается с копирования информации с отдельного гена на РНК (транскрипция). Зрелую матричную РНК (мРНК) «читают» рибосомы и синтезируют по ней белковую цепь из аминокислот, которые «подвозят» транспортные РНК (тРНК) (трансляция)


Рибосома синтезирует белок со средней скоростью 10—20 аминокислот в секунду. Точность трансляции исключительно высока — ошибочное включение «неправильного» аминокислотного остатка в цепь белка составляет в среднем одну аминокислоту на 3 тыс. звеньев (при средней длине белковой цепи у человека в 500 аминокислотных остатков), т. е. всего одна ошибка на шесть белков.

О генетическом коде

Программа, задающая последовательность аминокислотных остатков в белке, записана в геноме клетки: около полувека назад было установлено, что аминокислотные последовательности всех белков непосредственно закодированы в ДНК с помощью так называемого генетического кода. Согласно этому коду, универсальному для всех живых организмов, каждой из двадцати существующих аминокислот соответствует свой кодон — тройка нуклеотидов, представляющих собой элементарные единицы цепочки ДНК. Любой белок закодирован в ДНК определенной последовательностью кодонов. Эта последовательность называется геном.

Функциональный центр рибосомы

Одна клетка может содержать до 10 тыс. рибосом — белковых минифабрик, составляющих до 30% сухой клеточной массы

Как же эта генетическая информация доходит до рибосомы? На отдельном гене, как на матрице, синтезируется цепь еще одной информационной молекулы — рибонуклеиновой кислоты (РНК). Этот процесс копирования гена, называемый транскрипцией, осуществляется специальными ферментами — РНК-полимеразами.

Но РНК, полученная таким образом, еще не является матрицей для синтеза белка: из нее, вырезаются определенные «некодирующие» куски нуклеотидной последовательности (процесс сплайсинга).


Точность белкового синтеза рибосомой исключительно высока — у человека ошибка составляет один на три тысячи «неправильный» аминокислотный остаток

В результате получается матричная РНК (мРНК), которая и используется рибосомами в качестве программы для синтеза белка. Сам синтез, т.е. перевод генетической информации с языка нуклеотидной последовательности мРНК на язык аминокислотной последовательности белка, называется трансляцией.

Декодирование и синтез

В клетках эукариот одну мРНК обычно транслирует сразу множе­ство рибосом, образуя так называемые полисомы, которые можно отчетливо видеть с помощью электронной микроскопии, позволяющей получать увеличение в десятки тысяч раз.

Сотрудница лаборатории структуры и функции рибосом ИХБФМ СО РАН м.н.с. Д. Д. Яньшина проводит электрофорез рибосомных белков

Как поступают в рибосому аминокислоты, являющиеся строитель­ными кирпичиками для синтеза белка? Еще в 50-х годах прошлого столетия были открыты особые «перевозчики», доставляющие аминокислоты в рибосому, — короткие (длиной менее 80 нуклеотидов) транспортные РНК (тРНК). Специальный фермент присоединяет аминокислоту к одному из концов тРНК, причем каждой аминокислоте соответствует строго определенная тРНК. Синтез белка на рибосоме включает три основные стадии: начало, удлинение полипептидной цепи и окончание.


Сама рибосома — одна из самых сложно организованных молекулярных машин клетки — состоит из двух неравных частей, так называемых субчастиц (малой и большой). Ее можно легко разделить на части центрифугированием при сверхвысоких скоростях в специальных пробирках с раствором сахарозы, концентрация которой увеличивается сверху вниз. Поскольку малая субчастица в два раза легче большой, они движутся от верха пробирки к дну с разными скоростями.

Малая субчастица отвечает за декодирование генетической информации. Она состоит из высокомолекулярной рибосомной РНК (рРНК) и нескольких десятков белков (около 20 у прокариот и более 30 — у эукариот).

В раковых клетках резко повышается уровень некоторых рибосомных белков. Возможная причина — сбои в механизмах авторегуляции их производства

Большая субчастица, ответст­венная за образование пептидной связи между аминокислотными остатками, состоит из нескольких рРНК: одной высокомолекулярной и одной (или двух в случае эукариот) низкомолекулярной, а также нескольких десятков белков (более 30 у прокариот и до 50 у эукариот). О масштабе деятельности рибосом можно судить хотя бы по тому факту, что рибосомная РНК составляет около 80 % всей РНК клетки, тРНК, транспортирующая аминокислоты, — около 15 %, тогда как матричная РНК, несущая информацию о белковой последовательности, — лишь 5 %!


«Умная» регуляция. Биосинтез многих рибосомных белков регулируется на стадии сплайсинга, т. е. в процессе образования зрелой мРНК из ее предшественника, содержащего не кодирующие участки – интроны. Ученые из ИХБФМ СО РАН обнаружили, что рибосомные белки при высокой концентрации в клетке могут препятствовать «вырезанию» первого интрона из предшественников своих мРНК, регулируя таким образом образование зрелой мРНК по принципу обратной связи

Нужно отметить, что рибосомные белки наделены множеством других, дополнительных функций, которые могут проявляться на разных этапах жизнедеятельности клетки. Например, рибосомный белок S3 человека — один из ключевых белков центра связывания мРНК на рибосоме — принимает также участие в «ремонте» повреждений в ДНК (Kim et al., 1995), участвует в апоптозе (запрограммированной гибели клетки) (Jung et al., 2004), а также защищает от разрушения белок теплового шока (Kim et al., 2006).


Кроме того, чересчур интенсивный синтез некоторых рибосомных белков может свидетельствовать о развитии злокачественной трансформации клетки. Например, значительное повышение уровня пяти рибосомных белков было обнаружено в опухолевых клетках толстого кишечника (Zhang et al., 1999). Недавно сотрудниками лаборатории структуры и функции рибосом ИХБФМ СО РАН был открыт новый механизм авторегуляции биосинтеза рибосомных белков у человека, основанный на принципе обратной связи. Не­управляемый синтез рибосомных белков, характерный для опухолевых клеток, вероятно, вызван сбоями именно в этом механизме. Дальнейшие исследования в этой области представляют особый инте¬рес не только для ученых, но и для медиков.

Работает как «рибозим»

Удивительно, но, несмотря на миллиарды лет эволюции, разделяющие бактерии и человека, вторичная структура рибосомальных РНК у них мало различается.

О том, как уложена рРНК в субчастицах и каким образом она взаимодействует с рибосомными белками, до недавнего времени было известно не много. Революционный сдвиг в понимании устройства рибосомы на молекулярном уровне произошел на рубеже нового тысячелетия, когда с помощью рентгеноструктурного анализа удалось расшифровать на уровне отдельных атомов структуру рибосом простейших организмов и их модельных комплексов с мРНК и тРНК. Это позволило понять молекулярные механизмы декодирования генетической информации и образования связей в молекуле белка.


Крепко сшито... Схема исследования малой субчастицы рибосомы человека методом аффинного химического сшивания. Метод основан на использовании короткого аналога мРНК, несущего в заданном положении специальную «сшивающую группу», а также радиоактивную метку. Рибосомные белки, с которыми сшился аналог мРНК, определяют с помощью двумерного гель-электрофореза с последующей радиоавтографией, а нуклеотиды рРНК – методом обратной транскрипции

Оказалось, что оба важнейших функциональных центра рибосомы — как декодирующий на малой субчастице, так и отвечающий за синтез белковой цепочки на большой субчастице — сформированы не белками, а рибосомной РНК. То есть, рибосома работает подобно рибозимам — необычным ферментам, состоящим не из белков, а из РНК.

Рибосомные белки, тем не менее, также играют важную роль в работе рибосомы. В отсутствие этих белков рибосомные РНК совершенно неспособны ни декодировать генетическую информацию, ни катализировать образование пеп­тидных связей. Белки обеспечивают необходимую для работы рибосомы сложную «укладку» рРНК в функциональных центрах, служат «передатчиками» изменений пространственной структуры рибосомы, необходимых в процессе работы, а также связывают различные молекулы, влияющие на скорость и точность процесса белкового синтеза.


Сама рабочая схема белкового цикла в принципе одинакова для рибосом всех живых существ. Однако до сих пор неизвестно, до какой степени схожи молекулярные механизмы работы рибосом у разных организмов. Особенно не хватает информации об устройстве функциональных центров рибосом высших организмов, которые изучены гораздо хуже, чем рибосомы простейших.

Это связано с тем, что многие из методов, успешно использованных для исследования рибосом прокариот, оказались для эукариот неприменимыми. Так, из рибосом высших организмов не удается получить кристаллы, пригодные для рентгеноструктурного анализа, а их субчастицы невозможно «собрать» в пробирке из смеси рибосомных белков и рРНК, как это делается у простейших.

От низших — к высшим

И все-таки способы получения сведений о строении функциональных центров рибосом высших организмов существуют. Одним из таких методов является метод химического аффинного сшивания, разработанный 35 лет назад в отделе биохимии НИОХ СО АН СССР (ныне ИХБФМ СО РАН) под руководством академика Д. Г. Кнорре.

Метод основан на использовании коротких синтетических мРНК, несущих в выбранном положении химически активные («сшивающие») группы, которые в нужный момент можно активировать (например, облучая мягким ультрафиолетовым светом).


Строение декодирующего центра рибосомы человека. Матричная РНК, несущая информацию об аминокислотной последовательности белка, связывается с рибосомой в особом канале малой субчастицы – в так называемом декодирующем центре рибосомы. Хотя этот канал у всех организмов функционирует схожим образом, строение его у прокариот и эукариот различается. В малой субчастице рибосом высших организмов (и соответственно, человека) белков больше, чем у низших, причем некоторые из них (как белки S6 и S26) не имеют «двойников» среди белков рибосом прокариот. Ключевым белком декодирующего центра у эукариот является белок S15, но его двойник в рибосоме прокариот находится в другом месте. Из всех белков, формирующих у высших организмов канал для считывания мРНК, лишь белок S3 имеет прокариотический гомолог


Метод аффинного химического сшивания был разработан 35 лет назад в отделе биохимии НИОХ СО АН СССР (ныне ИХБФМ СО РАН) под руководством академика Д. Г. Кнорре.До появления рентгеноструктурного анализа рибосом он использовался во всем мире для изучения рибосом у прокариот.
Этот метод и сегодня является основным для изучения структурно-функциональной организации рибосом высших организмов

Достоинство этого метода в том, что сшивающую группу можно присоединить практически к любому нуклеотидному остатку мРНК и в результате получить детальную информацию о его окружении на рибосоме. Используя набор коротких мРНК с разным расположе­нием сшивающей группы, нам удалось определить рибосомные белки и нуклеотиды рРНК рибосомы человека, образующие канал для считывания генетической инфор­мации в процессе трансляции.

Впервые экспериментально удалось показать, что все нуклеотиды рРНК малой рибосомной частицы человека, соседствующие с кодонами мРНК, расположены в консервативных районах вторичной структуры молекулы рРНК. Более того, их расположение совпадает с положением соответствующих нуклеотидов во вторичной структуре рРНК рибосом низших организмов. Это позволило сделать вывод, что эта часть рибосомной РНК малой субчастицы составляет эволюционно консервативный «кор» (сердцевину) рибосомы, структурно идентичный у всех организмов.

С другой стороны, в устройстве мРНК-связывающего канала рибосом у человека и низших организмов обнаружен ряд принципиальных различий. Оказалось, что у высших организмов рибосомные белки играют намного большую роль в формировании этого канала, чем у прокариот, кроме того, в этом участвуют также белки, не имеющие «двойников» (гомологов) у низших организмов.

Почему же, несмотря на то, что функция рибосомы практически не изменилась в процессе эволюции, в организации декодирующего центра рибосом у высших организ­мов появились специфичные черты? Вероятно, это связано с более сложной и многостадийной регуляцией белкового синтеза у эукариот по сравнению с прокариотами, в ходе которой рибосомные белки мРНК-связывающего канала могут взаимодействовать не только с мРНК, но и с различными факторами, влияющими на эффективность и точность трансляции. Так ли это, покажут дальнейшие исследования.

Источник: scfh.ru

Рибосома: структура: локализация функциональных центров (карманов)

Как связывание субстратов, так и ферментативный катализ на макромолекулах, включая белки и надмолекулярные комплексы, происходят, как правило, не на гладких молекулярных поверхностях, а в углублениях макромолекул, в основаниях выступов, в щелях и полостях между субъединицами или доменами — в так называемых структурных карманах. Очевидно, то же самое должно быть применимо и к рибосоме. Поэтому, рассматривая морфологические особенности рибосомы в сочетании с результатами некоторых прямых экспериментов, можно сделать важные заключения о размещении ее функциональных центров. Основная морфологическая черта электронно-микроскопических изображений рибосомы — борозда, разделяющая две рибосомные субчастицы ( рис. 2, справа ). Эта борозда сильно расширяется в одном месте: виден так называемый "глаз" рибосомы. Указанная особенность отражает реальный факт существования значительной полости между двумя рибосомными субчастицами. Как показано самыми последними электронно-микроскопическими исследованиями с высоким разрешением, именно в этой полости размещаются основные субстраты рибосомы — молекулы пептидил-тРНК и аминоацил-тРНК , участвующие в образовании полипептидной цепи ( рис. 5 ). Это тРНК-связывающий центр рибосомы . Теперь рассмотрим отдельно малую рибосомную субчастицу ( рис. 3, внизу слева ). Она разделяется глубокой бороздой на головку и тело. Эта глубокая борозда — шея — есть место, в котором размещается участок связывания мРНК и через которое цепь мРНК протягивается от одного конца к другому в процессе трансляции ( рис. 5 ). У большой рибосомной субчастицы тоже есть головка — это центральный выступ, среди трех видимых выступов данной субчастицы ( рис. 3, вверху слева) . В шее (борозде, отделяющей головку от тела) размещается главный каталитический центр рибосомы — пептидил-трансферазный центр , осуществляющий синтез пептидных связей.

На рис. 2 (справа внизу) и рис. 5 видно, что две шеи находятся напротив друг друга и что между шеями как раз и расположен "глаз" — межсубчастичная полость, размещающая в себе молекулы двух субстратных тРНК. Так как каждая тРНК в рибосоме одним своим концом — антикодоном — должна взаимодействовать с кодоном мРНК, а другим, акцепторным концом, несущим аминокислоту или пептид, — с пептидил-трансферазным центром, то ее положение в рибосоме в отношении двух рибосомных субчастиц определяется однозначно: антикодон тРНК сидит в шее малой субчастицы, а акцепторный конец — в шее большой субчастицы. Наконец, важные характерные черты рибосомы — подвижный палочкообразный боковой выступ большой субчастицы, справа от головки на рис. 3 (вверху слева) и рис. 2 (слева) , и непокрытая малой субчастицей площадка большой субчастицы у основания выступа ( рис. 2, слева ). Наблюдения и эксперименты позволяют предполагать следующую картину событий: площадка принимает на себя поступающую в рибосому новую аминоацил-тРНК в комплексе со специальным белком — фактором элонгации 1 ( EF1 ). При этом палочкообразный отросток взаимодействует с фактором и ориентируется более или менее перпендикулярно плоскости раздела между субчастицами. В результате образуется карман между непокрытой площадкой большой субчастицы, боковой поверхностью малой субчастицы и палочкообразным отростком. Этот же карман может принимать другой белок — фактор элонгации 2 ( EF2 ), связывающийся с рибосомой для производства механического акта — транслокации. Третий — левый на рис. 3 (слева вверху) — выступ большой субчастицы и примыкающая к нему лопасть (боковое "ребро"), по-видимому, непосредственно участвуют в ассоциации рибосомных субчастиц. Со стороны малой рибосомной субчастицы в ассоциации субчастиц участвует боковая лопасть ее "тела" ( рис. 3, внизу слева ). Далее функционирование рибосомы будет описано более подробно.

Источник: medbiol.ru

Глава 4. СИНТЕЗ БЕЛКА

Синтез белка – это главный функциональный процесс в клетке, обеспечивающий реализацию генетической информации согласно генетическому коду. Синтез всех прочих биополимеров осуществляется специфическими ферментами. Простой ферментативный синтез молекул белка представить себе невозможно, так как они включают более 20 мономеров (аминокислот), а для взаимодействия каждой из них с любой другой необходимо наличие специфического фермента (т. е. белка). Во-первых, мы имеем логически порочный круг, а во-вторых, для синтеза любого белка необходимо задействовать невообразимо громадное количество ферментов (два в степени двадцать два). Поэтому, еще в начале прошлого века была постулирована необходимость матричного синтеза белковых молекул. Первая гипотеза матричного синтеза белков была предложена выдающимся русским и советским ученым, основателем Московской школы экспериментальной биологии (из которой вышли практически все крупные советские ученые биологи) Н.К. Кольцовым. Правда, в качестве молекул-матриц предлагались белковые же молекулы (в то время еще почти ничего не было известно ни о свойствах, ни о структуре молекул нуклеиновых кислот). Однако идея оказалась справедливой и, как известно, современная гипотеза (которая уже превратилась в теорию) – это матричная теория Крика.

4.1 Постулаты матричной теории Крика

Матричная теория, сформулированная Криком в 1956 году, базируется на трех главных принципах или постулатах:

I постулат: принцип последовательности и коллинеарности (солинейности) гласит, что определенной линейной последовательности нуклеотидов ДНК соответствует строго определенная (солинейная ей) последовательность аминокислот белка (т. е. фактически постулирует специфичность реализации генетического кода).

II постулат: принцип комплементарности гласит, что азотистые основания нуклеиновых кислот взаимодействуют друг с другом не случайным образом, а только А – Т (У), либо Г – Ц (и наоборот). Этот принцип важен на всех трех этапах реализации генетической информации (репликация, транскрипция, трансляция).

Источник: vunivere.ru

Строение

Важнейшей органеллой клетки является ядро. Оно содержит генетическую информацию и ядрышко, где образуются рибосомы. Синтезированные рибосомы через поры ядерной мембраны попадают либо на эндоплазматическую сеть, либо в цитоплазму. В зависимости от расположения в эукариотической клетке выделяют два вида рибосом:

  • связанные – располагаются на эндоплазматической сети (шероховатый вид);
  • свободные – располагаются в цитозоле.

Гладкая ЭПС образуется после освобождения от рибосом. В растительных клетках гладкая ЭПС формирует провакуоли, из которых затем образуются вакуоли.

Расположение рибосом в клетке

Рис. 1. Расположение рибосом в клетке.

Рибосомы – немембранные органеллы, имеющие округлую форму и состоящие из двух частей – субъединиц (большой и малой), каждая из которых представляет собой смесь рибосомальной РНК (рРНК) и белков. С химической точки зрения рибосома – нуклеопротеид, состоящий из нуклеиновых кислот и протеинов.

Функциональный центр рибосомы

Рис. 2. Строение рибосом.

Различают четыре разновидности молекул РНК рибосомы:

  • 18S-РНК – содержит 1900 нуклеотидов;
  • 5S-РНК – содержит 120 нуклеотидов;
  • 5,8S-РНК – состоит из 160 нуклеотидов;
  • 28S-РНК – состоит из 4800 нуклеотидов.

Малая частица рибосомы образована 30-35 белками и 18S-РНК. В большую субчастицу входит 45-50 белков и 5S-, 5,8S-, 28S-РНК.

В нерабочем состоянии части рибосом разъединены. Они соединяются с помощью информационной (матричной) РНК, обхватывая её с двух сторон. При синтезе белка рибосомы объединяются, образуя комплексы – полисомы или полирибосомы, связанные мРНК и напоминающие бусины на нитке.

Синтез белка

Главная функция рРНК – синтез белка и аминокислот.
Биосинтез белков включает два процесса:

  • транскрипцию;
  • трансляцию.

Транскрипция происходит с участием ДНК. Генетическую информацию считывает фермент РНК-полимераза, образуя мРНК. Далее начинается процесс трансляции, происходящий на рибосомах.
Этот процесс разделяется на три этапа:

  • инициацию – начало синтеза;
  • элонгацию – биосинтез;
  • терминацию – завершение синтеза, отделение рибосомы.

При инициации происходит сборка рибосомы. Контактные части субъединиц называются активными центрами, между которыми располагается:

  • мРНК в качестве «шаблона» синтеза;
  • тРНК, осуществляющая перенос аминокислот на синтезируемую цепь;
  • синтезируемый пептид, состоящий из аминокислот.

В процессе элонгации происходит удлинение полипептидной цепи за счёт присоединения аминокислот. Цепь отсоединяется от рибосомы на стадии терминации благодаря стоп-кодону – единицы генетического кода, шифрующего прекращение синтеза белка.

Общая схема синтеза белка на рибосоме

Рис. 3. Общая схема синтеза белка на рибосоме.

Биосинтез требует энергетических затрат. При присоединении одной аминокислоты расходуется по две молекулы АТФ (аденозинтрифосфата) и ГТФ (гуанозинтрифосфата). Кроме того, ГТФ тратится на процессы инициации и терминации.

Источник: obrazovaka.ru

<a rel="nofollow" href="http://www.medicalbrain.ru/genetika/etapy-realizacii-geneticheskoj-informacii-v-kletke.html" target="_blank" >ЗДЕСЬ — Этапы реализации наследственной информации в клетке</a> <a rel="nofollow" href="http://www.examen.ru/add/School-Subjects/Natural-Sciences/Biology/7979/7981" target="_blank" >ЗДЕСЬ — Биосинтез белка (реализация наследственной информации) </a> ………Синтез белка состоит из двух этапов — транскрипции и трансляции. I. Транскрипция (переписывание) — биосинтез молекул РНК, осуществляется в хромосомах на молекулах ДНК по принципу матричного синтеза. При помощи ферментов на соответствующих участках молекулы ДНК (генах) синтезируются все виды РНК (иРНК, рРНК, тРНК) . Синтезируется 20 разновидностей тРНК, так как в биосинтезе белка принимают участие 20 аминокислот. Затем иРНК и тРНК выходят в цитоплазму, рРНК встраивается в субъединицы рибосом, которые также выходят в цитоплазму. II. Трансляция (передача) — синтез полипептидных цепей белков, осуществляется в рибосомах. Она сопровождается следующими событиями: 1. Образование функционального центра рибосомы — ФЦР, состоящего из иРНК и двух субъединиц рибосом. В ФЦР всегда находятся два триплета (шесть нуклеотидов) иРНК, образующих два активных центра: А (аминокислотный) — центр узнавания аминокислоты и П (пептидный) — центр присоединения аминокислоты к пептидной цепочке. 2. Транспортировка аминокислот, присоединенных к тРНК, из цитоплазмы в ФЦР. В активном центре А осуществляется считывание антикодона тРНК с кодоном иРНК, в случае комплементарностн возникает связь, которая служит сигналом для продвижения (скачок) вдоль иРНК рибосомы на один триплет. В результате этого комплекс "кодон рРНК и тРНК с аминокислотой" перемещается в активный центр П, где и происходит присоединение аминокислоты к пептидной цепочке (белковой молекуле) . После чего тРНК покидает рибосому. 3. Пептидная цепочка удлиняется до тех пор, пока не закончится трансляция и рибосома не соскочит с иРНК. На одной иРНК может умещаться одновременно несколько рибосом (полисома) . Полипептидная цепочка погружается в канал эндоплазматиче-ской сети и там приобретает вторичную, третичную или четвертичную структуру. Скорость сборки одной молекулы белка, состоящего из 200-300 аминокислот, составляет 1-2 мин. Формула биосинтеза белка: ДНК (транскрипция) —&gt; РНК (трансляция) —&gt; белок.

Источник: touch.otvet.mail.ru