• лаг-фаза — начальная фаза периодической микробной культуры, охватывающая промежуток времени между инокуляцией и достижением максимальной скорости роста …
  • Фаза — инфраподвидовый таксой, обозначающий состояние, в к-ром находится группа особей того или иного вида, напр. L-фаза,R-фаза и…
  • ГАПЛОИДНАЯ АПОГАМЕТИЯ — см. редуцированная апогаметия…
  • Фаза — Приступ психического заболевания, по окончании которого не остается существенных признаков психического дефекта ни в мыслительной деятельности, ни личностных изменений…
  • фаза — нарк. см. сдвиг по…
  • Лаг-фаза — см. фазы роста микробных культур…
  • Фаза — в точном физико-химическом смысле, по Гиббсу, — совокупность однородных по составу материальных комплексов, входящих в состав системы и имеющих границу раздела с другими Ф. системы…
  • клетки гаплоидная — К. с гаплоидным набором хромосом…

  • Фаза электротехнического изделия (устройства) (Фаза) — English: Device phase Часть многофазного электротехнического изделия , предназначенная для включения в одну из фаз многофазной системы электрических цепей Источник: Термины и определения в электроэнергетике…
  • α-фаза — однородный твёрдый раствор одного компонента в другом…
  • β-фаза — электронное соединение с ОЦК решеткой, электронная концентрация на границе гомогенной области которого составляет 1,5…
  • γ-фаза — электронное соединение со сложной кубической решеткой, существующее в интервале электронных концентраций на границе гомогенной области от 1,5 до 1,62…
  • ξ-фаза — электронное соединение с ГПУ решеткой, существующее в интервале электронных концентраций на границе гомогенной области от 1,62 до 1,75…
  • σ-фаза — интерметаллид типа FeCr, образованный между переходными металлами, со сложной тетрагональной решеткой и широкой областью гомогенности…
  • лаг-фаза — …
  • лаг-фаза — сущ., кол-во синонимов: 1 • фаза…

Источник: slovar.wikireading.ru

Размножение растений и животных

Растения и некоторые животные способны размножатся как бесполым, так и половым путем. При бесполом размножении потомство является точной копией родителя. Разные типы бесполого размножения, обычно встречающиеся у обоих растений и животных, включают партеногенез (потомство развивается из неоплодотворенного яйца), почкование (потомство развивается, через почку на теле родителя), а также фрагментация (потомство развивается из части или фрагмента родителя). Половое размножение включает в себя объединение гаплоидных клеток (клеток, содержащих только один набор хромосом), чтобы образовать диплоидные клетки (содержащую два набора хромосом).


У многоклеточных животных жизненный цикл состоит из одного поколения. Диплоидный организм вырабатывает гаплоидные половые клетки посредством мейоза. Все остальные клетки тела диплоидные и продуцируются митозом. Новый диплоидный организм создается путем слияния мужских и женских половых клеток во время оплодотворения. У диплоидных организмов нет чередования поколений между гаплоидной и диплоидной фазами.

В растительных многоклеточных организмах жизненные циклы варьируются между диплоидными и гаплоидными фазами. В диплоидной (спорофитной) фазе продуцируются гаплоидные споры через мейоз. По мере развития гаплоидных спор через митоз, умноженные клетки образуют гаплоидную структуру гаметофитов. Гаметофит представляет собой гаплоидную фазу цикла. После созревания гаметофит производит мужские и женские гаметы (половые клетки). Когда гаплоидные гаметы объединяются, они образуют диплоидную зиготу. Зигота развивается через митоз, образуя новый спорофит. Таким образом, в отличие от животных, растительные организмы могут чередоваться между диплоидными (спорофитами) и гаплоидными (гаметофитными) поколениями.

Сосудистые и несосудистые растения


Чередование поколений наблюдается как у сосудистых, так и несосудистых растений. Сосудистые растения содержат систему сосудистой ткани, которая транспортирует воду и питательные вещества по всему телу растения. Несосудистые растения не имеют такой системы и нуждаются во влажных местах обитания для выживания. К ним относятся мхи, ан­то­це­ро­то­вид­ные и печёночные мхи. Эти растения выглядят как зеленые маты растительности с выступающими из них стебельками. Первичной фазой жизненного цикла несосудистых растений является генерация гаметофитов. Фаза гаметофит состоит из зеленой мшистой растительности, а фаза спорофит состоит из удлиненных стеблей со спорангиями на концах.

Первичной фазой жизненного цикла сосудистых растений является генерация спорофитов. В сосудистых растениях, которые не производят семена, такие как папоротники и хвощи, поколения спорофитов и гаметофитов независимы. Например, у папоротников ветвь с листьями представляют собой зрелое диплоидное образование спорофитов. Спорангии на нижней стороне листьев вырабатывают гаплоидные споры, которые прорастают для образования гаплоидных гаметофитов папоротника (проталлий). Эти растения процветают во влажных условиях, так как вода необходима для оплодотворения.

Сосудистые растения, которые производят семена, не всегда зависят от влажных сред обитания для размножения. Семена защищают развивающиеся эмбрионы. Как в цветковых, так и в нецветковых растениях (хвойных) генерация гаметофитов полностью зависит от доминирующих поколений спорофит. В цветущих растениях репродуктивная структура — цветок. Цветок производит как мужские микроспоры, так и женские мегаспоры.


Сами микроспоры содержатся в пыльце и вырабатываются в тычинке растения, развиваясь в мужские половые клетки. Женские мегаспоры производятся в пестики растений и развиваются в женские гаметы. Во время опыления пыльца переносится ветром, насекомыми или другими животными в женскую часть цветка. Мужские и женские гаметы объединяются и развиваются в семя, а завязь образует плод. У хвойных, пыльца производится в мужских шишках, а в женских шишках после оплодотворение формируется зародыш.

Источник: natworld.info

5.5. Пути приобретения организмами биологической информации

Благодаря генетической рекомбинации, которая закономерно происходит в процессе гаметогенеза и при оплодотворении, половое размножение представляет собой эволюционно обусловленный механизм обмена генетической информацией между организмами одного биологического вида. Некоторые факты из области зоологии и особенно вирусологии и микробиологии указывают и на то, что имеются пути приобретения биологической информации и от организмов других видов (см. 3.6.4.5). Эта информация воспроизводится в фенотипе организма и определяет развитие признаков, не закодированных в генетическом материале родителей. Так, в клетках пищеварительного дивертикула брюхоногого моллюска Elysia viridis сохраняются хлоропласты поедаемой водоросли Codium bragile, в результате чего моллюск приобретает способность к фотосинтезу.
рекательные капсулы гидроидных полипов, которые поедаются некоторыми реснитчатыми червями, не перевариваются, а перемещаются в эпителиальный пласт и используются червем в качестве орудия защиты. В классической зоологии такие примеры получили название клептогенеза или эволюции путем воровства.

Явление трансдукции заключается в том, что в генетический материал клетки-хозяина (бактериальной или эукариотической) встраивается нуклеиновая кислота вируса с фрагментом генома другой клетки. Привносимая таким образом биологическая информация вследствие редупликации чужеродной ДНК может передаваться в ряду клеточных поколений, а также воздействовать на состояние генетической системы клетки-хозяина, изменяя, например, частоту мутирования отдельных генов. Чужеродная ДНК может присутствовать в клетке в виде плазмид и эписом — фрагментов нуклеиновой кислоты, лишенных в отличие от вирусных частиц белковых чехлов. Плазмиды самостоятельны по отношению к хромосомам клетки-хозяина, а эписомы могут встраиваться в них. Биологическая информация плазмид и эписом, проявляясь в фенотипе, дает широкий круг признаков, включая устойчивость к антибиотикам (см. 3.6.3).

Примеры проникновения в организм действующей биологической информации организмов из других таксонов, прежде всего вирусов, описаны у высших животных и человека.
к, сотрудники, длительно работающие в онкологических лабораториях с вирусной опухолью кроликов — папилломой Шопа, имеют, как правило, пониженное содержание в плазме крови аминокислоты аргинина. Объясняется это тем, что вирус папилломы, которым «заражены» такие люди, несет ген синтеза аргиназы, катализирующей обмен аргинина. Будучи активным, этот ген обусловливает образование дополнительных молекул фермента. Описанный факт относится к широкой области так называемого вирусоносительства или латентных вирусных инфекций. Вирус, присутствуя в клетках организма длительное время и не вызывая собственно патологических изменений, приводит к развитию некоторых фенотипических признаков. У человека известен генетический дефект, который проявляется в серьезных нарушениях развития и зависит от недостатка аргиназы. Открытие способа контролируемого «заражения» таких людей вирусом папилломы Шопа могло бы нормализовать их фенотип.

Технологии геномики (см. разд. 3.2), расшифровывающие нуклеотидные последовательности ДНК, создают почву для целенаправленного изменения или введения в человеческий геном нормальных нуклеотидных последовательностей, что в перспективе может стать основой генотерапии.

Половой процесс служит универсальным механизмом обмена генетической информацией между особями в пределах вида. Рассмотренные факты свидетельствуют о том, что количество и содержание информации, используемой различными организмами для развития и жизнедеятельности, не всегда ограничиваются той, которая была ими приобретена от родителей.
ществуют дополнительные пути приобретения биологической информации. Видоспецифическая информация, получаемая в процессе размножения, обеспечивает развитие особей определенного морфофизиологического типа. Дополнительная информация по биологическому содержанию в значительной степени случайна и нередко нарушает реализацию собственной генетической информации хозяина. В связи с этим в эволюции возникли механизмы защиты от проникновения чужеродного наследственного материала. Примером может служить интерферон — белок, вырабатываемый клетками млекопитающих и птиц в ответ на внедрение вирусов и представляющий собой фактор неспецифического противовирусного иммунитета, а также система иммунологического надзора.

Источник: StudFiles.net

СТРАТЕГИЯ ЖИЗНИ. ПРИСПОСОБЛЕНИЕ, ПРОГРЕСС, ЭНЕРГЕТИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

Многочисленные находки ученых в виде окаменелостей, отпечатков в мягких породах и других объективных свидетельств указывают на то, что жизнь на Земле существует не менее 3,5 млрд. лет. На протяжении более чем 3 млрд. лет область ее распространения ограничивалась исключительно водной средой. К моменту выхода на сушу жизнь уже была представлена разнообразными формами: прокариотами, низшими и высшими растениями, простейшими и многоклеточными животными, включая ранних представителей позвоночных.


За указанный период, составляющий примерно 6/? всего времени существования жизни на нашей планете, произошли эволюционные преобразования, предопределившие лицо современного органического мира и, следовательно, появление человека. Знакомство с важнейшими из них помогает понять стратегию жизни.

Организмы, которые появились первыми, современная наука называет прокариотами. Это одноклеточные существа, отличающиеся относительной простотой строения и функций. К ним относятся бактерии и синезеленые водоросли (цианобактерии). О простоте их организации свидетельствует, например, имевшийся у них небольшой объем наследственной информации. Для сравнения: длина ДНК современной бактерии, кишечной палочки, составляет 4·106 пар нуклеотидов. Не больше ДНК было, по-видимому, и у древних прокариот. Названные организмы господствовали на Земле более 2 млрд. лет. С их эволюцией связано появление, во-первых, механизма фотосинтеза и, во-вторых, организмов эукариотического типа.

Фотосинтез открыл доступ к практически неисчерпаемой кладовой солнечной энергии, которая с помощью этого механизма накапливается в органических веществах и затем используется в процессах жизнедеятельности. Широкое распространение фотосинтезирующих автотрофных организмов, прежде всего зеленых растений, привело к образованию и накоплению в атмосфере Земли кислорода. Это создало предпосылки для возникновения в эволюции механизма дыхания, который отличается от бескислородных (анаэробных) механизмов энергообеспечения жизненных процессов гораздо большей эффективностью (примерно в 18 раз).


Эукариоты появились среди обитателей планеты около 1, 5 млрд. лет назад. Отличаясь от прокариот более сложной организацией, они используют в своей жизнедеятельности больший объем наследственной информации. Так, общая длина молекул ДНК в ядре клетки млекопитающего составляет примерно 2—5·109 пар нуклеотидов, т.е. в 1000 раз превосходит длину молекулы ДНК бактерии.

Первоначально эукариоты имели одноклеточное строение. Доисторические одноклеточные эукариоты послужили основой для возникновения в процессе эволюции организмов, имеющих многоклеточное строение тела. Они появились на Земле около 600 млн. лет назад и дали широкое разнообразие живых существ, расселившихся в трех основных средах: водной, воздушной, наземной. Полезно заметить, что многоклеточность возникла в эволюции в период, когда атмосфера планеты, обогатившись 02, приобрела устойчивый окислительный характер.

Около 500 млн. лет назад среди многоклеточных появляются хордовые животные, общий план строения которых радикальным образом отличается от плана строения существ, населявших планету до их появления. В процессе дальнейшей эволюции именно в этой группе возникают позвоночные животные. Среди них примерно 200—250 млн. лет назад появляются млекопитающие, характерной чертой которых становится особый тип заботы о потомстве — вскармливание народившегося детеныша молоком. Названная черта соответствует новому типу отношений между родителями и потомством, способствующему укреплению связи между поколениями, созданию условий для выполнения родителями воспитательной функции, передачи ими опыта.


Именно через группу млекопитающих животных, в частности через отряд приматов, прошла линия эволюции, ведущая к человеку (примерно 1, 8 млн. лет назад). Однозначного соответствия уровню морфофизиологической организации количества ДНК среди представителей разных классов многоклеточных животных не установлено. Тем не менее для появления процветающего класса насекомых понадобилось, чтобы общая длина молекулы ДНК в геноме превысила 108 пар нуклеотидов, предшественников хордовых — 4 · 108, амфибий — 8 · 108, рептилий — 109, млекопитающих — 2 · 109 пар нуклеотидов (рис. 1.2).

Выше названы узловые пункты исторического развития жизни от одноклеточных форм до людей, наделенных разумом и способностью к активной созидательной деятельности и сознательному переустройству среды жизни. Знакомство с составом обитателей планеты на любом из этапов развития жизни свидетельствует о его разнообразии, сосуществовании в одни и те же периоды организмов, различающихся как по общему плану строения тела, так и по времени появления в процессе эволюции (рис. 1.3). И в наши дни органический мир представлен наряду с эукариотами микроорганизмами и синезелеными водорослями, относящимися к прокариотам. На фоне разнообразия многоклеточных эукариотических организмов имеется значительное число видов одноклеточных эукариот.

Гаплоидная фаза

Рис. 1.2. Изменение объема уникальных нуклеотидных последовательностей в геномах в процессе прогрессивной эволюции

Заслуживает упоминания еще одно обстоятельство, характеризующее органический мир в самом общем виде. Среди организмов разного плана строения, сосуществующих в определенный исторический период времени, некоторые формы, имевшие некогда широкое распространение, представлены относительно небольшим количеством особей и занимают ограниченную территорию. Фактически они лишь поддерживают свое пребывание во времени, избегая (благодаря наличию у них определенных приспособлений) вымирания в ряду поколений. Другие, напротив, увеличивают свою численность, осваивают новые территории и экологические ниши. В таких группах возникают разнообразные варианты организмов, отличающихся в той или иной мере от предковой формы и друг от друга деталями строения, физиологии, поведения, экологии.

Из изложенного можно заключить, что эволюция жизни на Земле характеризуется следующими общими чертами. Во-первых, возникнув в виде простейших одноклеточных форм, жизнь в своем развитии закономерно порождала существа со все более сложным типом организации тела, совершенными функциями, повышенной степенью независимости от прямых влияний со стороны окружающей среды на выживаемость. Во-вторых, любые варианты живых форм, возникавшие на планете, сохраняются столь долго, сколь долго существуют геохимические, климатические, биогеографические условия, удовлетворяющие в достаточной мере их жизненным запросам. В-третьих, в своем развитии отдельные группы организмов проходят стадии подъема и нередко спада. Стадия, достигнутая группой на данный исторический момент, определяется по тому месту, которое ей принадлежит на этот момент в органическом мире в зависимости от численности и распространенности.

Развитию событий или явлений во времени соответствует понятие прогресса. С учетом описанных выше общих черт в процессе исторического развития жизни наблюдаются три формы прогресса, качественно отличающиеся друг от друга. Эти формы по-разному характеризуют положение соответствующей группы организмов, достигнутое в итоге предшествующих этапов эволюции, экологические и эволюционные перспективы.

Гаплоидная фаза

Рис. 1.3. Филогенетические отношения основных групп растений, грибов, животных и прокариот

Пунктиром обозначено предполагаемое положение групп

Биологическим прогрессом называют состояние, когда численность особей в группе от поколения к поколению растет, расширяется территория (ареал) их расселения, нарастает количество подчиненных групп более низкого ранга — таксонов. Биологический прогресс соответствует понятию процветания. Из ныне существующих групп к процветающим относят насекомых, млекопитающих. Период процветания, к примеру, пресмыкающихся завершился около 60—70 млн. лет назад.

Морфофизиологический прогресс означает состояние, приобретаемое группой в процессе эволюции, которое дает возможность части ее представителей выжить и расселиться в среде обитания с более разнообразными и сложными условиями. Такое становится возможным благодаря появлению существенных изменений в строении, физиологии и поведении организмов, расширяющих их приспособительные возможности за рамки обычных для предковой группы. Из трех главных сред обитания наземная представляется наиболее сложной. Соответственно выход животных на сушу, например в группе позвоночных, был связан с рядом радикальных преобразований конечностей, дыхательной и сердечно-сосудистой систем, процесса размножения.

Появление среди земных обитателей человека соответствует качественно новому состоянию жизни. Переход к этому состоянию, хотя и был подготовлен ходом эволюционного процесса, означает смену законов, которым следует развитие человечества, с биологических на социальные. Вследствие названной смены выживание и неуклонный рост численности людей, их расселение по территории планеты, проникновение в глубины океана, недра Земли, воздушное и даже космическое пространство определяются результатами труда и интеллектуальной деятельности, накоплением и преумноженном в ряду поколений опыта преобразующих воздействий на природную среду. Эти воздействия превращают природу в очеловеченную среду жизни людей.

Ряд последовательных крупных эволюционных изменений, таких, как эукариотический тип организации клеток, многоклеточность, возникновение хордовых, позвоночных и, наконец, млекопитающих животных (что обусловило в конечном итоге появление человека), составляет в историческом развитии жизни линию неограниченного прогресса. Обращение к трем формам прогресса, названным выше, помогает раскрыть главные стратегические принципы эволюции жизни, от которых зависят ее сохранение во времени и распространение по разным средам обитания. Во-первых, эволюция по своим результатам на любом из этапов носит приспособительный характер. Во-вторых, в процессе исторического развития закономерно повышается уровень организации живых форм, что соответствует прогрессивному характеру эволюции.

Чем выше уровень морфофизиологической организации, тем большее количество энергии требуется для ее поддержания. В силу этого еще один стратегический принцип эволюции заключается в освоении новых источников и эффективных механизмов энергообеспечения жизненных процессов.

Для образования высокоорганизованных форм в сравнении с низкоорганизованными в целом необходим больший объем наследственной информации. Закономерное увеличение объема используемой в жизнедеятельности генетической информации также является стратегическим принципом развития жизни.

Источник: botan0.ru